簡易檢索 / 詳目顯示

研究生: VIMAL.K
Vimal Krishnamoorthy
論文名稱: p 區元素對 d 區過渡金屬作為能量轉換電催化劑的影響
Impacts of p-Block Elements on the d-Block Transition Metals as an Electrocatalysts for Energy Conversion
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 陳瑞山
Ruei-San Chen
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
李奎毅
Kuei-Yi Lee
杜鶴芸
He-Yun Du
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 134
外文關鍵詞: Molybdenum disulfide, desulfurization, CVD growth of MoS2, N2-plasma MoS2, surface electrons accumulation, hydrogen evolution reaction, oxygen reduction reaction, dual atom catalyst, Fe-Sn-N/C, water splitting, fuel cell
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 世界不斷增長的能源需求以及化石燃料過度使用導致的環境問題促使我們尋找乾淨、可持續、便宜且環保的能源。氫氣被認為是最好的乾淨能源,因為它具有高能量密度且生產過程零污染的優點。藉由將水分解成氫氣和氧氣,並將氫氣和氧氣送入燃料電池,能夠產生純淨的水和電力。這是能夠克服能源問題定同時將不純水轉化為純水的過程。在此過程中有四個非常關鍵的催化反應。分別是是析氫反應(HER)、析氧反應(OER)、氫氧化反應(HOR)和氧還原反應(ORR)。目前為止鉑(Pt)被認為是HER、HOR和ORR的最佳催化劑,而氧化銥和氧化釕是OER的最佳催化劑。其中,HER和ORR分別是水分解和燃料電池中非常重要的陰極反應。雖然Pt是HER和ORR的最佳催化劑,但是,Pt作為催化劑有成本高、功率密度低、不耐用的缺點,因此阻礙其大規模應用。因此尋找低成本、高效且更穩定的材料替代Pt催化劑用於乾淨能源生產是商業乾淨能源開發的熱門研究領域。
    在此論文中,首先,我先專注於水分解反應(HER)方面的研究。對於這個反應,我使用了二硫化鉬(MoS2)作為催化劑。MoS2的材料組成使用地表上豐富的元素因此具有低成本的優勢。目前MoS2 具有廣泛的應用,特別是HER方面,被廣泛的使用作為電催化劑材料。通常MoS2的邊緣位點具有高度的HER活性,而基面則是惰性。我們發現在MoS2基面上進行氮氣(N2)電漿處理、退火或自然的環境老化時,MoS2基面上會產生硫空缺,並產生表面電荷累積(SEA)的情況,此時,MoS2 基面的表面電子濃度可高達1.6 × 1019 cm-3,遠高於內部體積(2 × 1015 cm-3)。
    氮氣電漿處理後的MoS2 具有穩定和優異的電催化性能,在電流為10 mA cm-2 時的過電位為0.2 V,Tafel 斜率為120 mV/dec。基面的SEA和邊緣位點的缺陷協同增強了HER活性。此項研究進一步增加了人們對用於能源應用的二維過渡金屬硫族化物(2D TMC)的研究興趣。
    第二部分的研究中,我專注於燃料電池方面的研究,尤其是ORR。此研究中,我使用了Fe-Sn-N/C雙原子催化劑(DAC)作為ORR反應的催化劑。近年來,單原子催化劑(SAC)因其高效的活性而成為電化學領域的最新趨勢。Fe-N/C基催化劑表現出比其他任何的過渡金屬更好的催化性能。尤其是,當Fe-N/C 與其他過渡金屬(如Co、Ni等)結合時,其活性能更進一步提高。在ORR反應中,Fe-Sn-N/C顯示出極佳的催化活性。在0.1 M KOH的電解液中,其半波電位(E1/2)相對於RHE為0.95 V,起始電位相對於RHE為1.1 V,而極限電流密度可達-7.18 mA cm-2。在0.1 M HClO4的電解液中,半波電位(E1/2)相對於RHE為0.83 V,極限電流密度可達-7.15 mA cm-2,而起始電位相對於RHE為0.96 V。而掃描電子透射顯微鏡分析則證實了N摻雜碳網絡上原子分佈的鐵和錫位置。本研究探討了DAC催化劑中雙原子的協同效應,尤其是 P區元素與d區過渡金屬的協同效應對ORR反應的影響。


    The world’s rising energy demands and environmental issues due to fossil fuel usage caused us to find clean, sustainable, affordable, and environmentally friendly energy sources. Hydrogen is the best clean energy source because it produces zero pollutants due to its high energy density. The breaking of water into hydrogen and oxygen and feeding this hydrogen and oxygen into the fuel cell produces pure water and electric energy. This is the best process to overcome energy issues and convert impure water into pure water. The four main reactions are crucial in this process. They are hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), and oxygen reduction reaction (ORR). Platinum (Pt) is the best catalyst for HER, HOR, and ORR, whereas iridium oxide and ruthenium oxide are the best catalysts for OER. HER and ORR are the significant cathode reactions in water splitting and fuel cells. Even though Pt is the best catalyst for both HER and ORR. The state-of-the-art Pt catalyst is high-cost, has low power density, and is low-durability, hindering large-scale applications. Substituting precious Pt catalysts with non-precious, highly efficient, and more stable materials for clean energy production is the hot research field for developing commercial clean energy devices.
    First, I focused on water splitting, especially HER. For this reaction, I used molybdenum disulfide (MoS2). It is a low-cost and earth-abundant material. The MoS2 is widely used as an electrocatalyst in various applications, especially HER. Usually, the edge sites of the MoS2 are highly responsible for HER activity, whereas the basal planes are catalytically inert. We found surface electron accumulation (SEA) on the MoS2 basal planes, which occurs by an optimum sulfur vacancy created through nitrogen (N2) plasma treatment, annealing, and the ambient aging process. The surface electrons concentration of MoS2 basal planes is up to 1.6 × 1019 cm-3, much higher than that of the inner bulk (2× 1015 cm-3). The N2-plasma-MoS2 exhibits a stable and high electrocatalytic performance with the overpotential of 0.2 V at 10 mA cm-2 and the Tafel slope at 120 mV/dec. The SEA of basal planes and edge site defects synergistically enhances the HER activity. This study further increases the interest in two-dimensional transition metal chalcogenides (2D TMCs) for energy applications.
    Second, I focused on Fuel cells, especially ORR. Here, I used a Fe-Sn-N/C dual atom catalyst (DAC). Single-atom catalysts (SAC) are a recent trend in electrochemistry because of their efficient activity. The Fe-N/C-based catalysts show better catalytical performances than any other transition metals. The Fe-N/C activity increased when combined with other transition metals such as Co, Ni, etc. Here, we synthesized the iron (Fe) and tin (Sn) based Fe-Sn-N/C DAC for ORR. It shows excellent activity with a half-wave potential (E1/2) of 0.95 V vs. RHE, an onset potential of 1.1 V vs. RHE and the limiting current density of -7.18 mA cm-2 in 0.1 M KOH as well as a half-wave potential (E1/2) of 0.83 V vs. RHE and an onset potential of 0.96 V vs. RHE and the limiting current density of -7.15 mA cm-2 in 0.1 M HClO4. Scanning electron transmission microscopy analysis confirmed the atomically distributed iron and tin sites on the N-doped carbon network. This study provides the synergistic effects of DAC catalysts and addresses the impacts of P-Block elements on d-Block transition metals in ORR.

    TABLE OF CONTENTS 摘要 i Abstract iii Acknowledgements v Declaration vi List of Figures xiv List of Tables xx List of Abbreviations xxi Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Need for clean and sustainable energy conversion 1 1.1.2 Advanced technologies used for clean energy production 2 1.2 Catalyst 2 1.2.1 Comparison of chemical reaction with catalyst and without catalyst 2 1.2.2 Sabatier principle and Volcano plot about catalyst 3 1.2.3 Volcano plots of different transition metals in HER and ORR 4 1.3 Water electrolysis 5 1.3.1 Working principle 5 1.3.2 Hydrogen evolution reaction (HER) 6 1.3.3 Reaction pathways of hydrogen evolution reaction (HER) in acidic and alkaline medium 6 1.4 Proton exchange membrane fuel cell (PEMFC) 8 1.4.1 Working principle 8 1.4.2 Fuel cell membrane 8 1.4.3 Fuel cell catalysts 9 1.4.4 Membrane Electrode Assembly (MEA) 9 1.4.5 Oxygen reduction reaction (ORR) 10 1.5 Motivation 10 1.6 Thesis Layout 13 Chapter 2 Experimental methods and characterization techniques 14 2.1 Introduction 14 2.2 Electrocatalysts preparation 14 2.2.1 Preparation of MoS2 layer crystals 14 2.2.2 Preparation of Fe-Sn@Polydopamine (precursor) 14 2.2.3 Preparation of Fe-Sn-N/C 15 2.2.4 Preparation of Fe-N/C 15 2.2.5 Preparation of Sn-N/C 16 2.2.6 Chemicals and Reagents used for the electrocatalysts preparation 16 2.3 Electrochemical studies 17 2.3.1 Electrochemical Measurements for HER 17 2.3.2 Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV) for HER 18 2.3.3 Nitrogen plasma treatment of MoS2 to create optimum Sulphur vacancy for HER measurement 18 2.4 Electrochemical measurements for ORR 18 2.4.1 Oxygen reduction reaction (Half-cell) 18 2.4.2 Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV) for ORR 19 2.4.3 Calculate the hydrogen peroxide (H2O2) yield (%) and the electron transfer number (n) 19 2.4.4 Electrochemical Stability 20 2.4.5 Fuel cell performance (Full-cell) 20 2.5 Computational methods 21 2.6 Characterization techniques 22 2.6.1 X-Ray Diffraction (XRD) 22 2.6.2 Raman Spectroscopy 22 2.6.3 Scanning Electron Microscopy (SEM) 23 2.6.4 Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDX) 23 2.6.5 X-Ray Photoelectron Spectroscopy (XPS) 23 2.6.6 Fourier Transform Infrared Spectroscopy (FT-IR) 24 2.6.7 Thermogravimetric Analysis (TGA) 24 2.6.8 Electrochemical Impedance Spectroscopy (EIS) 25 2.6.9 X-ray Absorption Spectroscopy (XAS) 25 2.6.10 Angle-resolved photoelectron spectroscopy (ARPES) measurement for MoS2 layer crystals 27 Chapter 3 Investigation of Hydrogen Evolution Reaction Using 2H-MoS2 Basal Planes 29 3.1 Introduction 29 3.2 Results and Discussion 31 3.2.1 Structure of MoS2 thin film 31 3.2.2 X-ray diffraction (XRD) 32 3.2.3 Raman Spectroscopy 33 3.2.4 Effects of Surface Electron Accumulation (SEA) in HER 34 3.2.4.1 SEA through aging 34 3.2.4.2 SEA through annealing 36 3.2.4.3 SEA through N2-plasma treatment 37 3.2.5 SEA measurements by ARPES 38 3.3 Discussion 40 3.4 Conclusions 42 Chapter 4 Nitrogen Coordinated Iron-Tin Dual-Atom Catalyst: An Efficient Electrocatalyst for Oxygen Reduction Reaction 43 4.1 Introduction 43 4.2. Results and discussion 45 4.2.1 Synthesis route of Fe-Sn-N/C DAC 45 4.2.2 Powder X-ray diffraction (XRD) 46 4.2.3 Raman spectroscopy 47 4.2.4 Fourier transform infrared (FT-IR) spectroscopy 48 4.2.5 Thermogravimetric analysis (TGA) 49 4.2.6 Brunauer-Emmett-Teller (BET) surface area analysis 50 4.2.7 X-ray photoelectron spectroscopy (XPS) 52 4.2.7.1 XPS N 1s spectrum of Fe-N/C, Sn-N/C, and Fe-Sn-N/C 52 4.2.7.2 XPS Sn 3d spectrum of Sn-N/C and Fe-Sn-N/C 53 4.2.7.3 XPS Fe 2p spectrum of Fe-N/C and Fe-Sn-N/C 54 4.2.8 X-ray absorption spectroscopy (XAS) 55 4.2.9 Electron microscopy analysis 57 4.2.9.1 Scanning electron microscopy (SEM) 57 4.2.9.2 High-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray (EDX) elemental mapping 57 4.2.9.3 High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) 58 4.2.10 Electrochemical studies in acidic medium 59 4.2.10.1 Cyclic voltammetry (CV) 59 4.2.10.2 Linear sweep voltammetry (LSV) 60 4.2.10.3 Tafel slope 60 4.2.10.4 Calculation of the number of electron transfers and the percentage of hydrogen peroxide 61 4.2.10.5 Kinetic current density (Jk) 62 4.2.10.6 Optimizing Fe and Sn ratio of Fe-Sn-N/C 63 4.2.10.7 Optimizing catalyst loading of Fe-Sn-N/C 63 4.2.10.8 Optimizing pyrolysis temperature of Fe-Sn-N/C 64 4.2.10.9 Koutecky-Levich (K-L) plots 65 4.2.10.10 Double layer capacitance 66 4.2.10.11 Stability test 68 4.2.11 Electrochemical studies in alkaline medium 69 4.2.11.1 Cyclic voltammetry (CV) 69 4.2.11.2 Linear sweep voltammetry (LSV) 69 4.2.11.3 Tafel slope 70 4.2.11.4 Calculation of the number of electron transfers and the percentage of hydrogen peroxide 71 4.2.11.5 Kinetic current density (Jk) 71 4.2.11.6 Koutecky-Levich (K-L) plots 73 4.2.11.7 Double layer capacitance 74 4.2.11.8 Nyquist plots 76 4.2.11.9 Stability test 76 4.2.12 Density functional theory (DFT) 77 4.3 Conclusion 83 Chapter 5 SUMMARY AND FUTURE PERSPECTIVES 84 5.1 Summary 84 5.2 Future Perspectives 84 References 86 Publications 105 Appendix A 106 1. PEMFC measurements of Fe-Sn-N/C electrocatalyst 106 2. X-ray absorption spectrum of Sn 107

    (1) Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488 (7411), 294–303. https://doi.org/10.1038/nature11475.
    (2) Riahi, K.; Barreto, L.; Rao, S.; Rubin, E. Towards Fossil-Based Electricity Systems with Integrated CO2 Capture Implications of an Illustrative Long-Term Technology Policy. In Greenhouse Gas Control Technologies 7; Elsevier, 2005; pp 921–929. https://doi.org/10.1016/B978-008044704-9/50093-8.
    (3) International Energy Outlook. Published Online: 2017 and 2021. https://www.eia.gov/todayinenergy/detail.php?id=32912 and https://www.eia.gov/outlooks/ieo/consumption/sub-topic-03.php, respectively.
    (4) Kamat, G. A.; Zamora Zeledón, J. A.; Gunasooriya, G. T. K. K.; Dull, S. M.; Perryman, J. T.; Nørskov, J. K.; Stevens, M. B.; Jaramillo, T. F. Acid Anion Electrolyte Effects on Platinum for Oxygen and Hydrogen Electrocatalysis. Commun Chem 2022, 5 (1), 20. https://doi.org/10.1038/s42004-022-00635-1.
    (5) Cao, X.; Huo, J.; Li, L.; Qu, J.; Zhao, Y.; Chen, W.; Liu, C.; Liu, H.; Wang, G. Recent Advances in Engineered Ru‐Based Electrocatalysts for the Hydrogen/Oxygen Conversion Reactions. Adv Energy Mater 2022, 12 (41). https://doi.org/10.1002/aenm.202202119.
    (6) Aguila, B.; Sun, Q.; Wang, X.; O’Rourke, E.; Al‐Enizi, A. M.; Nafady, A.; Ma, S. Lower Activation Energy for Catalytic Reactions through Host–Guest Cooperation within Metal–Organic Frameworks. Angewandte Chemie International Edition 2018, 57 (32), 10107–10111. https://doi.org/10.1002/anie.201803081.
    (7) Loyola, C. Z.; Ureta-Zañartu, S.; Zagal, J. H.; Tasca, F. Activity Volcano Plots for the Oxygen Reduction Reaction Using FeN4 Complexes: From Reported Experimental Data to the Electrochemical Meaning. Curr Opin Electrochem 2022, 32, 100923. https://doi.org/10.1016/j.coelec.2021.100923.
    (8) Bhalothia, D.; Krishnia, L.; Yang, S.-S.; Yan, C.; Hsiung, W.-H.; Wang, K.-W.; Chen, T.-Y. Recent Advancements and Future Prospects of Noble Metal-Based Heterogeneous Nanocatalysts for Oxygen Reduction and Hydrogen Evolution Reactions. Applied Sciences 2020, 10 (21), 7708. https://doi.org/10.3390/app10217708.
    (9) Chen, H. M.; Chen, C. K.; Liu, R.-S.; Zhang, L.; Zhang, J.; Wilkinson, D. P. Nano-Architecture and Material Designs for Water Splitting Photoelectrodes. Chem Soc Rev 2012, 41 (17), 5654. https://doi.org/10.1039/c2cs35019j.
    (10) Wei, J.; Zhou, M.; Long, A.; Xue, Y.; Liao, H.; Wei, C.; Xu, Z. J. Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nanomicro Lett 2018, 10 (4), 75. https://doi.org/10.1007/s40820-018-0229-x.
    (11) Liu, Y.; Luo, X.; Tu, Z.; Chan, S. H. Droplet Dynamics in a Proton Exchange Membrane Fuel Cell with Ejector-Based Recirculation. Energy & Fuels 2021, 35 (14), 11533–11544. https://doi.org/10.1021/acs.energyfuels.1c01623.
    (12) Zhang, K.; Han, X.; Hu, Z.; Zhang, X.; Tao, Z.; Chen, J. Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion. Chem Soc Rev 2015, 44 (3), 699–728. https://doi.org/10.1039/C4CS00218K.
    (13) Kumar, A.; Bui, V. Q.; Lee, J.; Wang, L.; Jadhav, A. R.; Liu, X.; Shao, X.; Liu, Y.; Yu, J.; Hwang, Y.; Bui, H. T. D.; Ajmal, S.; Kim, M. G.; Kim, S.-G.; Park, G.-S.; Kawazoe, Y.; Lee, H. Moving beyond Bimetallic-Alloy to Single-Atom Dimer Atomic-Interface for All-pH Hydrogen Evolution. Nat Commun 2021, 12 (1), 6766. https://doi.org/10.1038/s41467-021-27145-3.
    (14) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys Rev B 1996, 54 (16), 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.
    (15) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys Rev B 1988, 37 (2), 785–789. https://doi.org/10.1103/PhysRevB.37.785.
    (16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996, 77 (18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
    (17) Grimme, S. Semiempirical GGA‐type Density Functional Constructed with a Long‐range Dispersion Correction. J Comput Chem 2006, 27 (15), 1787–1799. https://doi.org/10.1002/jcc.20495.
    (18) Ao, X.; Zhang, W.; Zhao, B.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C.; Liu, M. Atomically Dispersed Fe–N–C Decorated with Pt-Alloy Core–Shell Nanoparticles for Improved Activity and Durability towards Oxygen Reduction. Energy Environ Sci 2020, 13 (9), 3032–3040. https://doi.org/10.1039/D0EE00832J.
    (19) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Phys Rev B 1998, 57 (3), 1505–1509. https://doi.org/10.1103/PhysRevB.57.1505.
    (20) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys Chem B 2004, 108 (46), 17886–17892. https://doi.org/10.1021/jp047349j.
    (21) Faber, M. S.; Jin, S. Earth-Abundant Inorganic Electrocatalysts and Their Nanostructures for Energy Conversion Applications. Energy Environ. Sci. 2014, 7 (11), 3519–3542. https://doi.org/10.1039/C4EE01760A.
    (22) Chen, W.; Pei, J.; He, C.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W.; Mao, J.; Zheng, X.; Yan, W.; Zhuang, Z.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Single Tungsten Atoms Supported on MOF‐Derived N‐Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials 2018, 30 (30). https://doi.org/10.1002/adma.201800396.
    (23) Hou, Y.; Abrams, B. L.; Vesborg, P. C. K.; Björketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O.; Rossmeisl, J.; Dahl, S.; Nørskov, J. K.; Chorkendorff, I. Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution. Nat Mater 2011, 10 (6), 434–438. https://doi.org/10.1038/nmat3008.
    (24) Laursen, A. B.; Kegnæs, S.; Dahl, S.; Chorkendorff, I. Molybdenum Sulfides—Efficient and Viable Materials for Electro - and Photoelectrocatalytic Hydrogen Evolution. Energy Environ Sci 2012, 5 (2), 5577. https://doi.org/10.1039/c2ee02618j.
    (25) Morales-Guio, C. G.; Stern, L.-A.; Hu, X. Nanostructured Hydrotreating Catalysts for Electrochemical Hydrogen Evolution. Chem Soc Rev 2014, 43 (18), 6555. https://doi.org/10.1039/C3CS60468C.
    (26) Turner, J. A. Sustainable Hydrogen Production. Science (1979) 2004, 305 (5686), 972–974. https://doi.org/10.1126/science.1103197.
    (27) Yang, J.; Chen, B.; Liu, X.; Liu, W.; Li, Z.; Dong, J.; Chen, W.; Yan, W.; Yao, T.; Duan, X.; Wu, Y.; Li, Y. Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie International Edition 2018, 57 (30), 9495–9500. https://doi.org/10.1002/anie.201804854.
    (28) Zhang, Y.; Gao, L.; Hensen, E. J. M.; Hofmann, J. P. Evaluating the Stability of Co2P Electrocatalysts in the Hydrogen Evolution Reaction for Both Acidic and Alkaline Electrolytes. ACS Energy Lett 2018, 3 (6), 1360–1365. https://doi.org/10.1021/acsenergylett.8b00514.
    (29) Zou, X.; Zhang, Y. Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting. Chem Soc Rev 2015, 44 (15), 5148–5180. https://doi.org/10.1039/C4CS00448E.
    (30) Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat Mater 2006, 5 (11), 909–913. https://doi.org/10.1038/nmat1752.
    (31) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science (1979) 2017, 355 (6321). https://doi.org/10.1126/science.aad4998.
    (32) Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. 2D Transition‐Metal‐Dichalcogenide‐Nanosheet‐Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Advanced Materials 2016, 28 (10), 1917–1933. https://doi.org/10.1002/adma.201503270.
    (33) Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett 2013, 13 (12), 6222–6227. https://doi.org/10.1021/nl403661s.
    (34) Huang, X.; Zeng, Z.; Zhang, H. Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications. Chem Soc Rev 2013, 42 (5), 1934. https://doi.org/10.1039/c2cs35387c.
    (35) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of Active Edge Sites for Electrochemical H 2 Evolution from MoS2 Nanocatalysts. Science (1979) 2007, 317 (5834), 100–102. https://doi.org/10.1126/science.1141483.
    (36) Tsai, C.; Abild-Pedersen, F.; Nørskov, J. K. Tuning the MoS2 Edge-Site Activity for Hydrogen Evolution via Support Interactions. Nano Lett 2014, 14 (3), 1381–1387. https://doi.org/10.1021/nl404444k.
    (37) Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; Nørskov, J. K.; Zheng, X. Activating and Optimizing MoS2 Basal Planes for Hydrogen Evolution through the Formation of Strained Sulphur Vacancies. Nat Mater 2016, 15 (1), 48–53. https://doi.org/10.1038/nmat4465.
    (38) Toh, R. J.; Sofer, Z.; Luxa, J.; Sedmidubský, D.; Pumera, M. 3R Phase of MoS2 and WS2 Outperforms the Corresponding 2H Phase for Hydrogen Evolution. Chemical Communications 2017, 53 (21), 3054–3057. https://doi.org/10.1039/C6CC09952A.
    (39) Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano Lett 2016, 16 (2), 1097–1103. https://doi.org/10.1021/acs.nanolett.5b04331.
    (40) Zhao, Z.-Y.; Liu, Q.-L. Study of the Layer-Dependent Properties of MoS2 Nanosheets with Different Crystal Structures by DFT Calculations. Catal Sci Technol 2018, 8 (7), 1867–1879. https://doi.org/10.1039/C7CY02252B.
    (41) Tsai, C.; Chan, K.; Nørskov, J. K.; Abild-Pedersen, F. Theoretical Insights into the Hydrogen Evolution Activity of Layered Transition Metal Dichalcogenides. Surf Sci 2015, 640, 133–140. https://doi.org/10.1016/j.susc.2015.01.019.
    (42) Tsai, C.; Li, H.; Park, S.; Park, J.; Han, H. S.; Nørskov, J. K.; Zheng, X.; Abild-Pedersen, F. Electrochemical Generation of Sulfur Vacancies in the Basal Plane of MoS2 for Hydrogen Evolution. Nat Commun 2017, 8 (1), 15113. https://doi.org/10.1038/ncomms15113.
    (43) Kiriya, D.; Lobaccaro, P.; Nyein, H. Y. Y.; Taheri, P.; Hettick, M.; Shiraki, H.; Sutter-Fella, C. M.; Zhao, P.; Gao, W.; Maboudian, R.; Ager, J. W.; Javey, A. General Thermal Texturization Process of MoS2 for Efficient Electrocatalytic Hydrogen Evolution Reaction. Nano Lett 2016, 16 (7), 4047–4053. https://doi.org/10.1021/acs.nanolett.6b00569.
    (44) Nguyen, A. D.; Nguyen, T. K.; Le, C. T.; Kim, S.; Ullah, F.; Lee, Y.; Lee, S.; Kim, K.; Lee, D.; Park, S.; Bae, J.-S.; Jang, J. I.; Kim, Y. S. Nitrogen-Plasma-Treated Continuous Monolayer MoS2 for Improving Hydrogen Evolution Reaction. ACS Omega 2019, 4 (25), 21509–21515. https://doi.org/10.1021/acsomega.9b03205.
    (45) Siao, M. D.; Shen, W. C.; Chen, R. S.; Chang, Z. W.; Shih, M. C.; Chiu, Y. P.; Cheng, C.-M. Two-Dimensional Electronic Transport and Surface Electron Accumulation in MoS2. Nat Commun 2018, 9 (1), 1442. https://doi.org/10.1038/s41467-018-03824-6.
    (46) Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically Thin MoS2 : A New Direct-Gap Semiconductor. Phys Rev Lett 2010, 105 (13), 136805. https://doi.org/10.1103/PhysRevLett.105.136805.
    (47) Verble, J. L.; Wieting, T. J. Lattice Mode Degeneracy in MoS2 and Other Layer Compounds. Phys Rev Lett 1970, 25 (6), 362–365. https://doi.org/10.1103/PhysRevLett.25.362.
    (48) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2 : Evolution of Raman Scattering. Adv Funct Mater 2012, 22 (7), 1385–1390. https://doi.org/10.1002/adfm.201102111.
    (49) Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers. Nano Lett 2013, 13 (3), 1341–1347. https://doi.org/10.1021/nl400258t.
    (50) Verble, J. L.; Wietling, T. J.; Reed, P. R. Rigid-Layer Lattice Vibrations and van Der Waals Bonding in Hexagonal MoS2. Solid State Commun 1972, 11 (8), 941–944. https://doi.org/10.1016/0038-1098(72)90294-3.
    (51) Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S. Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets. J Am Chem Soc 2013, 135 (28), 10274–10277. https://doi.org/10.1021/ja404523s.
    (52) Zhao, N.; Wang, L.; Zhang, Z.; Li, Y. Activating the MoS2 Basal Planes for Electrocatalytic Hydrogen Evolution by 2H/1T′ Structural Interfaces. ACS Appl Mater Interfaces 2019, 11 (45), 42014–42020. https://doi.org/10.1021/acsami.9b11708.
    (53) Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; Nørskov, J. K.; Zheng, X. Activating and Optimizing MoS2 Basal Planes for Hydrogen Evolution through the Formation of Strained Sulphur Vacancies. Nat Mater 2016, 15 (1), 48–53. https://doi.org/10.1038/nmat4465.
    (54) Wang, H.; Xiao, X.; Liu, S.; Chiang, C.-L.; Kuai, X.; Peng, C.-K.; Lin, Y.-C.; Meng, X.; Zhao, J.; Choi, J.; Lin, Y.-G.; Lee, J.-M.; Gao, L. Structural and Electronic Optimization of MoS2 Edges for Hydrogen Evolution. J Am Chem Soc 2019, 141 (46), 18578–18584. https://doi.org/10.1021/jacs.9b09932.
    (55) Hu, J.; Huang, B.; Zhang, C.; Wang, Z.; An, Y.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. Engineering Stepped Edge Surface Structures of MoS2 Sheet Stacks to Accelerate the Hydrogen Evolution Reaction. Energy Environ Sci 2017, 10 (2), 593–603. https://doi.org/10.1039/C6EE03629E.
    (56) Xu, X.; Xu, H.; Cheng, D. Design of High-Performance MoS2 Edge Supported Single-Metal Atom Bifunctional Catalysts for Overall Water Splitting via a Simple Equation. Nanoscale 2019, 11 (42), 20228–20237. https://doi.org/10.1039/C9NR06083A.
    (57) King, P. D. C.; Veal, T. D.; Payne, D. J.; Bourlange, A.; Egdell, R. G.; McConville, C. F. Surface Electron Accumulation and the Charge Neutrality Level in In2O3. Phys Rev Lett 2008, 101 (11), 116808. https://doi.org/10.1103/PhysRevLett.101.116808.
    (58) Noguchi, M.; Hirakawa, K.; Ikoma, T. Intrinsic Electron Accumulation Layers on Reconstructed Clean InAs (100) Surfaces. Phys Rev Lett 1991, 66 (17), 2243–2246. https://doi.org/10.1103/PhysRevLett.66.2243.
    (59) Betti, M. G.; Corradini, V.; Bertoni, G.; Casarini, P.; Mariani, C.; Abramo, A. Density of States of a Two-Dimensional Electron Gas at Semiconductor Surfaces. Phys Rev B 2001, 63 (15), 155315. https://doi.org/10.1103/PhysRevB.63.155315.
    (60) Brillson, L. J.; Lu, Y. ZnO Schottky Barriers and Ohmic Contacts. J Appl Phys 2011, 109 (12). https://doi.org/10.1063/1.3581173.
    (61) Piper, L. F. J.; Colakerol, L.; King, P. D. C.; Schleife, A.; Zúñiga-Pérez, J.; Glans, P.-A.; Learmonth, T.; Federov, A.; Veal, T. D.; Fuchs, F.; Muñoz-Sanjosé, V.; Bechstedt, F.; McConville, C. F.; Smith, K. E. Observation of Quantized Subband States and Evidence for Surface Electron Accumulation in CdO from Angle-Resolved Photoemission Spectroscopy. Phys Rev B 2008, 78 (16), 165127. https://doi.org/10.1103/PhysRevB.78.165127.
    (62) King, P. D. C.; Veal, T. D.; Jefferson, P. H.; Zúñiga-Pérez, J.; Muñoz-Sanjosé, V.; McConville, C. F. Unification of the Electrical Behavior of Defects, Impurities, and Surface States in Semiconductors: Virtual Gap States in CdO. Phys Rev B 2009, 79 (3), 035203. https://doi.org/10.1103/PhysRevB.79.035203.
    (63) Mahboob, I.; Veal, T. D.; McConville, C. F.; Lu, H.; Schaff, W. J. Intrinsic Electron Accumulation at Clean InN Surfaces. Phys Rev Lett 2004, 92 (3), 036804. https://doi.org/10.1103/PhysRevLett.92.036804.
    (64) Colakerol, L.; Veal, T. D.; Jeong, H.-K.; Plucinski, L.; DeMasi, A.; Learmonth, T.; Glans, P.-A.; Wang, S.; Zhang, Y.; Piper, L. F. J.; Jefferson, P. H.; Fedorov, A.; Chen, T.-C.; Moustakas, T. D.; McConville, C. F.; Smith, K. E. Quantized Electron Accumulation States in Indium Nitride Studied by Angle-Resolved Photoemission Spectroscopy. Phys Rev Lett 2006, 97 (23), 237601. https://doi.org/10.1103/PhysRevLett.97.237601.
    (65) Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D. A.; Wegener, E. C.; Kropf, A. J.; Martinez, U.; Cheng, Y.; Engelhard, M. H.; Bowden, M. E.; Song, M.; Lemmon, T.; Li, X. S.; Nie, Z.; Liu, J.; Myers, D. J.; Zelenay, P.; Wang, G.; Wu, G.; Ramani, V.; Shao, Y. Performance Enhancement and Degradation Mechanism Identification of a Single-Atom Co–N–C Catalyst for Proton Exchange Membrane Fuel Cells. Nat Catal 2020, 3 (12), 1044–1054. https://doi.org/10.1038/s41929-020-00546-1.
    (66) Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and Fuel Cells for Emerging Electric Vehicle Markets. Nat Energy 2018, 3 (4), 279–289. https://doi.org/10.1038/s41560-018-0108-1.
    (67) Debe, M. K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells. Nature 2012, 486 (7401), 43–51. https://doi.org/10.1038/nature11115.
    (68) Xie, H.; Xie, X.; Hu, G.; Prabhakaran, V.; Saha, S.; Gonzalez-Lopez, L.; Phakatkar, A. H.; Hong, M.; Wu, M.; Shahbazian-Yassar, R.; Ramani, V.; Al-Sheikhly, M. I.; Jiang, D.; Shao, Y.; Hu, L. Ta–TiOx Nanoparticles as Radical Scavengers to Improve the Durability of Fe–N–C Oxygen Reduction Catalysts. Nat Energy 2022, 7 (3), 281–289. https://doi.org/10.1038/s41560-022-00988-w.
    (69) Liu, J.; Liu, S.; Yan, F.; Wen, Z.; Chen, W.; Liu, X.; Liu, Q.; Shang, J.; Yu, R.; Su, D.; Shui, J. Ultrathin Nanotube Structure for Mass-Efficient and Durable Oxygen Reduction Reaction Catalysts in PEM Fuel Cells. J Am Chem Soc 2022, 144 (41), 19106–19114. https://doi.org/10.1021/jacs.2c08361.
    (70) Zhu, P.; Xiong, X.; Wang, X.; Ye, C.; Li, J.; Sun, W.; Sun, X.; Jiang, J.; Zhuang, Z.; Wang, D.; Li, Y. Regulating the FeN 4 Moiety by Constructing Fe–Mo Dual-Metal Atom Sites for Efficient Electrochemical Oxygen Reduction. Nano Lett 2022, 22 (23), 9507–9515. https://doi.org/10.1021/acs.nanolett.2c03623.
    (71) Hu, X.; Chen, S.; Chen, L.; Tian, Y.; Yao, S.; Lu, Z.; Zhang, X.; Zhou, Z. What Is the Real Origin of the Activity of Fe–N–C Electrocatalysts in the O2 Reduction Reaction? Critical Roles of Coordinating Pyrrolic N and Axially Adsorbing Species. J Am Chem Soc 2022, 144 (39), 18144–18152. https://doi.org/10.1021/jacs.2c08743.
    (72) Tian, X.; Zhao, X.; Su, Y.-Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W. (David); Xia, B. Y. Engineering Bunched Pt-Ni Alloy Nanocages for Efficient Oxygen Reduction in Practical Fuel Cells. Science (1979) 2019, 366 (6467), 850–856. https://doi.org/10.1126/science.aaw7493.
    (73) Kongkanand, A.; Mathias, M. F. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. J Phys Chem Lett 2016, 7 (7), 1127–1137. https://doi.org/10.1021/acs.jpclett.6b00216.
    (74) Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J. W.; Lee, J. Versatile Strategy for Tuning ORR Activity of a Single Fe-N4 Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. J Am Chem Soc 2019, 141 (15), 6254–6262. https://doi.org/10.1021/jacs.8b13543.
    (75) Li, Q.; Chen, W.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L.; Zheng, X.; Yan, W.; Cheong, W.; Shen, R.; Fu, N.; Gu, L.; Zhuang, Z.; Chen, C.; Wang, D.; Peng, Q.; Li, J.; Li, Y. Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials 2018, 30 (25). https://doi.org/10.1002/adma.201800588.
    (76) Zhao, C.; Li, B.; Liu, J.; Zhang, Q. Intrinsic Electrocatalytic Activity Regulation of M–N–C Single‐Atom Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie International Edition 2021, 60 (9), 4448–4463. https://doi.org/10.1002/anie.202003917.
    (77) Wang, Y.-C.; Huang, W.; Wan, L.-Y.; Yang, J.; Xie, R.-J.; Zheng, Y.-P.; Tan, Y.-Z.; Wang, Y.-S.; Zaghib, K.; Zheng, L.-R.; Sun, S.-H.; Zhou, Z.-Y.; Sun, S.-G. Identification of the Active Triple-Phase Boundary of a Non-Pt Catalyst Layer in Fuel Cells. Sci Adv 2022, 8 (44). https://doi.org/10.1126/sciadv.add8873.
    (78) Honig, H. C.; Elbaz, L. Degradation Mechanisms of Platinum Group Metal‐Free Oxygen Reduction Reaction Catalyst Based on Iron Phthalocyanine. ChemElectroChem 2023, 10 (7). https://doi.org/10.1002/celc.202300042.
    (79) Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science (1979) 2009, 324 (5923), 71–74. https://doi.org/10.1126/science.1170051.
    (80) Bates, J. S.; Johnson, M. R.; Khamespanah, F.; Root, T. W.; Stahl, S. S. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023, 123 (9), 6233–6256. https://doi.org/10.1021/acs.chemrev.2c00424.
    (81) Chong, L.; Wen, J.; Kubal, J.; Sen, F. G.; Zou, J.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W.; Liu, D.-J. Ultralow-Loading Platinum-Cobalt Fuel Cell Catalysts Derived from Imidazolate Frameworks. Science (1979) 2018, 362 (6420), 1276–1281. https://doi.org/10.1126/science.aau0630.
