簡易檢索 / 詳目顯示

研究生: 鄭植
CHIH CHENG
論文名稱: 製備氮化鎵高電子遷移率電晶體之石墨烯/氮摻雜超奈米晶鑽石複合電極與其特性研究
Preparation of Graphene/Nitrogen-Doped Ultrananocrystalline Diamond Hybrid Electrode for Gallium Nitride High Electron Mobility Transistors
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 郭東昊
Dong-Hau Kuo
陸亭樺
Ting-Hua Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 85
中文關鍵詞: 氮摻雜超奈米晶鑽石多層石墨烯氮化鎵高電子遷移率電晶體
外文關鍵詞: N-UNCD, graghene, GaN HEMTs
相關次數: 點閱:476下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵高電子遷移率電晶體(GaN HEMTs)在高功率操作下,傳統金屬電極與元件結構層間之電致遷移現象變得更為嚴重,電致遷移現象除了使電晶體源極與汲極之歐姆接觸電阻上升;也導致閘極產生漏電路徑,使電晶體開關須更大閘偏壓,使消耗功率增加。有鑑於此,本論文提出利用石墨烯/氮摻雜超奈米晶鑽石薄膜複合電極結構,配合金屬調控功函數,製備溫度穩定度更高之電極。具體作法為使用氮摻雜超奈米晶鑽石薄膜(N-UNCD)作為固態碳源,並以鎳金屬為催化層於高溫腔體中製備複合薄膜。後續藉由熱蒸鍍機製備源、汲極之歐姆接點與閘極之蕭特基接點。研究初期通過調整氮摻雜超奈米晶鑽石薄膜的成長參數,在 GaN HEMTs 上成長厚度 80 奈米且均勻連續之多層石墨烯薄膜。
    本研究開發之複合電極經由 TLM 量測其與 GaN HEMTs 之特徵接觸電阻最低可達 4.210-4 Ω-cm2。配合遮罩的設計,我們也成功製備出具閘極截止功能的電晶體。而在 350 度下進行長時熱燒實驗中,傳統金屬電極 GaN HEMTs 隨著熱燒時間增加,源汲極間歐姆接觸電阻明顯增加;反之複合電極 GaN HEMTs 源汲極間歐姆接觸電阻值幾乎不隨熱燒時間變化。實驗結果表明本研究開發之石墨烯/氮摻雜超奈米晶鑽石複合電極較傳統金屬電極具有更高的溫度穩定性。


    Gallium Nitride-based High Electron Mobility Transistors (GaN HEMTs) exhibit amplified electromigration problems between traditional metal electrodes and the device structural layer, under high power operational conditions. The contact resistance between the transistor's source and drain is increased by electromigration, which enhances power consumption. Consequently elevated gate biases are required to switch the transistor, which creates leakage channel in the gate. To address this challenge, this research proposes a novel approach involving a composite electrode structure. This structure combines an ultrananocrystalline diamond film doped with nitrogen and a graphene layer, accompanied by metal-controlled work function modulation, with the aim of producing electrodes possessing enhanced thermal stability.The specific approach involves using nitrogen-doped ultrananocrystalline diamond films (N-UNCD) as a solid carbon source, with a nickel metal catalyst layer, to prepare the composite film in a high-temperature chamber. Subsequently, the source and drain ohmic contacts and the gate schottky contacts are deposited using a thermal evaporation system. In the preliminary stages of the study, the growth parameters of the nitrogen-doped ultrananocrystalline diamond film were adjusted to achieve the growth of a uniform continuous, multilayer of approximately 80 nm thick, on GaN HEMTs. The composite electrode developed in this study exhibited a minimum specific contact resistance with GaN HEMTs of 4.2 × 10-4 Ω-cm2, as determined by transmission line measurement (TLM). We were able to successfully fabricate transistors with gate cutoff capabilities via mask design. During prolonged thermal burning experiments at 350 oC, the contact resistance between the source and drain of GaN HEMTs with conventional metal electrodes increased significantly with burning time. Conversely, the contact resistance of GaN HEMTs with composite electrodes remained almost unchanged throughout the annealing process. These experimental findings indicate that the graphene/nitrogen-doped ultrananocrystalline diamond composite electrode developed in this study exhibits its potential exhibiting higher thermal stability compared to traditional metal electrodes.

    摘要 II Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 氮化鎵與高電子遷移率電晶體發展概況 3 2.2 石墨烯薄膜製備與應用 9 2.3 氮摻雜超奈米晶鑽石薄膜製備與應用 18 第三章 實驗方法 25 3.1石墨烯/氮摻雜超奈米晶鑽石複合薄膜製備流程 26 3.2石墨烯/氮摻雜超奈米晶鑽石複合電極製備流程 29 第四章 結果討論 31 4.1 製備薄石墨烯/氮摻雜超奈米晶鑽石複合薄膜 31 4.1.1不同氮氣流量對氮摻雜超奈米晶鑽石薄膜品質的影響 32 4.1.2調整催化金屬厚度對石墨烯薄膜品質的影響 37 4.1.3改變預熱溫度對石墨烯薄膜品質之影響 40 4.1.4調整製程時間對石墨烯薄膜品質的影響 45 4.2 石墨烯/氮摻雜超奈米晶鑽石複合電極之電特性研究 49 4.2.1 石墨烯電極特徵接觸電阻量測 49 4.2.2石墨烯電極之蕭特基接觸電性量測 52 4.3 製備具石墨烯/氮摻雜超奈米晶鑽石複合電極之GaN HEMTs與其電特性研究 55 4.3.1電極與GaN HEMTs界面態位研究 55 4.3.2 傳統金屬電極與具石墨烯電極GaN HEMTs 56 4.3.3 樣品長時間熱燒後之電性研究 60 第五章 結論 64 參考文獻 66

    1. Ozpineci, B., & Tolbert, L. M. (2004). Comparison of wide-bandgap semiconductors for power electronics applications. United States. Department of Energy.
    2. Briere, M.A. GaN based power devices. in RPI CFES Conference. 2013.
    3. AYARI, T. Power GaN 2022. 2022; Available from: Power GaN 2022 Market and Technology Product Brochure.
    4. Bisi, D., Meneghini, M., De Santi, C., Chini, A., Dammann, M., Brueckner, P., ... & Zanoni, E. (2013). Deep-level characterization in GaN HEMTs-Part I: Advantages and limitations of drain current transient measurements. IEEE Transactions on electron devices, 60(10), 3166-3175.
    5. Joh, J., & Del Alamo, J. A. (2008). Critical voltage for electrical degradation of GaN high-electron mobility transistors. IEEE Electron Device Letters, 29(4), 287-289.
    6. Ancona, M. G., Binari, S. C., & Meyer, D. J. (2012). Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation. Journal of Applied Physics, 111(7).
    7. Whiting, P. G., Rudawski, N. G., Holzworth, M. R., Pearton, S. J., Jones, K. S., Liu, L., ... & Ren, F. (2017). Nanocrack formation in AlGaN/GaN high electron mobility transistors utilizing Ti/Al/Ni/Au ohmic contacts. Microelectronics Reliability, 70, 41-48.
    8. Sozza, A., Dua, C., Morvan, E., Delage, S., Rampazzo, F., Tazzoli, A., ... & De Jaeger, J. C. (2005, December). Evidence of traps creation in GaN/AlGaN/GaN HEMTs after a 3000 hour on-state and off-state hot-electron stress. In IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest. (pp. 4-pp). IEEE.
    9. Meneghini, M., Stocco, A., Silvestri, R., Meneghesso, G., & Zanoni, E. (2012). Degradation of AlGaN/GaN high electron mobility transistors related to hot electrons. Applied Physics Letters, 100(23).
    10. Puzyrev, Y. S., Roy, T., Beck, M., Tuttle, B. R., Schrimpf, R. D., Fleetwood, D. M., & Pantelides, S. T. (2011). Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors. Journal of Applied Physics, 109(3).
    11. Tallarico, A. N., Stoffels, S., Posthuma, N., Bakeroot, B., Decoutere, S., Sangiorgi, E., & Fiegna, C. (2019). Gate reliability of p-GaN HEMT with gate metal retraction. IEEE Transactions on Electron Devices, 66(11), 4829-4835.

    12. Gao, F., Tan, S. C., del Alamo, J. A., Thompson, C. V., & Palacios, T. (2013). Impact of water-assisted electrochemical reactions on the OFF-state degradation of AlGaN/GaN HEMTs. IEEE Transactions on electron devices, 61(2), 437-444.
    13. Tateno, Y., Kurachi, Y., Yamamoto, H., & Nakabayashi, T. (2018, March). Investigation of the pulsed-IV degradation mechanism of GaN-HEMT under high temperature storage tests. In 2018 IEEE International Reliability Physics Symposium (IRPS) (pp. P-WB). IEEE.
    14. Cheney, D. J., Douglas, E. A., Liu, L., Lo, C. F., Xi, Y. Y., Gila, B. P., ... & Pearton, S. J. (2013). Reliability studies of AlGaN/GaN high electron mobility transistors. Semiconductor Science and Technology, 28(7), 074019.
    15. Ruess, G., & Vogt, F. (1948). Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Über den Ort der aktiven Eigenschaften am Kohlenstoffkristall. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 78, 222-242.
    16. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
    17. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., ... & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature, 457(7230), 706-710.
    18. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388.
    19. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano letters, 8(3), 902-907.
    20. Wang, H., Wang, Y., Cao, X., Feng, M., & Lan, G. (2009). Vibrational properties of graphene and graphene layers. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 40(12), 1791-1796.
    21. Tu, Z., Liu, Z., Li, Y., Yang, F., Zhang, L., Zhao, Z., ... & Richard, P. (2014). Controllable growth of 1–7 layers of graphene by chemical vapour deposition. Carbon, 73, 252-258.
    22. Das, A., Chakraborty, B., & Sood, A. K. (2008). Raman spectroscopy of graphene on different substrates and influence of defects. Bulletin of Materials Science, 31, 579-584.
    23. Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. (2009). Raman spectroscopy in graphene. Physics reports, 473(5-6), 51-87.

    24. Yu, H., Zhang, B., Bulin, C., Li, R., & Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Scientific reports, 6(1), 36143.
    25. Gurbuz, Y., Esame, O., Tekin, I., Kang, W. P., & Davidson, J. L. (2005). Diamond semiconductor technology for RF device applications. Solid-state electronics, 49(7), 1055-1070.
    26. Yan, Z., Peng, Z., Sun, Z., Yao, J., Zhu, Y., Liu, Z., ... & Tour, J. M. (2011). Growth of bilayer graphene on insulating substrates. ACS nano, 5(10), 8187-8192.
    27. Xiong, W., Zhou, Y. S., Jiang, L. J., Sarkar, A., Mahjouri‐Samani, M., Xie, Z. Q., ... & Lu, Y. F. (2013). Single‐Step Formation of Graphene on Dielectric Surfaces. Advanced Materials, 25(4), 630-634.
    28. Chen, C., Tang, B., Xu, H., Pan, J., Jiang, M., Li, X., & Hu, X. (2021). Low-Defect Nanodiamonds and Graphene Nanoribbons Enhanced Electron Field Emission Properties in Ultrananocrystalline Diamond Films. ACS Applied Electronic Materials, 3(4), 1648-1655.
    29. Romanyuk, O., Varga, M., Tulic, S., Izak, T., Jiricek, P., Kromka, A., ... & Rezek, B. (2018). Study of Ni-catalyzed graphitization process of diamond by in situ X-ray photoelectron spectroscopy. The Journal of Physical Chemistry C, 122(12), 6629-6636.
    30. Chen, H., Müller, M. B., Gilmore, K. J., Wallace, G. G., & Li, D. (2008). Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials, 20(18), 3557-3561.
    31. Fang, X. Y., Yu, X. X., Zheng, H. M., Jin, H. B., Wang, L., & Cao, M. S. (2015). Temperature-and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets. Physics Letters A, 379(37), 2245-2251.
    32. Shen, L., Cheng, X., Wang, Z., Xia, C., Cao, D., Zheng, L., ... & Yu, Y. (2015). Passivation effect of graphene on AlGaN/GaN Schottky diode. RSC advances, 5(105), 86593-86597.
    33. Zhou, G., Wan, Z., Yang, G., Jiang, Y., Sokolovskij, R., Yu, H., & Xia, G. (2020). Gate leakage suppression and breakdown voltage enhancement in p-GaN HEMTs using metal/graphene gates. IEEE Transactions on Electron Devices, 67(3), 875-880.
    34. Angus, J. C., Will, H. A., & Stanko, W. S. (1968). Growth of diamond seed crystals by vapor deposition. Journal of Applied Physics, 39(6), 2915-2922.
    35. Williams, O. A., & Nesládek, M. (2006). Growth and properties of nanocrystalline diamond films. physica status solidi (a), 203(13), 3375-3386.
    36. Bhattacharyya, S. (2004). Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond. Physical Review B, 70(12), 125412.

    37. Krauss, A. R., Auciello, O., Gruen, D. M., Jayatissa, A., Sumant, A., Tucek, J., ... & Ding, M. Q. (2001). Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diamond and Related Materials, 10(11), 1952-1961.
    38. Cleri, F., Keblinski, P., Colombo, L., Wolf, D., & Phillpot, S. R. (1999). On the electrical activity of sp2-bonded grain boundaries in nanocrystalline diamond. Europhysics letters, 46(5), 671.
    39. Birrell, J., Gerbi, J. E., Auciello, O., Gibson, J. M., Gruen, D. M., & Carlisle, J. A. (2003). Bonding structure in nitrogen doped ultrananocrystalline diamond. Journal of Applied Physics, 93(9), 5606-5612.
    40. Ralchenko, V., Pimenov, S., Konov, V., Khomich, A., Saveliev, A., Popovich, A., ... & Khmelnitskii, R. (2007). Nitrogenated nanocrystalline diamond films: Thermal and optical properties. Diamond and Related Materials, 16(12), 2067-2073.
    41. Yuan, W., Fang, L., Feng, Z., Chen, Z., Wen, J., Xiong, Y., & Wang, B. (2016). Highly conductive nitrogen-doped ultrananocrystalline diamond films with enhanced field emission properties: triethylamine as a new nitrogen source. Journal of Materials Chemistry C, 4(21), 4778-4785.
    42. Williams, O. A., Douhéret, O., Daenen, M., Haenen, K., Ōsawa, E., & Takahashi, M. (2007). Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chemical Physics Letters, 445(4-6), 255-258.
    43. Pradhan, D., & Lin, I. N. (2009). Effect of titanium powder assisted surface pretreatment process on the nucleation enhancement and surface roughness of ultrananocrystalline diamond thin films. Applied surface science, 255(15), 6907-6913.
    44. Chen, L. J., Tai, N. H., Lee, C. Y., & Lin, I. N. (2007). Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond. Journal of applied physics, 101(6).
    45. Sankaran, K. J., Yeh, C. J., Hsieh, P. Y., Pobedinskas, P., Kunuku, S., Leou, K. C., ... & Haenen, K. (2019). Origin of conductive nanocrystalline diamond nanoneedles for optoelectronic applications. ACS Applied Materials & Interfaces, 11(28), 25388-25398.
    46. Lee, Y. C., Lin, S. J., Lin, C. Y., Yip, M. C., Fang, W., & Lin, I. N. (2006). Pre-nucleation techniques for enhancing nucleation density and adhesion of low temperature deposited ultra-nanocrystalline diamond. Diamond and related materials, 15(11-12), 2046-2050.

    47. Chen, Y. C., Zhong, X. Y., Konicek, A. R., Grierson, D. S., Tai, N. H., Lin, I. N., ... & Auciello, O. (2008). Synthesis and characterization of smooth ultrananocrystalline diamond films via low pressure bias-enhanced nucleation and growth. Applied Physics Letters, 92(13).

    無法下載圖示 全文公開日期 2026/08/15 (校內網路)
    全文公開日期 2026/08/15 (校外網路)
    全文公開日期 2026/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE