簡易檢索 / 詳目顯示

研究生: 江旻軒
Min-Hsuan Chiang
論文名稱: 具自我恢復力之可維修產品在隨機衝擊下之最佳置換時程
Optimal Replacement Time for Repairable Products with Resilience under Random Shocks
指導教授: 葉瑞徽
Ruey-Huei Yeh
口試委員: 林希偉
Shi-Woei Lin
曾世賢
Shih-Hsien Tseng
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 56
中文關鍵詞: 自我恢復力隨機衝擊可維修產品小修置換策略失效率
外文關鍵詞: resilience, random shocks, repairable products, minimal repair, replacement policy, failure rate
相關次數: 點閱:172下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般市面上的產品隨著使用時間增加皆無可避免失效的情形發生,而其原因可歸為兩個面向,分別為產品本身內部的自然退化以及來自外部的隨機衝擊,且無論導致產品失效的原因為何,當失效發生時需執行小修使其回到失效前狀態,因此為了避免產品失效次數增加進而導致產品效能不穩定或是造成成本上的負擔,需在某時刻執行置換使總成本最小化。而隨著科技發展日新月異,市面上推出許多新產品、零件以及機器設備具有自我恢復的能力,使其受到衝擊時可以減少衝擊所帶來之附加成本。然而此些具有自我恢復力之產品雖可減緩衝擊之影響,當決定置換為此類型之產品時所需額外付出之成本也相對較高。在過去探討置換策略相關的文獻中,鮮少以具自我恢復力之產品作為研究對象,因此本論文針對以下三種退化產品(1)僅考慮內部退化之產品、(2)在隨機衝擊下不具自我恢復力之產品以及(3)在隨機衝擊下具自我恢復力之產品建立成本模式,並以數值範例分析比較三者最佳置換策略之差異,且進一步探討自我恢復力之價值。


    Generally, products on the market are unavoidable to fail as time passes. It can be attributed to two main reasons, which are the internal deterioration and the external random shocks. No matter the reason of the failure, minimal repair is performed to restore the products back to the operating state. Therefore, the replacement is needed to avoid the unstable performance and the cost burden which are caused by the increasing failure times. With the ever-changing technology, many new products on the market have the capability of resilience, which can reduce the additional cost for the random shocks. However, although these kinds of products can mitigate the impact of shocks, the extra cost for performing the replacement is also higher. In the past literature, they only considered the replacement strategy under the random shocks, but the concept of resilience has hardly been considered. As a result, this paper establishes a cost model for the following three deteriorating products:(1) The internal deterioration product, (2) The deteriorating product without resilience under random shocks and (3) The deteriorating product with resilience under random shocks. In addition, this paper compared the optimal replacement strategies for three deteriorating products. Finally, some numerical examples are given to explored the value of resilience.

    摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 研究背景與目的 1 1.2 研究範圍與架構 2 第二章 文獻探討 4 2.1 產品維修 4 2.2 置換策略 6 2.3 隨機衝擊與自我恢復力 7 第三章 數學模式 12 3.1 符號定義與基本假設 12 3.2 可維修產品在不同情境下的退化過程 13 3.2.1 僅考慮內部退化之產品 14 3.2.2 在隨機衝擊下不具自我恢復力之產品 15 3.2.3 在隨機衝擊下具自我恢復力之產品 16 3.3 成本模式 18 3.3.1 僅考慮內部退化之產品之成本模式 19 3.3.2 在隨機衝擊下不具自我恢復力之產品之成本模式 20 3.3.3 在隨機衝擊下具自我恢復力之產品之成本模式 22 第四章 可維修產品壽命為韋伯分配下之最佳置換時程 26 4.1 僅考慮內部退化之產品之最佳置換時程 27 4.2 在隨機衝擊下不具自我恢復力之產品之最佳置換時程 28 4.3 在隨機衝擊下具自我恢復力之產品之最佳置換時程 30 第五章 數值分析 33 5.1 參數設定 33 5.2 最佳恢復比例 34 5.3 自我恢復力之價值 36 5.4 不同情境下之產品最佳置換策略 38 5.5 敏感度分析 41 5.5.1 β變動下對最佳置換策略之影響 41 5.5.2 小修成本變動下對最佳置換策略之影響 44 5.5.3 置換成本變動下對最佳置換策略之影響 45 5.5.4 衝擊到達速率變動下對最佳置換策略之影響 47 第六章 結論與未來研究方向 50 6.1 結論 50 6.2 研究貢獻 51 6.3 未來研究方向 53 參考文獻 54

    [1] C. S. Holling, “Resilience and Stability of Ecological Systems”, Annual Review of Ecology and Systematics, Vol. 4, pp. 1-23, 1973.
    [2] C. R. Allen, L. Gunderson & A. R. Johnson, “The use of discontinuities and functional groups to assess relative resilience in complex systems”, Ecosystems, 8(8), 958, 2005.
    [3] H. Liu, R.H. Yeh & B. Cai, “Reliability modeling for dependent competing failure processes of damage self-healing systems”, Computers & Industrial Engineering, 105, 55-62, 2017.
    [4] N. C. Caballé, I. T. Castro, C. J. Pérez & J. M. Lanza-Gutiérrez, “A condition-based maintenance of a dependent deterioration-threshold-shock model in a system with multiple deterioration processes”, Reliability Engineering & System Safety, 134, 98-109, 2015.
    [5] R. Barlow & L. Hunter, “Optimum preventive maintenance policies”, Operations research, 8(1), 90-100, 1960.
    [6] T. Nakagawa and M. Kowada, “Analysis of a system with minimal repair and its application to replacement policy”, European Journal of Operational Research, 12, 176-182, 1983.
    [7] S.H. Sheu, “Periodic replacement with minimal repair at failure and general random repair cost for a multi-unit system”, Microelectronics and Reliability, 31, 1019-1025, 1991.
    [8] S. H. Sheu, C. C. Chang, Y. L. Chen & Z. G. Zhang, “A periodic replacement model based on cumulative repair-cost limit for a system subjected to shocks”, IEEE Transactions on Reliability, 59(2), 374-382, 2010.
    [9] K.T. Huynh, I.T. Castro, A. Barros, C. Bérenguer, “Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to deterioration and shocks”, European Journal of Operational Research, 218, 140-151, 2012.
    [10] R. Zheng & V. Makis, “Optimal condition-based maintenance with general repair and two dependent failure modes”, Computers & Industrial Engineering, 141, 106322, 2020.
    [11] M. Berg & B. Epstein, “Comparison of age, block, and failure replacement policies”, IEEE transactions on Reliability, 27(1), 25-29, 1978.
    [12] T. Nakagawa, “Modified periodic replacement with minimal repair at failure”, IEEE Transactions on Reliability, 30(2), 165-168, 1981.
    [13] S. Osaki, “Applied stochastic system modeling”, Springer, New York, 1993.
    [14] W. Y. Yun & C. H. Choi, “Optimum replacement intervals with random time horizon”, Journal of Quality in Maintenance Engineering, 6(4), 269-274, 2000.
    [15] Y. H. Chien & S. H. Sheu, “Extended optimal age-replacement policy with minimal repair of a system subject to shocks”, European Journal of Operational Research, 174(1), 169-181, 2006.
    [16] R. H. Yeh, N. Kurniati & W. L. Chang, “Optimal single replacement policy for products with free-repair warranty under a finite planning horizon”, Quality Technology & Quantitative Management, vol. 12, pp. 159-167, 2015.
    [17] C. H. Huang & C. H. Wang, “A Time-Replacement Policy for Multistate Systems with Aging Components under Maintenance, from a Component Perspective”, Mathematical Problems in Engineering, 9651489, 2019.
    [18] T. Nakagawa, “Shock and Damage Models in Reliability Theory”, Springer, London, UK, 2007.
    [19] M. Finkelstein & I. Gertsbakh, “On preventive maintenance of systems subject to shocks”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 230(2), 220-227, 2016.
    [20] M. R. Kessler, “Self-healing: a new paradigm in materials design”, Proceedings of the Institution of Mechanical Engineers. Part G: Journal of Aerospace Engineering, 221(4), 479–495, 2007.
    [21] T. S. Wong, S. H. Kang, S. K. Y. Tang, E. J. Smythe, B. D. Hatton, A. Grinthal & J. Aizenberg, “Bioinspired self-repairing slippery surfaces with pressurestable omniphobicity”, Nature, 477(7365), 443–447. 2011.
    [22] 黃馨玫,在隨機衝擊下之可自我恢復線性退化系統之最佳置換時機,國立臺灣科技大學碩士論文,2022。

    QR CODE