    (82) Xie, Y.; Chen, X.; Sun, K.; Zhang, J.; Lai, W.; Liu, H.; Wang, G. Direct Oxygen‐Oxygen Cleavage through Optimizing Interatomic Distances in Dual Single‐atom Electrocatalysts for Efficient Oxygen Reduction Reaction. Angewandte Chemie 2023, 135 (17). https://doi.org/10.1002/ange.202301833.
    (83) Julliard, P.-G.; Hanana, M.; Alvarez, L.; Cornut, R.; Jousselme, B.; Canard, G.; Campidelli, S. Core–Shell Multiwalled Carbon Nanotube/Cobalt Corrole Hybrids for the Oxygen Reduction Reaction. Energy & Fuels 2023, 37 (1), 684–692. https://doi.org/10.1021/acs.energyfuels.2c03434.
    (84) Hazarika, K. K.; Chutia, B.; Changmai, R. R.; Boruah, P. K.; Das, M. R.; Bharali, P. FexCo3−xO4 Nanohybrids Anchored on a Carbon Matrix for High‐Performance Oxygen Electrocatalysis in Alkaline Media. ChemElectroChem 2022, 9 (19). https://doi.org/10.1002/celc.202200867.
    (85) Wu, Y.; Li, X.; Hua, K.; Duan, X.; Ding, R.; Rui, Z.; Cao, F.; Yuan, M.; Li, J.; Liu, J. Generalized Encapsulations of ZIF‐Based Fe–N–C Catalysts with Controllable Nitrogen‐Doped Carbon for Significantly‐Improved Stability Toward Oxygen Reduction Reaction. Small 2023, 19 (25). https://doi.org/10.1002/smll.202207671.
    (86) Bhunia, S.; Ghatak, A.; Rana, A.; Dey, A. Amine Groups in the Second Sphere of Iron Porphyrins Allow for Higher and Selective 4e –/4H + Oxygen Reduction Rates at Lower Overpotentials. J Am Chem Soc 2023, 145 (6), 3812–3825. https://doi.org/10.1021/jacs.2c13552.
    (87) Xia, C.; Qiu, Y.; Xia, Y.; Zhu, P.; King, G.; Zhang, X.; Wu, Z.; Kim, J. Y.; Cullen, D. A.; Zheng, D.; Li, P.; Shakouri, M.; Heredia, E.; Cui, P.; Alshareef, H. N.; Hu, Y.; Wang, H. General Synthesis of Single-Atom Catalysts with High Metal Loading Using Graphene Quantum Dots. Nat Chem 2021, 13 (9), 887–894. https://doi.org/10.1038/s41557-021-00734-x.
    (88) Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. A Universal Principle for a Rational Design of Single-Atom Electrocatalysts. Nat Catal 2018, 1 (5), 339–348. https://doi.org/10.1038/s41929-018-0063-z.
    (89) JASINSKI, R. A New Fuel Cell Cathode Catalyst. Nature 1964, 201 (4925), 1212–1213. https://doi.org/10.1038/2011212a0.
    (90) Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. Heat-Treated Polyacrylonitrile-Based Catalysts for Oxygen Electroreduction. J Appl Electrochem 1989, 19 (1), 19–27. https://doi.org/10.1007/BF01039385.
    (91) Jahnke, H.; Schönborn, M.; Zimmermann, G. Organic Dyestuffs as Catalysts for Fuel Cells. In Physical and Chemical Applications of Dyestuffs; Springer-Verlag: Berlin/Heidelberg; pp 133–181. https://doi.org/10.1007/BFb0046059.
    (92) Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y. Highly Efficient Nonprecious Metal Catalysts towards Oxygen Reduction Reaction Based on Three-Dimensional Porous Carbon Nanostructures. Chem Soc Rev 2016, 45 (3), 517–531. https://doi.org/10.1039/C5CS00670H.
    (93) Raj, C. R.; Samanta, A.; Noh, S. H.; Mondal, S.; Okajima, T.; Ohsaka, T. Emerging New Generation Electrocatalysts for the Oxygen Reduction Reaction. J Mater Chem A Mater 2016, 4 (29), 11156–11178. https://doi.org/10.1039/C6TA03300H.
    (94) Jaouen, F.; Herranz, J.; Lefèvre, M.; Dodelet, J.-P.; Kramm, U. I.; Herrmann, I.; Bogdanoff, P.; Maruyama, J.; Nagaoka, T.; Garsuch, A.; Dahn, J. R.; Olson, T.; Pylypenko, S.; Atanassov, P.; Ustinov, E. A. Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction. ACS Appl Mater Interfaces 2009, 1 (8), 1623–1639. https://doi.org/10.1021/am900219g.
    (95) Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science (1979) 2011, 332 (6028), 443–447. https://doi.org/10.1126/science.1200832.
    (96) Li, J.; Chen, M.; Cullen, D. A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; Lei, C.; Xu, H.; Sterbinsky, G. E.; Feng, Z.; Su, D.; More, K. L.; Wang, G.; Wang, Z.; Wu, G. Atomically Dispersed Manganese Catalysts for Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. Nat Catal 2018, 1 (12), 935–945. https://doi.org/10.1038/s41929-018-0164-8.
    (97) Zhong, L.; Li, S. Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catal 2020, 10 (7), 4313–4318. https://doi.org/10.1021/acscatal.0c00815.
    (98) Lu, B.; Liu, Q.; Chen, S. Electrocatalysis of Single-Atom Sites: Impacts of Atomic Coordination. ACS Catal 2020, 10 (14), 7584–7618. https://doi.org/10.1021/acscatal.0c01950.
    (99) Wang, J.; Liu, C.; Li, S.; Li, Y.; Zhang, Q.; Peng, Q.; Tse, J. S.; Wu, Z. Advanced Electrocatalysts with Dual-Metal Doped Carbon Materials: Achievements and Challenges. Chemical Engineering Journal 2022, 428, 132558. https://doi.org/10.1016/j.cej.2021.132558.
    (100) Wan, W.; Zhao, Y.; Wei, S.; Triana, C. A.; Li, J.; Arcifa, A.; Allen, C. S.; Cao, R.; Patzke, G. R. Mechanistic Insight into the Active Centers of Single/Dual-Atom Ni/Fe-Based Oxygen Electrocatalysts. Nat Commun 2021, 12 (1), 5589. https://doi.org/10.1038/s41467-021-25811-0.
    (101) Yang, G.; Zhu, J.; Yuan, P.; Hu, Y.; Qu, G.; Lu, B.-A.; Xue, X.; Yin, H.; Cheng, W.; Cheng, J.; Xu, W.; Li, J.; Hu, J.; Mu, S.; Zhang, J.-N. Regulating Fe-Spin State by Atomically Dispersed Mn-N in Fe-N-C Catalysts with High Oxygen Reduction Activity. Nat Commun 2021, 12 (1), 1734. https://doi.org/10.1038/s41467-021-21919-5.
    (102) He, Q.; Yang, X.; Ren, X.; Koel, B. E.; Ramaswamy, N.; Mukerjee, S.; Kostecki, R. A Novel CuFe-Based Catalyst for the Oxygen Reduction Reaction in Alkaline Media. J Power Sources 2011, 196 (18), 7404–7410. https://doi.org/10.1016/j.jpowsour.2011.04.016.
    (103) Li, J.; Chen, J.; Wan, H.; Xiao, J.; Tang, Y.; Liu, M.; Wang, H. Boosting Oxygen Reduction Activity of Fe-N-C by Partial Copper Substitution to Iron in Al-Air Batteries. Appl Catal B 2019, 242, 209–217. https://doi.org/10.1016/j.apcatb.2018.09.044.
    (104) Xiao, M.; Chen, Y.; Zhu, J.; Zhang, H.; Zhao, X.; Gao, L.; Wang, X.; Zhao, J.; Ge, J.; Jiang, Z.; Chen, S.; Liu, C.; Xing, W. Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering. J Am Chem Soc 2019, 141 (44), 17763–17770. https://doi.org/10.1021/jacs.9b08362.
    (105) Yu, Z.; Si, C.; LaGrow, A. P.; Tai, Z.; Caliebe, W. A.; Tayal, A.; Sampaio, M. J.; Sousa, J. P. S.; Amorim, I.; Araujo, A.; Meng, L.; Faria, J. L.; Xu, J.; Li, B.; Liu, L. Iridium–Iron Diatomic Active Sites for Efficient Bifunctional Oxygen Electrocatalysis. ACS Catal 2022, 12 (15), 9397–9409. https://doi.org/10.1021/acscatal.2c01861.
    (106) Li, H.; Di, S.; Niu, P.; Wang, S.; Wang, J.; Li, L. A Durable Half-Metallic Diatomic Catalyst for Efficient Oxygen Reduction. Energy Environ Sci 2022, 15 (4), 1601–1610. https://doi.org/10.1039/D1EE03194E.
    (107) Wang, J.; Huang, Z.; Liu, W.; Chang, C.; Tang, H.; Li, Z.; Chen, W.; Jia, C.; Yao, T.; Wei, S.; Wu, Y.; Li, Y. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. J Am Chem Soc 2017, 139 (48), 17281–17284. https://doi.org/10.1021/jacs.7b10385.
    (108) Bai, J.; Fu, Y.; Zhou, P.; Xu, P.; Wang, L.; Zhang, J.; Jiang, X.; Zhou, Q.; Deng, Y. Synergies of Atomically Dispersed Mn/Fe Single Atoms and Fe Nanoparticles on N-Doped Carbon toward High-Activity Eletrocatalysis for Oxygen Reduction. ACS Appl Mater Interfaces 2022, 14 (26), 29986–29992. https://doi.org/10.1021/acsami.2c08572.
    (109) Tang, F.; Lei, H.; Wang, S.; Wang, H.; Jin, Z. A Novel Fe–N–C Catalyst for Efficient Oxygen Reduction Reaction Based on Polydopamine Nanotubes. Nanoscale 2017, 9 (44), 17364–17370. https://doi.org/10.1039/C7NR06844A.
    (110) Han, X.; Chen, X.; Yan, M.; Liu, H. Synergetic Effect of Polydopamine Particles and In-Situ Fabricated Gold Nanoparticles on Charge-Dependent Catalytic Behaviors. Particuology 2019, 44, 63–70. https://doi.org/10.1016/j.partic.2018.07.004.
    (111) Wang, C.-H.; Chang, S.-T.; Hsu, H.-C.; Du, H.-Y.; Wu, J. C.-S.; Chen, L.-C.; Chen, K.-H. Oxygen Reducing Activity of Methanol-Tolerant Catalysts by High-Temperature Pyrolysis. Diam Relat Mater 2011, 20 (3), 322–329. https://doi.org/10.1016/j.diamond.2011.01.023.
    (112) Luo, H.; Gu, C.; Zheng, W.; Dai, F.; Wang, X.; Zheng, Z. Facile Synthesis of Novel Size-Controlled Antibacterial Hybrid Spheres Using Silver Nanoparticles Loaded with Poly-Dopamine Spheres. RSC Adv 2015, 5 (18), 13470–13477. https://doi.org/10.1039/C4RA16469E.
    (113) Farzad, E.; Veisi, H. Fe3O4/SiO2 Nanoparticles Coated with Polydopamine as a Novel Magnetite Reductant and Stabilizer Sorbent for Palladium Ions: Synthetic Application of Fe3O4 /SiO2 @PDA/Pd for Reduction of 4-Nitrophenol and Suzuki Reactions. Journal of Industrial and Engineering Chemistry 2018, 60, 114–124. https://doi.org/10.1016/j.jiec.2017.10.017.
    (114) Wang, D.-D.; Gao, X.; Zhao, L.; Zhou, J.; Zhuo, S.; Yan, Z.; Xing, W. Polydopamine-Coated Graphene Nanosheets as Efficient Electrocatalysts for Oxygen Reduction Reaction. RSC Adv 2018, 8 (29), 16044–16051. https://doi.org/10.1039/C8RA01027G.
    (115) Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction. Nat Mater 2011, 10 (10), 780–786. https://doi.org/10.1038/nmat3087.
    (116) Sabhapathy, P.; Raghunath, P.; Sabbah, A.; Shown, I.; Bayikadi, K. S.; Xie, R.; Krishnamoorthy, V.; Lin, M.; Chen, K.; Chen, L. Axial Chlorine Induced Electron Delocalization in Atomically Dispersed FeN4 Electrocatalyst for Oxygen Reduction Reaction with Improved Hydrogen Peroxide Tolerance. Small 2023. https://doi.org/10.1002/smll.202303598.
    (117) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J Am Chem Soc 2013, 135 (45), 16977–16987. https://doi.org/10.1021/ja407115p.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE