簡易檢索 / 詳目顯示

研究生: 徐子淳
Tzu-Chun Hsu
論文名稱: 具韋伯壽命分配之雙零件系統個別與群體置換的比較
Comparisons of Individual and Group Replacement Policies for Two-Component Systems with Weibull Lifetime Distributions
指導教授: 葉瑞徽
Ruey-Huei Yeh
口試委員: 張文亮
Wen-Liang Chang
林希偉
Shi-Woei Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 雙零件串聯系統並聯系統個別置換策略群體置換策略
外文關鍵詞: Two-component, Series system, Parallel system, Individual replacement policy, Group replacement policy
相關次數: 點閱:269下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對雙零件串聯及並聯系統,探討系統零件具韋伯壽命分配之個別與群體置換策略的比較,進一步分析相關的停機成本對雙零件的個別與群體置換策略在串聯與並聯結構下之差異。對於雙零件以串聯或並聯方式組成之系統,當零件失效時,則以小修方式處理,小修後零件恢復正常運作,但零件的失效率維持不變。一般來說,零件的失效次數會隨著使用的時間或零件壽命而增加,為了有效降低失效次數,零件將在一個特定時程執行預防性置換。在串聯系統中,任一零件的失效將導致整個系統無法運作;在並聯系統中,因零件的運作彼此互相獨立,因此任一零件的失效並不會影響整體系統運作。考量到串聯及並聯的系統特性,當相關的停機成本高昂時,對系統零件同時執行預防性置換將有利於個別置換處理。依據以上的維修置換策略,本論文將分別建構出串聯與並聯系統個別與群體置換的成本模式,並進一步求得串聯與並聯系統的個別與群體置換的最佳置換時程並比較其優劣,同時分別推導出串聯與並聯系統零件選擇個別與群體置換的準則,以達到成本為最低之目的。


    This paper investigates the comparisons of optimal replacement policies for two-component repairable systems with Weibull lifetime distributions and analyzes the influence of the related downtime cost for individual and group replacement policies under series and parallel systems. The system consists of two components by series and parallel. When any component fails in the operation time, the failed component is rectified by a minimal repair. Due to the inevitable deterioration of the component, it may fail more frequently as its age increases. To minimize the number of failures, a preventive replacement action should be carried out at a pre-specified time. For series system, the system fails whenever one of the components fails and a minimal repair is carried out to rectify the failed component. For parallel system, the operation of each component is independent, that is, any failure of component will not affect the normal operation of the system. When the related downtime cost is high, it might be worthwhile to replace both components at the same time instead of replacing them separately. Under these maintenance schemes, this paper will construct cost models of series and parallel systems with individual replacement and group replacement. Furthermore, the optimal individual and group replacement policies are obtained and compared. Simultaneously, some criterions are derived to choose individual or group replacement policies for components of parallel and series systems.

    摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 VII 第1章 緒論 1 1.1 研究背景與目的 1 1.2 研究範圍 2 1.3 論文架構 3 第2章 文獻探討 4 2.1 維修相關文獻探討 4 2.2 置換相關文獻探討 6 2.3 串聯及並聯系統相關文獻探討 6 第3章 研究方法 8 3.1 系統描述 8 3.2 數學模式 10 3.2.1 雙零件串聯系統 11 3.2.2 雙零件並聯系統 12 3.3 串聯與並聯系統最佳置換時程 13 3.3.1 雙零件串聯系統 13 3.3.2 雙零件並聯系統 15 3.4 個別與群體置換策略之比較 17 3.4.1 串聯系統 17 3.4.2 並聯系統 18 第4章 數值分析 20 4.1 串聯系統 20 4.2 並聯系統 30 4.3 串聯及並聯結構下之成本分析 41 4.3.1 個別置換策略在串聯與並聯結構下之成本分析 41 4.3.2 群體置換策略在串聯與並聯結構下之成本分析 43 第5章 結論與未來研究 46 5.1 結論 46 5.2 未來研究方向 47 參考文獻 48 附錄A 成本差異表 51 附錄B 電腦程式碼 75

    [1] 葉瑞徽,「產品保證對最佳維修策略之影響」,國科會研究計畫NSC-91-2213-E-011-091,2002。
    [2] Barlow, R. and L. Hunter, Optimum Preventive Maintenance Policies, Operations Research, 8, 90-100 (1960).
    [3] Beichelt, F., A general preventiye maintenance policy, Mathematische Operationsforschung und Statistik, 7, 927-932 (1976).
    [4] Beichelt, F., A generalized block-replacement policy, IEEE Transactions on reliability, 2, 171-172 (1981).
    [5] Berg, M. and B. Epstein, Comparison of age, block, and failure replacement policies, Reliability, IEEE Transactions on, 27, 25-29 (1978).
    [6] Block, H., W. Borges and T. Savits, A general age replacement model with minimal repair, Naval Research Logistics (NRL), 35, 365-372 (1988).
    [7] Boland, P.J. and F. Proschan, Periodic Replacement with Increasing Minimal Repair Costs at Failure, Operations Research, 30, 1183-1189 (1982).
    [8] Chen, M. and R.M. Feldman, Optimal replacement policies with minimal repair and age-dependent costs, European Journal of Operational Research, 98, 75-84 (1997).
    [9] Chien, Y. H. and S. H. Sheu, Extended optimal age-replacement policy with minimal repair of a system subject to shocks, European journal of operational research, 174, 169-181 (2006).
    [10] Chien, Y., C. Chang and S. Sheu, Optimal periodical time for preventive replacement based on a cumulative repair-cost limit and random lead time, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223, 333-345 (2009).
    [11] Elwany, A.H., N.Z. Gebraeel and L.M. Maillart, Structured Replacement Policies for Components with Complex Degradation Processes and Dedicated Sensors, Operations Research, 59, 684-695 (2011).
    [12] Hsu, T. C., M. W. Wang, W. L. Chang and R. H. Yeh, The Impact of Downtime Cost on Replacement Policies for Repairable Two-Component Series Systems (2015).
    [13] Hsu, Y. W., W. L. Chang and R. H. Yeh, The Effect of Setup Cost on Replacement Policies for Repairable Two-Component Parallel Systems (2015).
    [14] Lai, M. T. and J. Yuan, An optimal replacement period for a parallel system with single and multiple failures, Communications in Statistics. Stochastic Models, 9, 81-89 (1993).
    [15] Li, Y.F., R. Peng, Availability modeling and optimization of dynamic multi-state series–parallel systems with random reconfiguration, Reliability Engineering & System Safety, 127, 47-57 (2014).
    [16] Lotka, A.J., A contribution to the theory of self-renewing aggregates, with special reference to industrial replacement, The Annals of Mathematical Statistics, 10, 1-25 (1939).
    [17] Nakagawa, T., Replacement Problem of a Parallel System in Random Environment, Journal of Applied Probability, 16, 203-205 (1979).
    [18] Nakagawa, T., Optimal Number of Units for a Parallel System, Journal of Applied Probability, 21, 431-436 (1984).
    [19] Nakagawa, T. and M. Kowada, Analysis of a system with minimal repair and its application to replacement policy, European Journal of Operational Research, 12, 176-182 (1983).
    [20] Osaki, S. and T. Nakagawa, A Note on Age Replacement, IEEE Transactions on Reliability, R-24, 92-94 (1975).
    [21] Phelps, R.I., Optimal Policy for Minimal Repair, The Journal of the Operational Research Society, 34, 425-427 (1983).
    [22] Savits, T.H., Some Multivariate Distributions Derived from a Non-Fatal Shock Model, Journal of Applied Probability, 25, 383-390 (1988).
    [23] Shafiee, M. and M. Finkelstein, An optimal age-based group maintenance policy for multi-unit degrading systems, Reliability Engineering & System Safety, 134, 230-238 (2015).
    [24] Sheu, S. H., Periodic replacement when minimal repair costs depend on the age and the number of minimal repairs for a multi-unit system, Microelectronics Reliability, 30, 713-718 (1990).
    [25] Sheu, S. H., A generalized block replacement policy with minimal repair and general random repair costs for a multi-unit system, Journal of the Operational Research Society, 331-341 (1991).
    [26] Sheu, S. H. and W.S. Griffith, Optimal age-replacement policy with age-dependent minimal-repair and random-leadtime, IEEE Transactions on Reliability, 50, 302-309 (2001).
    [27] Sheu, S.H., C.C. Chang, Y.L. Chen and Z.G. Zhang, A Periodic Replacement Model Based on Cumulative Repair-Cost Limit for a System Subjected to Shocks, IEEE Transactions on Reliability, 59, 374-382 (2010).
    [28] Tahara, A. and T. Nishida, Optimal replacement policy for minimal repair model, Journal of Operations Research Society of Japan, 18, 113-124 (1975).
    [29] Tilquin, C. and R. Cléroux, Periodic replacement with minimal repair at failure and general cost function, Journal of Statistical Computation and Simulation, 4, 63-77 (1975)

    QR CODE