簡易檢索 / 詳目顯示

研究生: 詹祐嘉
You-Jia Jhan
論文名稱: 具產氫潛力之二鐵二硫化合物之合成與特性研究
Synthesis and Characteristic Studies of [2Fe2S] Complexes with Potential of HER
指導教授: 江明錫
Ming-Hsi Chiang
林昇佃
Shawn D. Lin.
口試委員: 陳秀慧
Hsiu-Hui Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 173
中文關鍵詞: 二鐵二硫化合物電催化產氫
外文關鍵詞: Diiron disulfide complexes, Electrocatalysis, Hydrogen evolution
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為藉由化學合成的方法,模擬[鐵鐵]氫化酵素活性中心結構,並合成出一系列的二鐵二硫化合物[(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5(S-R)](R = CH2COOMe (1), R = CH2CH2COOMe (2), R = CH2CH2COOH (3), bdt = 1,2-benzenedithiolate, Me = methyl)以及[{μ,κ2-3,6-(OC2H4R)2-bdt}Fe2(CO)5(μ-PPh2){S-(CH2)4COOMe}]n (R = NMe2, n = 0 (4), R = NMe3, n = + 2 (5), Me = methyl)。化合物1-5皆利用紅外線光譜儀(FTIR)、紫外線-可見光光譜儀(UV-vis)、質譜分析(MS)及核磁共振光譜儀(NMR)鑑定其結構,另外化合物1、2、3及化合物4也透過元素分析(EA)進行鑑定,且化合物1、2及化合物3亦透過X-ray單晶繞射儀進行鑑定。
    為改善二鐵二硫化合物之疏水性,化合物3以具親水性的羧基官能基加以修飾,而化合物5以具親水性的四級銨鹽基團加以修飾,進而以不同修飾方法增加水溶性,並比較化合物之電催化表現差異。在乙腈(acetonitrile,CH3CN)溶液中以三氟乙酸(trifluoroacetic acid,TFA)作為酸源,並於過電位(overpotential)約等於1 V的條件下進行勻相加酸催化,結果顯示相較於化合物2,化合物3含有較高之產氫催化轉化率(turnover frequency,TOF),不過因化合物中皆含有diphenylphosphide的強疏水性基團,因此兩者水溶性程度皆不佳;然而化合物5將含氮官能基甲基化後,其化合物本身呈帶電的離子態,因此在水溶液中擁有良好的溶解度,並利用循環伏安法測量其於不同pH值之緩衝溶液中的電化學表現。結果顯示於pH = 7之水相的電化學表現,其在- 0.98 V (vs. SHE)有一個不可逆的還原訊號;當水溶液環境之pH值大於11時,其無催化效果,且可看到化合物之部分可逆(quasi-reversible)氧化還原訊號;當水溶液環境之pH值小於3時,其有較顯著之還原電流。


    In this thesis, a series of diiron disulfide complexes [(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5(S-R)] (R = CH2COOMe (1), R = CH2CH2COOMe (2), R = CH2CH2COOH (3), bdt = 1,2-benzenedithiolate, Me = methyl) and [{μ,κ2-3,6-(OC2H4R)2-bdt}Fe2(CO)5(μ-PPh2){S-(CH2)4COOMe}]n (R = NMe2, n = 0 (4), R = NMe3, n = + 2 (5), Me = methyl) were synthesized. All of them were characterized by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV- vis), mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR), and complexes 1, 2, 3 and 4 were analyzed by elemental analysis (EA), and complexes 1, 2 and 3 were also analyzed by X-ray single crystal crystallography.
    In order to improve the water solubility of diiron disulfide complexes, complex 3 was modified with a hydrophilic carboxyl functional group and complex 5 was modified with a hydrophilic quaternary ammonium salt group. Different modification of functional groups were used to increase the water solubility. Comparison of electrocatalytic performance of complexes was also discussed. In acetonitrile solution, trifluoroacetic acid was used as proton source, and under the condition of overpotential about 1 V, homogeneous hydrogen evolution reactions showed that complex 3 has a higher turnover frequency than complex 2. Unfortunately, both of complexes 2 and 3 have a poor water solubility due to hydrophobicity of the diphenylphosphide ligand. On the other hand, complex 5 bearing quaternary ammonium cation groups has a high solubility in aqueous solution. Electrocatalytic performance was investigated in aqueous solution under various pH conditions by cyclic voltammetry. An irreversible redox potential at - 0.98 V (vs. SHE) was observed at pH=7 whereas a quasi-reversible redox peak which infers limiting catalytic effect was recorded when pH is higher than 11. In addition, the higher reduction current was observed when pH is lower than 3.

    摘要 Abstract 謝誌 目錄 圖目錄 表目錄 附錄 第一章 緒論 1.1 前言 1.2 氫化酵素 (Hydrogenase) 1.3 [鐵鐵]氫化酵素 ([FeFe] hydrogenase) 1.4 [鐵鐵]氫化酵素模擬物 ([FeFe] hydrogenase mimic) 1.5 [鐵鐵]氫化酵素模擬物之產氫反應 (Hydrogen evolution reaction of [FeFe] hydrogenase mimic) 1.6 具水溶性之氫化酵素模擬物 1.7 研究動機 第二章 實驗部分 2.1 實驗流程 2.2 實驗藥品與試劑 2.3 實驗儀器與設備 2.4 電化學分析實驗 2.5 化合物的合成與鑑定 2.5.1 合成 [(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5(S-CH2COOMe)] (1) 2.5.2 合成 [(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5{S-(CH2)2COOMe}] (2) 2.5.3 合成 [(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5{S-(CH2)2COOH}] (3) 2.5.4 合成 [{μ,κ2-3,6-(OC2H4NMe2)2-bdt}Fe2(CO)6] (B) 2.5.5 合成 [Na][{μ,κ2-3,6-(OC2H4NMe2)2-bdt}Fe2(CO)5(μ-PPh2)] ([Na][b]) 2.5.6 合成 [{μ,κ2-3,6-(OC2H4NMe2)2-bdt}Fe2(CO)5(μ-PPh2){S-(CH2)4COOMe}] (4) 2.5.7 合成 [{μ,κ2-3,6-(OC2H4NMe3)2-bdt}Fe2(CO)5(μ-PPh2){S-(CH2)4COOMe}][NO3]2 (5) 第三章 結果與討論 3.1 合成結構與光譜分析 3.1.1 化合物 [(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5(S-CH2COOMe)] (1) 3.1.2化合物 [(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5{S-(CH2)2COOMe}] (2) 3.1.3化合物 [(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5{S-(CH2)2COOH}] (3) 3.1.4化合物 [{μ,κ2-3,6-(OC2H4NMe2)2-bdt}Fe2(CO)5(μ-PPh2){S-(CH2)4COOMe}] (4) 3.1.5 化合物 [{μ,κ2-3,6-(OC2H4NMe3)2-bdt}Fe2(CO)5(μ-PPh2){S-(CH2)4COOMe}][NO3]2 (5) 3.1.6 化合物5之水溶性測試 3.2電化學分析與勻相加酸之電催化探討 3.2.1 化合物1、2、3之電化學分析 3.2.2 化合物2、3之勻相加酸之電催化探討 3.2.3 化合物1、2、3之電化學比較 3.2.4 化合物4、5之電化學分析 3.2.5 化合物4、5之勻相加酸之電催化探討 3.5.6 化合物2、4、5之電化學比較 3.5.7 化合物5之水溶液電化學分析 第四章 結論 參考文獻 附錄

    1.Madadi Avargani, V.; Zendehboudi, S.; Cata Saady, N. M.; Dusseault, M. B., Energy Convers. Manage. 2022, 269, 115927.
    2.Ishaq, H.; Dincer, I.; Crawford, C., Int. J. Hydrogen Energy 2022, 47, 26238-26264.
    3.Posso, F.; Galeano, M.; Baranda, C.; Franco, D.; Rincón, A.; Zambrano, J.; Cavaliero, C.; Lópes, D., Int. J. Hydrogen Energy 2022, 47, 30027-30049.
    4.Megía, P. J.; Vizcaíno, A. J.; Calles, J. A.; Carrero, A., Energy & Fuels 2021, 35, 16403-16415.
    5.Qureshi, F.; Yusuf, M.; Kamyab, H.; Zaidi, S.; Junaid Khalil, M.; Arham Khan, M.; Azad Alam, M.; Masood, F.; Bazli, L.; Chelliapan, S.; Abdullah, B., Sustain. Energy Technol. Assess. 2022, 53, 102677.
    6.Schut, G. J.; Zadvornyy, O.; Wu, C. H.; Peters, J. W.; Boyd, E. S.; Adams, M. W., Biochim. Biophys. Acta 2016, 1857, 958-70.
    7.Chen, L.; Xie, B.; Li, T.; Lai, C.; Cao, J. X.; Ji, R. W.; Liu, M. N.; Li, W.; Zhang, D. L.; He, J. Y., Appl. Organomet. Chem. 2022, 36, e6725.
    8.Germane, K. L.; Liu, S.; Gerlach, E. S.; Savage, A. M.; Renberg, R. L.; Zu, T. N. K.; Dong, H.; Walck, S. D.; Servinsky, M. D.; Sund, C. J., Fermentation 2018, 4, 55.
    9.Zamader, A.; Reuillard, B.; Pecaut, J.; Billon, L.; Bousquet, A.; Berggren, G.; Artero, V., Chem. Eur. J. 2022, 28, e202202260.
    10.Lubitz, W.; Ogata, H.; Rudiger, O.; Reijerse, E., Chem. Rev. 2014, 114, 4081-148.
    11.Pavliuk, M. V.; Lorenzi, M.; Morado, D. R.; Gedda, L.; Wrede, S.; Mejias, S. H.; Liu, A.; Senger, M.; Glover, S.; Edwards, K.; Berggren, G.; Tian, H., J. Am. Chem. Soc. 2022, 144, 13600-13611.
    12.Birrell, J. A.; Rodríguez-Maciá, P.; Reijerse, E. J.; Martini, M. A.; Lubitz, W., Coord. Chem. Rev. 2021, 449, 214191.
    13.Sensi, M.; Baffert, C.; Fourmond, V.; de Gioia, L.; Bertini, L.; Léger, C., Sustain. Energy Fuels 2021, 5, 4248-4260.
    14.Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B., Chem. Rev. 2016, 116, 8693-749.
    15.Wittkamp, F.; Senger, M.; Stripp, S. T.; Apfel, U. P., Chem. Commun. 2018, 54, 5934-5942.
    16.Wang, Z.; Liu, J.-H.; He, C.-J.; Jiang, S.; Åkermark, B.; Sun, L.-C., J. Organomet. Chem. 2007, 692, 5501-5507.
    17.Capon, J.-F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J., J. Electroanal. Chem. 2006, 595, 47-52.
    18.Donovan, E. S.; Nichol, G. S.; Felton, G. A. N., J. Organomet. Chem. 2013, 726, 9-13.
    19.Hu, M. Y.; Yan, L.; Li, J. R.; Wang, Y. H.; Zhao, P. H.; Liu, X. F., Appl. Organomet. Chem. 2019, 33, e4949.
    20.Trautwein, R.; Almazahreh, L. R.; Gorls, H.; Weigand, W., Dalton Trans. 2015, 44, 18780-94.
    21.Liu, Y. C.; Chu, K. T.; Jhang, R. L.; Lee, G. H.; Chiang, M. H., Chem. Commun. 2013, 49, 4743-5.
    22.Felton, G. A.; Vannucci, A. K.; Chen, J.; Lockett, L. T.; Okumura, N.; Petro, B. J.; Zakai, U. I.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L., J. Am. Chem. Soc. 2007, 129, 12521-30.
    23.Wright, R. J.; Zhang, W.; Yang, X.; Fasulo, M.; Tilley, T. D., Dalton Trans. 2012, 41, 73-82.
    24.Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y., J. Am. Chem. Soc. 2004, 126, 12004-14.
    25.Cao, W. N.; Wang, F.; Wang, H. Y.; Chen, B.; Feng, K.; Tung, C. H.; Wu, L. Z., Chem. Commun. 2012, 48, 8081-3.
    26.Barton, B. E.; Olsen, M. T.; Rauchfuss, T. B., J. Am. Chem. Soc. 2008, 130, 16834-5.
    27.Brezinski, W. P.; Karayilan, M.; Clary, K. E.; Pavlopoulos, N. G.; Li, S.; Fu, L.; Matyjaszewski, K.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; Pyun, J., Angew. Chem. Int. Ed. 2018, 57, 11898-11902.
    28.Thomas, C. M.; Rüdiger, O.; Liu, T.; Carson, C. E.; Hall, M. B.; Darensbourg, M. Y., Organometallics 2007, 26, 3976-3984.
    29.Gao, W.; Sun, J.; Akermark, T.; Li, M.; Eriksson, L.; Sun, L.; Akermark, B., Chem. Eur. J. 2010, 16, 2537-46.
    30.Ginovska-Pangovska, B.; Dutta, A.; Reback, M. L.; Linehan, J. C.; Shaw, W. J., Acc. Chem. Res. 2014, 47, 2621-30.
    31.Zaffaroni, R.; Detz, R. J.; van der Vlugt, J. I.; Reek, J. N. H., ChemSusChem 2018, 11, 209-218.
    32.Chen, W.; Li, S.; Li, X.; Zhang, C.; Hu, X.; Zhu, F.; Shen, G.; Feng, F., Chem. Sci. 2019, 10, 2179-2185.
    33.Li, T.; Xie, B.; Zhang, D.; Lai, C.; Li, X.; Mou, W.; Cao, J.; Bai, X.; Chen, L., ChemCatChem 2021, 13, 2852-2862.
    34.Gao, S.; Fan, W.; Liu, Y.; Jiang, D.; Duan, Q., Int. J. Hydrogen Energy 2020, 45, 4305-4327.
    35.蔡承燁, 含氨基取代之二鐵二硫化合物之合成、鑑定及反應性探討, 國立中央大學, 2021
    36.Li, X.; Li, D.; Li, G.; Cai, Q., Mater. Sci. Eng. A 2022, 832, 142364.
    37.Güneş, M.; Karakaya, S.; Dilgin, Y., Electroanalysis 2022, 34, 1644-1655.
    38.Yang, X.; DeLaney, C. R.; Burns, K. T.; Elrod, L. C.; Mo, W.; Naumann, H.; Bhuvanesh, N.; Hall, M. B.; Darensbourg, M. Y., Inorg. Chem. 2021, 60, 7051-7061.
    39.Appel, A. M.; Helm, M. L., ACS Catalysis 2014, 4, 630-633.
    40.Stratakes, B. M.; Dempsey, J. L.; Miller, A. J. M., ChemElectroChem 2021, 8, 4161-4180.
    41.Cabeza, J. A.; Martínez-García, M. A.; Riera, V.; Ardura, D.; García-Granda, S., Organometallics 1998, 17, 1471-1477.
    42.Barrett, J.; Spentzos, A.; Works, C., J. Chem. Educ. 2015, 92, 719-722.
    43.Chen, J.; Vannucci, A. K.; Mebi, C. A.; Okumura, N.; Borowski, S. C.; Swenson, M.; Lockett, L. T.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L., Organometallics 2010, 29, 5330-5340.
    44.黃任平, 合成與鑑定具水溶性之二鐵二硫化合物, 國立台灣師範大學, 2019
    45.Chu, K. T.; Liu, Y. C.; Chung, M. W.; Poerwoprajitno, A. R.; Lee, G. H.; Chiang, M. H., Inorg. Chem. 2018, 57, 7620-7630.
    46.Wu, Y.-C.; Liu, Y.-C.; Tsai, S.-W.; Chu, K.-T.; Chen, H.-J.; Wu, C.-Y.; Hsu, Y.-Y.; Hsieh, C.-C.; Liu, W.-J.; Kong, K. V.; Chiang, M.-H., Chem. Commun. 2022, 58, 7245-7248.
    47.張芮琳, 合成及鑑定含光敏基之仿生鐵硫化合物用於產氫之研究, 淡江大學化學學系碩士班, 2015
    48.Bastow, T. P.; Douglas, G. B.; Davis, G. B., Environ. Toxicol. Chem. 2022, 41, 2202-2208.
    49.Chung, M.-W.; Liu, Y.-C.; Yen, T.-H.; Chiang, M.-H., ChemElectroChem 2018, 5, 20-24.
    50.Zhong, W.; Xiao, Z.; Qian, G.; Liu, X., Electrochim. Acta 2017, 247, 779-786.
    51.Kütt, A.; Tshepelevitsh, S.; Saame, J.; Lõkov, M.; Kaljurand, I.; Selberg, S.; Leito, I., Eur. J. Org. Chem. 2021, 2021, 1407-1419.
    52.Gu, X.-L.; Jin, B.; Tan, X.; Zhao, P.-H., Inorg. Chem. Commun. 2021, 133, 108934.
    53.Hu, M. Y.; Zhao, P. H.; Li, J. R.; Gu, X. L.; Jing, X. B.; Liu, X. F., Appl. Organomet. Chem. 2020, 34, e5523.
    54.Li, J.-R.; Hu, M.-Y.; Zhao, P.-H.; Tian, W.-J.; Xu, T.-T.; Li, Y.-L., Inorg. Chim. Acta 2020, 505, 119493.

    無法下載圖示 全文公開日期 2033/02/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE