簡易檢索 / 詳目顯示

研究生: 黎美清
Shella - Permatasari Santoso
論文名稱: 複合物的形成從2,3-二羥基苯甲酸,N-乙醯半胱氨酸 與二價過渡金屬離子:溶液平衡,合成,表徵及生物活性研究
Complex Formation of 2,3-Dihydroxybenzoic Acid and N-Acetylcysteine with Divalent Metal Ions: Solution Equilibrium, Synthesis, Characterization and Biological Activity Studies
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Ahmed Fazary
Ahmed Fazary
Felycia Edi Soetaredjo
Felycia Edi Soetaredjo
Jhy-Chern Liu
Jhy-Chern Liu
Meng-Jiy Wang
Meng-Jiy Wang
Alchris Woo Go
Alchris Woo Go
Tran Thi Ngoc Yen
Tran Thi Ngoc Yen
Suryadi Ismadji
Suryadi Ismadji
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 114
中文關鍵詞: 複合物的形成二羥基苯甲酸乙醯半胱氨酸二價過渡金屬離子
外文關鍵詞: Complexation, dihydroxybenzoic acid, acetylcysteine, divalent metals.
相關次數: 點閱:200下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討2,3-二羥基苯甲酸,N-乙醯基半胱氨酸與二價過渡金屬離子(錳-Mn2+, 鈷-Co2+, 鎳-Ni2+, 鋅-Zn2+, 銅-Cu2+)之溶液平衡。二成份與三成份複合物的溶液平衡常數 在類似於人體生理條件(37 攝氏度和 0.15mol•dm-3 氯化鈉離子強度) 下利用 電位滴定法求得。使用 Hyperquad2008 電腦程式修訂電位滴定數據。使用分光光度法確認 所求得之平衡常數值並以 HypSpec 電腦程式修訂之。結果發現 2,3-二羥基苯甲酸 之二成份錯合物比N-乙醯半胱氨酸二成份更稳定。而在三成份複合物中, 兩個配體組合因 協同作用而得到更穩定之錯合物。
    本研究更進一步合成 2,3-二羥基苯甲酸的二成份錯合物與三成份錯合物 (包括 N-乙醯半胱氨酸)並利用各種分析例如紫外-可見 (UV-Vis) 和紅外光譜法(IR)將之定性。 結果 發現合成的錯合物比原始配體有更高的抗微生物活性,特別是抗金黃色葡萄球菌 (S.aureus) 和大腸桿菌 (E.coli) 。在所有合成的金屬與配體錯合物中發現Zn2+的二成份與三成份錯合物 具有最好的抗微生物活性,所以進一步利用元素分析 (EA) 和氫固態核磁共振光譜 (1H NMR) 將之定性。從這些結果可推導出 Zn2+ 二成份與三成份錯合物的結構。 二成份複合物係透過2,3-二羥基苯甲酸的羥基來鍵結,而三成份複合物則是透過 2,3-二羥基 苯甲酸的羥基(—O)以及N-乙 醯半胱氨酸羧基的羧基(—COO)和巰基(—S)來鍵結形成。


    Solution equilibriums of 2,3-dihydroxybenzoic acid, N-acetylcysteine and divalent transition metal ions (Mn2+, Co2+, Ni2+, Zn2+, Cu2+) were investigated in this study. The equilibrium constant values of binary and ternary compounds were determined by using potentiometric method at conditions similar to that of human physiology (37°C, ionic strength = 0.15 mol•dm-3 NaCl). The refinement of potentiometric data were done by using the Hyperquad 2008 computer program. The determination of equilibrium constants was confirmed by spectrophotometric method with refinement using the HypSpec program. The binary complexes of 2,3-dihydroxybenzoic acid were found to be more stable than that of N-acetylcysteine complexes. While in ternary systems, the combination of the two ligands resulted in synergistic effect, thus producing more stable complexes.
    Furthermore, 2,3-dihydroxybenzoic acid binary and ternary complexes including N-acetylcysteine were synthesized and characterized by analyses such as UV-Vis and IR. The synthesized complexes were found to improve biological properties of the original ligand especially in antimicrobial activity against Staphylococcus aureus and Escherichia coli. In all complexes synthesized, binary and ternary complexes of Zn2+ gave the best antimicrobial activity and were characterized further by elemental analysis and 1H NMR. From the results structures of the synthesized binary complex and ternary complex of Zn2+ were suggested. The binary complex was formed through the binding of 2,3-dihydroxybenzoic acid hydroxyl (—O) groups while the ternary complex was formed through the binding of the same groups of 2,3-dihydroxybenzoic acid as in the binary complex and the N-acetylcysteine carboxylic group (—COO) and thiol group (—S).

    Recommendation Letter ii Qualification Letter iii 摘要 iv ABSTRACT v ACKNOWLEDGEMENT vi TABLE OF CONTENTS vii LIST OF TABLES ix LIST OF FIGURES x CHAPTER 1 1 1.1. Background 1 1.2. Objectives 2 CHAPTER 2 3 2.1. Metal in Biological Systems 3 2.1.1. Excessive Metal Intake 5 2.1.2. Metal Exposure Sources 6 2.2. Chelation 8 2.2.1. Stability Constant 9 2.3. Ligand 13 2.3.1. 2,3-Dihydroxybenzoic Acid 14 2.3.2. N-Acetylcysteine 15 2.4. Metal Ligand Synthesis 18 2.4.1. Biological Activities 19 2.4.2. Some Examples of Complex Synthesis 19 CHAPTER 3 21 3.1. Materials 21 3.2. Instrumentations 22 3.3. Experimental Procedures 22 3.3.1. Potentiometry and Spectrophotometry Measurements 22 3.3.2. Synthesis of Binary Complexes 25 3.3.3. Synthesis of Ternary Complexes 26 3.3.4. Antioxidant Assay by DPPH Method 26 3.3.5. Antimicrobial Assay 27 CHAPTER 4 28 4.1. Solution Equilibrium Studies 28 4.1.1. Complexation Study of 2,3-Dihydroxybenzoic Acid (DA) Binary Complexes 28 4.1.2. Complexation Study of N-Acetylcysteine (Nac) Binary Complexes 35 4.1.3. Complexation Study of DA and Nac Ternary Complexes 40 4.1.4. UV-Vis Spectra Measurements of Ternary Complexes 46 4.1.5. Solution Equilibrium with Toxic Metal Be2+ Binary and Ternary 49 4.2. Metal Ligand Complex Synthesis 51 4.2.1. Characteristic of FTIR Spectra 52 4.2.2. Electronic Spectra and Molar Conductivity 55 4.2.3. Antioxidant Activity 56 4.2.4. Microbial Growth Inhibitory Activity 56 4.3. Characterizations of Zinc Complexes 60 4.3.1. Binary Complex of Zinc 60 4.3.2. Ternary Complex of Zinc 61 4.3.3. Thermogravimetric Analyses 63 4.3.4. Effect of Temperature on Thermodynamic Parameters 65 CHAPTER 5 68 5.1. Conclusion 68 5.1.1. Solution Equilibrium Studies 68 5.1.2. Metal Ligand Complex Synthesis 69 5.2. Suggestions 69 REFERENCES 71 APPENDIX A A1 APPENDIX B B1 APPENDIX C C1 CURRICULUM VITAE

    1. Flora, S. J. S.; Pachauri, V., Chelation in Metal Intoxication. Int. J. Environ. Res. Public. Health. 2010, 7, 2745-2788.
    2. Vallet, V.; Wahlgren, U.; Grenthe, I., Chelate Effect and Thermodynamics of Metal Complex Formation in Solution:  A Quantum Chemical Study. J. Am. Chem. Soc. 2003, 125, 14941-14950.
    3. Goyer, R. A., Toxic Effects of Metals. In Casarett & Doull's Toxicology: The Basic Science of Poisons, Klaassen, C. D., Ed. Pergamon Press: New York, USA, 1996; pp 629-681.
    4. Kalia, K.; Flora, S. J. S., Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J. Occup. Health. 2005, 47, 1-21.
    5. Angkawijaya, A. E.; Fazary, A. E.; Hernowo, E.; Taha, M.; Ju, Y.-H., Iron(III), Chromium(III), and Copper(II) Complexes of L-Norvaline and Ferulic Acid. J. Chem. Eng. Data. 2011, 56, 532-540.
    6. Bukhari, S. B.; Memon, S.; Tahir, M. M.; Bhanger, M. I., Synthesis, characterization and antioxidant activity copper-quercetin complex. Spectrochim. Acta Mol. Biomol. Spectros. 2009, 71, 1901-1906.
    7. Porwal, S. K.; Furia, E.; Harris, M. E.; Viswanathan, R.; Devireddy, L., Synthetic, potentiometric and spectroscopic studies of chelation between Fe(III) and 2,5-DHBA supports salicylate-mode of siderophore binding interactions. J. Inorg. Biochem. 2015, 145, 1-10.
    8. Singh, V. P.; Singh, D. P., Synthesis, Thermal Studies and Spectral Characterization of Co(II), Ni(II), Cu(II), and Zn(II) Complexes with Some Polymeric Diacetyl Acyldihydrazone Ligands. Macromol. Res. 2013, 21, 757-766.
    9. Shebl, M.; Ibrahim, M. A.; Khalil, S. M. E.; Stefan, S. L.; Habib, H., Binary and ternary copper(II) complexes of a tridentate ONS ligand derived from 2-aminochromone-3 carboxaldehyde and thiosemicarbazide: Synthesis, spectral studies and antimicrobial activity. Spectrochim. Acta Mol. Biomol. Spectros. 2013, 115, 399-408.
    10. Dharmaraja, J.; Esakkidurai, T.; Subbaraj, P.; Shobana, S., Mixed ligand complex formation of 2-aminobenzamide with Cu(II) in the presence of some amino acids: Synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies. Spectrochim. Acta Mol. Biomol. Spectros. 2013, 114, 607-621.
    11. Beckett, W. S.; Nordberg, G. F.; Clarkson, T. W., Routes of Exposure, Dose, and Metabolism of Metals. In Handbook on The Toxicology of Metals, Nordberg, G.; Fowler, B.; Nordberg, M.; Friberg, L., Eds. Academic Press: San Diego, CA, 2007; pp 39-64.
    12. Kohlmeier, M., Nutrient Metabolism. In Food Science and Technology, Academic Press: London, UK, 2003.
    13. Trumbo, P.; Yates, A. A.; Schlicker, S.; Poos, M., Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Am. Diet. Assoc. 2001, 101, 294-301.
    14. Hanikenne, M.; Merchat, S. S.; Hamel, P., Transition Metal Nutrition: A Balance Between Deficiency and Toxicity. In The Chlamydomonas Sourcebook: Organellar and Metabolic Processes, Stern, D. B.; Harris, E. H., Eds. Academic Press: San Diego, CA, 2008; pp 334-379.
    15. Gispert, J. R., Coordination Chemistry. WILLEY-VCH: Weinheim, Germany, 2008.
    16. Angelici, R. J., Synthesis and Technique in Inorganic Chemistry. Saunder's Company: Philadelphia, USA, 1977.
    17. Daston, G.; Leber, A. P.; Kacew, S., Toxicological Profile for Nickel. Agency for Toxic Substances and Disease Registry: Atlanta, Georgia, 2005.
    18. Donohue, J., Copper in Drinking Water. In Background document for development of WHO Guidlines for Drinking-water Quality, World Health Organization: Kansas, USA, 2004.
    19. Duffus, J. H., Heavy Metals - A Meaningless Term. Pure Appl. Chem. 2002, 74, 793-807.
    20. McHargue, J. S., The Occurrence of Copper, Manganese, Zinc, Nickel, and Cobalt in Soils, Plants, and Animals, and Their Possible Function as Vital Factors. J. Agric. Res. 1925, 30, 193-196.
    21. Roth, J. A., Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination Biol. Res. 2006, 39, 45-57.
    22. Lauwerys, R.; Lison, D., Health risks associated with cobalt exposure--an overview. Sci. Total. Environ. 1994, 150, 1-6.
    23. Kasprzak, K. S.; Jr., F. W. S.; Salnikow, K., Nickel carcinogenesis. Mutat Res Fundam Mol Mech Mutagen. 2003, 533, 67-97.
    24. Fosmire, G. J., Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225-227.
    25. Crichton, R. R., Biological Inorganic Chemistry: An Introduction. Lallemand, F.; Psalti, I. S. M.; Ward, R. J., Eds. Elsevier Science Publishing Company: Oxford, UK, 2008.
    26. Brewer, G. J., Copper toxicity in the general population. Clin. Neurophysiol. 2010, 121, 459-460.
    27. Chibueze, F. U.; Akubugwo, E.; Kingsley, N. A.; Nnanna, A. L.; Nwokocha, J. N.; Ekekwe, D. N., Appraisal of Heavy Metal Contents in Commercial Inorganic Fertilizers Blended and Marketed in Nigeria. Am. J. Chem. 2012, 2, 228-233.
    28. Niu, L. Y.; Wu, J. H.; Liao, X. J.; Wang, Z. F.; Zhao, G. H.; Hu, X. S., Physicochemical Characteristics of Orange Juice Samples from Seven Cultivars. Agr. Sci. China. 2008, 7, 41-47.
    29. Shen, F. M.; Chen, H. W., Element Composition of Tea Leaves and Tea Infusions and Its Impact on Health. Bull. Environ. Contam. Toxicol. 2008, 80, 300-304.
    30. Ashu, R.; Chandravanshi, B. S., Concentration Levels of Metals in Commercially Available Ethiopian Roasted Coffee Powders and Their Infusions. Bull. Chem. Soc. Ethiop. 2011, 25, 11-24.
    31. Ahmed, Q.; Bat, L.; Yousuf, F., Accumulation of Heavy Metals in Tissue of Long Tail Tuna from Karachi Fish Harbour, Pakistan. Aquatic Sci. Technol. 2015, 3 (1), 103-115.
    32. Onyeka, O.; David, O., Assessment of Selected Heavy Metal Residues in the Kidney, Liver, Muscle and Gizzard of Chickens Raised within Enugu Metropolis. Int. J. Environ. Pollut. R. 2015, 3, 62-66.
    33. Weller, D. G.; Caballero, A.; Karlsson, L.; Hernandez, F.; Gutierrez, A. J.; Rubio, C.; Revert, C.; Troyano, J. M.; Hardisson, A., Determination of Iron, Copper, Zinc and Manganese in Sausage, Poultry-Rabbit Meat, Viscera and Red Meats Consumed by the Population in The Canary Islands, Spain J. Toxins. 2014, 1-7.
    34. Jorhem, L.; Sundstrom, B.; Astrand, C.; Haegglund, G., The levels of zinc, copper, manganese, selenium, chromium, nickel, cobalt, and aluminium in the meat, liver and kidney of swedish pigs and cattle. Z. Lebensm. Unters. Forsch. 1989, 188, 39-44.
    35. Onianwa, P. C.; Adetola, I. G.; Iwegbue, C. M. A.; Ojo, M. F.; Tella, O. O., Trace heavy metals composition of some Nigerian beverages and food drinks. Food Chem. 1999, 66, 275-279.
    36. Smith, R. M.; Martell, A. E.; Motekaitis, R. J., NIST Critically Selected Stability Constants of Metal Complexes Database. In NIST Standard Reference Database 46, US National Institute of Standards and Technology: Gaithersburg, MD, 2003.
    37. Angkawijaya, A. E.; Fazary, A. E.; Ismadji, S.; Ju, Y.-H., Cu(II), Co(II), and Ni(II)−Antioxidative Phenolate−Glycine Peptide Systems: An Insight into Its Equilibrium Solution Study. J. Chem. Eng. Data. 2012, 57, 3443-3451.
    38. Gans, P.; Sabatini, A.; Vacca, A., Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta. 1996, 43, 1739-1753.
    39. Eby, G., Stability Constants (log K1) of Various Metal Chelates. In Sequestrants in Foods, 2nd ed.; Furia, T. E., Ed. George Eby Research Institute: Austin, TX, 2006.
    40. Jolly, W. L., Modern Inorganic Chemistry. McGraw-Hill: New York, US, 1984.
    41. Koch, E. C., Acid-Base Interactions in Energetic Materials: I. The Hard and Soft Acids and Bases (HSAB) Principle-Insights to Reactivity and Sensitivity of Energetic Materials. Prop. Expl. Pyrotech. 2005, 30, 5.
    42. Irving, H. M. N. H.; Williams, R. J. P., The stability of transition-metal complexes. J. Chem. Soc. 1953, 637, 3192-3210.
    43. Niekerk, J. N. v.; L.Schoening, F. R., The crystal structure of potassium trioxalatochromate (III), K3[Cr(C2O4)3].H2O. Acta Cryst. 1952, 5, 196-202.
    44. Morgan, G. T.; Drew, H. D. K., CLXII.—Researches on residual affinity and co-ordination. Part II. cetylacetones of selenium and tellurium. J. Chem. Soc., Trans. 1920, 117, 1456-1465.
    45. McNulty, N., Attempted Synthesis of an Insulin Mimic: An Ethylenediaminetetraacetic Acid (EDTA) Structural Analog in Complex with Vanadium. Senior Research Projects. 1999, 81.
    46. Poole, S. K.; Patel, S.; Dehring, K.; Workman, H.; Poole, C. F., Determination of acid dissociation constants by capillary electrophoresis. J. Chromatogr. A. 2004, 1037, 445-454.
    47. Bruice, P. Y., Essential Organic Chemistry. 5th ed.; Zalesky, J., Ed. Prentice Hall: Upper Saddle River, NJ, 2006.
    48. Aydin, R.; Ozer, U., Potentiometric and Spectroscopic Determination of Acid Dissociation Constants of Some Phenols and Salicylic Acids. Turk. J. Chem. 1997, 21, 428-436.
    49. George, S.; Benny, P. J.; Kuriakose, S.; George, C.; Gopalakrishnan, S., Antiprotozoal activity of 2,3-dihydroxybenzoic acid isolated from the fruit extracts of Flacourtia inermis Robx. Asian. J. Pharm. Clin. Res. 2011, 3, 237-241.
    50. Sousa, M.; Ousingsawat, J.; Seitz, R.; Puntheeranurak, S.; Regalado, A.; Schmidt, A.; Grego, T.; Jansakul, C.; Amaral, M. D.; Schreiber, R.; Kunzelmann, K., An Extract from the Medicinal Plant Phyllanthus acidus and Its Isolated Compounds Induce Airway Chloride Secretion: A Potential Treatment for Cystic Fibrosis Mol. Pharmacol. 2006, 71, 366-376.
    51. Grootveld, M.; Halliwell, B., 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochem. Pharmacol. 1988, 37, 271-280.
    52. Cam, T.; Irez, G.; Aydin, R., Determination of Stability Constants of Mixed Ligand Complexes of the Lanthanum(III) Ion and Identification of Structures. J. Chem. Eng. Data. 2011, 56, 1813-1820.
    53. Hirpaye, B. Y.; Rao, G. N., Chemical speciation of 2,3-dihydroxybenzoic acid complexes with some biologically essential metal ions in 1,2-propanediol-water mixtures. Chem. Spec. Biolavailab. 2013, 25, 179-186.
    54. Kiss, T.; Kozlowski, H.; Micera, G.; Erre, L. S., Copper(II) Complexes of 2,3-Dihydroxybenzoic Acid. J. Coord. Chem. 1989, 20, 49-56.
    55. Turkel, N.; Berker, M.; Ozer, U., Potentiometric and Spectroscopic Studies on Aluminium(III) Complexes of Some Catechol Derivatives. Chem. Pharm. Bull. 2004, 52, 929-934.
    56. Sahoo, S. K.; Bera, R. K.; Baral, M.; Kanungo, B. K., Spectroscopic and Potentiometric Study of 2,3-Dihydroxybenzoic Acid and its Complexation with La(III) Ion. Acta Chim. Slov. 2008, 55, 243-247.
    57. Avdeef, A.; Sofen, S. R.; Bregante, T. L.; Raymond, K. N., Coordination Isomers of Microbial Iron Transport Compounds. 9. Stability Constants for Catechol Models of Enterobactin. J. Am. Chem. Soc. 1978, 100, 5362-5370.
    58. Aplincourt, M.; Debras-Bee, A.; Gerard, C.; Hugel, R. P., Modelling of the interactions of metal cations with soil organic matter. I: Thermodynamic stability of copper (II) complexes with dihydroxybenzoic acids. J. Chem. Res. (S). 1986, 4, 134-135.
    59. WHO, Essential Medicines. In Model List of Essential Medicines, Department of Essential Medicines and Health Products, World Health Organization: Geneva, Switzerland, 2007.
    60. Dean, O.; Giorlando, F.; Berk, M., N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action. J. Phsychiatry Neurosci. 2011, 36, 78-86.
    61. Kelly, G. S., Clinical Applications of N-acetylcysteine. Alt. Med. Rev. 1998, 3, 114-127.
    62. Roederer, M.; Ela, S. W.; Staal, F. J.; Herzenberg, L. A.; Herzenberg, L. A., N-acetylcysteine: a new approach to anti-HIV therapy. AIDS Res. Hum. Retroviruses. 1992, 8, 209-217.
    63. Kelloff, G. J.; Crowell, J. A.; C. W, B.; Steele, V. E.; Lubet, R. A.; Greenwald, P.; Albert, D. S.; Covey, J. M.; Doody, L. A.; Knapp, G. G., Clinical development plan: N-acetyl-L-Cysteine. J. Cell. Biochem. 1994, 20, 63-73.
    64. Rosa, S. C. D.; Zaretsky, M. D.; Dubs, J. G.; Roederer, M.; Anderson, M.; Green, A.; Mitra, D.; Watanabe, N.; Nakamura, H.; Tijoe, I.; Deresinski, S. C.; Moore, W. A.; Ela, S. W.; Parks, D.; Herzenberg, L. A.; Herzenberg, L. A., N-acetylcysteine replenishes glutathione in HIV infection. Eur. J. Clin. Invest. 2000, 30, 915-929.
    65. Whilier, S.; Raftos, J. E.; Chapman, B.; Kuchel, P. W., Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 2009, 14, 115-124.
    66. Goepp, J., The Overlooked Compound That Saves Lives. In Life Extension Magazine, Fort Lauderdale, Florida, 2010.
    67. Pettit, L. D.; Powell, K. J., A comprehensive database of published data on equilibrium constants of metal complexes and ligands. IUPAC and Academic Software: Yorks, UK, 2001.
    68. Kozlowski, H.; Urbanska, J.; Sovago, I.; Varnagy, K.; Kiss, A.; Spychala, J., Cadmium Ion Interaction with Sulphur Containing Amino Acid and Peptide Ligands. Polyhedron. 1990, 9, 831-837.
    69. Abbasi, S. A., Binary and ternary complexes of interest to environmental systems. Part-II: Interaction of beryllium(II) with a mixture of ligands and failure in forming mixed ligand complexes. J.Indian Chem.Soc. 1984, 61, 125-127.
    70. Chen, W.; Ercal, N.; Huynh, T.; Volkov, A.; Chusuei, C. C., Characterizing N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) binding for lead poisoning treatment. J. Colloid Interface Sci. 2012, 171, 144-149.
    71. Luczak, M. W.; Zhitkovich, A., Role of direct reactivity with metals in chemoprotection by N-acetylcysteine against chromium(VI), cadmium(II), and cobalt(II). Free Radical Biol. Med. 2013, 65, 262-269.
    72. Quyoom, S.; Khan, B.-U.-D., Potentiometric and UV Spectral Studies of Binary and Ternary Complexes of Some Metal Ions with N-Acetylcysteine and Amino Acids. E-J. Chem. 2009, 6, S117-S122.
    73. Penugonda, S.; Ercal, N., Comparative evaluation of N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) on glutamate and lead-induced toxicity in CD-1 mice. Toxicol. Lett. 2011, 201, 1-7.
    74. Guzeloglu, S.; Yalcin, G.; Pekin, M., The determination of stability constant of N-acetyl-L-cysteine chrome, nickel, cobalt and iron complexes by potentiometric method. J. Organomet. Chem. 1998, 568, 143-147.
    75. Abbehausen, C.; Heinrich, T. A.; Abrao, E. P.; Costa-Neto, C. M.; Lustri, W. R.; Formiga, A. L. B.; Corbi, P. P., Chemical, spectroscopic characterization, DFT studies and initial pharmacological assays of a silver(I) complex with N-acetyl-L-cysteine. Polyhedron. 2011, 30, 579-583.
    76. Tabrizi, L.; Chiniforoshan, H.; McArdle, P.; Ebrahimi, M.; Khayamian, T., A novel bioactive Cd(II) polymeric complex with mefenamic acid: Synthesis, crystal structure and biological evaluations. Inorg. Chim. Acta. 2015, 432, 176-184.
    77. Mahapatra, B. B.; Chaulia, S.; Sarangi, A. K.; Dehury, S.; Panda, J., Synthesis, characterisation, spectral, thermal, XRD, molecular modelling and potential antibacterial study of metal complexes containing octadentate azodye ligands. J. Mol. Struct. 2015, 1087, 11-25.
    78. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D., Metathesis Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2005, 44, 4490-4527.
    79. Sharma, O. P.; Bhat, T. K., DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202-1205.
    80. Cowie, J. M. G.; Arrighi, V., Polymers: Chemistry and Physics of Modern Materials. 3rd ed.; CRC Press: Scotland, UK, 2008.
    81. Jeffrey, C. P., Fundamentals of Microbiology: Body Systems Edition. 2nd ed.; Corrigan, L., Ed. Jones & Barlett Learning: Burlington, MA, 2013.
    82. Bruckner, C.; Caulder, D. L.; Raymond, K. N., Preparation and Structural Characterization of Nickel(II) Catecholates. Inorg. Chem. 1998, 37, 6759-6764.
    83. Aletras, V.; Karaliota, A.; Kamariotaki, M.; Hatzipanayioti, D.; Hadjiliadis, N., Interaction of Ni(II) with 2,3-dihydroxybenzoic acid. Inorg. Chim. Acta. 2001, 312, 151-162.
    84. Gans, P.; Sabatini, A.; Vacca, A., Determination of equilibrium constants from spectrophometric data obtained from solutions of known pH: The program pHab. Ann. Chim-Rome. 1999, 89, 45-49.
    85. Alam, M. N.; Bristi, N. J.; Rafiquzzaman, M., Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi. Pharm. J. 2013, 21, 143-152.
    86. Wiegand, I.; Hilpert, K.; Hancock, R. E. W., Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols. 2008, 3, 163-175.
    87. Frank, P.; Benfatto, M.; Szilagyi, R. K.; D'Angelo, P.; Longa, S. D.; Hodgson, K. O., The Solution Structure of [Cu(aq)]2+ and Its Implications for Rack-Induced Bonding in Blue Copper Protein Active Sites. Inorg. Chem. 2005, 44, 1922-1933.
    88. Graddon, D. P., An Introduction to Co-ordination Chemistry. In International series of monographs on inorganic chemistry, Taube, H.; Maddock, A. G., Eds. Pergamon Press: Ontario, Canada, 1961.
    89. Ammar, R. A.; Al-Mutiri, E. M.; Abdalla, M. A., The determination of the stability constants of mixed ligand complexes of adenine and amino acids with Ni(II) by potentiometric titration method. J. Fluid. 2011, 301, 51-55.
    90. Hernowo, E.; Angkawijaya, A. E.; Fazary, A. E.; Ismadji, S.; Ju, Y. H., Complex Stability and Molecular Structure Studies of Divalent Metal Ion with L-Norleucine and Vitamin B3. J. Chem. Eng. Data. 2011, 56, 4549-4555.
    91. Shobana, S.; Dharmaraja, J.; Selvaraj, S., Mixed ligand complexation of some transition metal ions in solution and solid state: Spectral characterization, antimicrobial, antioxidant, DNA cleavage activities and molecular modeling. Spectrochim. Acta Mol. Biomol. Spectros. 2013, 107, 117-132.
    92. Sigel, A.; Sigel, H.; Sigel, R. K. O., Metal Ions in Biological Systems. In Biogeochemical Cycles of Elements, Taylor & Francis: New York, US, 2005.
    93. Gordon, T.; Bowser, D., Beryllium: genotoxicity and carcinogenicity. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2003, 533, 99-105.
    94. Wambach, P. F.; Laul, J. C., Beryllium health effects, exposure limits and regulatory requirements. J. Jchas. 2008, 1-12.
    95. Cecconi, F.; Ghilardi, C. A.; Ienco, A.; Mariani, P.; Mealli, C.; Midollini, S.; Orlandini, A.; Vacca, A., Different Complexation Properties of Some Hydroxy Keto Heterocycles toward Beryllium(II) in Aqueous Solutions: Experimental and Theoretical Studies. Inorg. Chem. 2002, 41, 4006-4017.
    96. Cabaniss, S. E.; Leenheer, J. A.; McVey, I. F., Aqueous infrared carboxylate absorbances: aliphatic di-acids. Spectrochim. Acta Mol. Biomol. Spectros. 1998, 54, 449-458.
    97. Jing, P.; Zhao, S.-J.; Jian, W.-J.; Qian, B.-J.; Dong, Y.; Pang, J., Quantitative Studies on Structure-DPPH* Scavenging Activity Relationship of Food Phenolic Acids. Molecules. 2012, 17, 12910-12924.
    98. Kitaoka, N.; Liu, G.; Masuoka, N.; Yamashita, K.; Manabe, M.; Kodama, H., Effect of sulfur amino acids on stimulus-induced superoxide generation and translocation of p47phox and p67phox to cell membrane in human neutrophils and the scavenging of free radical. Clin. Chim. Acta. 2005, 353, 109-116.
    99. Ozcelik, D.; Uzun, H.; Naziroglu, M., N-Acetylcysteine Attenuates Copper Overload-Induced Oxidative Injury in Brain of Rat. Biol. Trace Elem. Res. 2012, 147, 292-298.
    100. Atmaca, S.; Gul, K.; Cicek, R., The Effect of Zinc On Microbial Growth. Tr. J. of Medical Sciences. 1998, 28, 595-597.
    101. Popova, T. P.; Alexandrova, R. I.; Tudose, R.; Mosoarca, E. M.; Costisor, O., Antimicrobial activity in vitro of four nickel complexes. Bulg. J. Agric. Sci. 2012, 18, 446-450.

    QR CODE