簡易檢索 / 詳目顯示

研究生: 黃裕勝
Yu-Sheng Huang
論文名稱: 碳氮化硼-奈米碳管與奈米鑽石及二硫化鉬多層結構奈米材料之超級電容特性探討
BCN-CNT with N-UNCD and MoS2 Multiple Layer Nanomaterials for Supercapacitor Studies
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
許正良
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 332
中文關鍵詞: 奈米碳管碳氮化硼超奈米鑽石二硫化鉬超級電容
外文關鍵詞: CNTs, BCN, UNCD, MoS2, supercapacitor
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了碳氮化硼-奈米碳管與奈米鑽石及二硫化鉬多層結構奈米材料之超級電容特性,並探討不同後處理方式對於碳氮化硼-奈米碳管之結構影響,後續利用氮氣退火的方式探討多層結構之變化及電化學特性。

    此研究發現對於BCN-CNT以及N-UNCD來說,氮氣退火後處理是提升其電性量測之最佳方式,並可以將BCN-CNTNA之面積電容從4.87 mF/ cm-2提升至30.11 mF/cm-2,而重量電容則提升至26.3 F/g,且其循環穩定性在經過4000次後,仍能保持86.5%。將BCN-CNT與MoS2以及N-UNCD進行堆疊後,[MoS2 / BCN-CNT]NA雖然因為MoS2對於電解液之影響,導致其循環穩定性下降,但其面積電容可以提升至49.52 mF/cm-2;而[N-UNCD / BCN-CNT]NA則因為鑽石之導電性較差,使其面積電容下降,但卻因鑽石對電解液之惰性,使其在循環穩定測試經過4000次循環後,仍能保持90.2%。

    最後,由於BCN-CNT之高導電性,使其在電化學量測方面有著極佳之表現,並透過與N-UNCD和MoS2的堆疊,使其提升面積電容,或是提高其循環穩定性,不管是何種方式,皆表明BCN-CNT具有優異之電化學性能。


    This study investigates the supercapacitor properties of boron carbon nitride-nanotubes (BCN-CNT) with UNCD and MoS2 multilayered nanostructures. It also explores the structural effects of different post-treatment methods on BCN-CNT and investigates the changes in the multilayered structures and electrochemical properties using N2 annealing.

    The study found that N2 annealing is the optimal post-treatment method for improving the electrical measurements of BCN-CNT and N-UNCD. It can increase the areal capacitance of BCN-CNTNA from 4.87 mF/cm-2 to 30.11 mF/cm-2, and the specific capacitance to 26.3 F/g. The cyclic stability remains at 86.5% even after 4000 cycles. When BCN-CNT are stacked with MoS2 and N-UNCD, the [MoS2 / BCN-CNT]NA structure exhibits an increased areal capacitance of 49.52 mF/cm-2. However, its cyclic stability decreases. On the other hand, the [N-UNCD / BCN-CNT]NA structure shows a decrease in areal capacitance. However, its cyclic stability remains at 90.2% after 4000 cycles.

    In conclusion, BCN-CNT contributes to its excellent electrochemical performance. Additionally, by stacking BCN-CNT with N-UNCD and MoS2, its electrochemical characteristics can be further enhanced. In any scenario, BCN-CNT demonstrates outstanding electrochemical performance.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2研究動機 第二章 文獻探討 2.1超奈米鑽石材料(UNCD)之特性簡介 2.2氮化硼(BN)、奈米碳管(CNT)與碳氮化硼(BCN)之特性簡介 2.3二硫化鉬(MoS2)之特性簡介 2.4超級電容器之種類與機制 第三章 實驗方法 3.1實驗設計與流程 3.2製備材料之介紹 3.3基板清洗流程 3.4微波電漿輔助化學氣相沉積法成長超奈米鑽石 3.5超音波震盪法製備碳氮化硼前驅溶液 3.6管式高溫爐之氮氣退火後處理 3.7儀器設備與材料分析方法 第四章 碳氮化硼-奈米碳管(BCN-CNT)之合成與 超級電容分析 4.1不同微波時間後處理之碳氮化硼(BCN-CNTMA)結構特性分析 4.2不同時間微波電漿氫處理之碳氮化硼(BCN-CNTHA)結構特性分析 4.3不同氮氣溫度退火後處理之碳氮化硼(BCN-CNTNA)結構特性分析 4.4概要 120 第五章 氮摻雜之超奈米鑽石 / 碳氮化硼雙層結構之超級電容特性分析 5.1不同主製程時間之氮摻雜之超奈米鑽石(N-UNCD)結構特性分析 5.2不同時間微波後處理之氮摻雜之超奈米鑽石(N-UNCDMA)結構特性分析 5.3不同時間微波電漿氫處理氮摻雜之超奈米鑽石(N-UNCDHA)結構特性分析 5.4不同氮氣溫度退火後處理之氮摻雜之超奈米鑽石(N-UNCDNA)結構特性分析 5.5 不同氮氣退火溫度製備[N-UNCDNA / BCN-CNT]NA雙層材料後處理之超級電容特性分析 5.6概要 第六章 氮摻雜之超奈米鑽石 / 二硫化鉬 / 碳氮化硼三層結構之超級電容特性 6.1不同氮氣退火溫度後處理之MoS2 / BCN-CNT雙層結構之特性分析 6.2 不同溫度製備N-UNCD / MoS2 / BCN-CNT三層材料退火後處理之超級電容特性分析 6.3概要 第七章 結論與未來展望 7.1結論 7.2未來展望 參考文獻

    [1]. S. Korkmaz, F. Meydaneri Tezel, İ.A. Kariper, A. Serin, Effects of deposition temperatures on the supercapacitor cathode performances of GO:SnSbS/Si thin films, Journal of Energy Storage, 2021, 33, 102116.
    [2]. T. K. Nguyen, S. Aberoumand, D. V. Dao, Advances in Si and SiC Materials for High-Performance Supercapacitors toward Integrated Energy Storage Systems, Small, 2021, 17, 2101775.
    [3]. Q. Tang, X. Chen, D. Zhou, C. Liu, Biomass-derived hierarchical porous carbon/silicon carbide composite for electrochemical supercapacitor, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 620, 126567.
    [4]. X. Zhu, G. Jiang, G. Wang, Y. Zhu, W. Cheng, S. Zeng, J. Zhou, G. Xu, D. Zhao, Cellulose-based functional gels and applications in flexible supercapacitors, 2023, 2, 177-188.
    [5]. X. Yin, H. Li, L. Han, R. Yuan, J. Lu, NiCo2O4 nanosheets sheathed SiC@CNTs core-shell nanowires for high-performance flexible hybrid supercapacitors, Journal of Colloid and Interface Science, 2020, 577, 481-493.
    [6]. M. Weng, J. Zhou, Y. Ye, H. Qiu, P. Zhou, Z. Luo, Q. Guo, Self-chargeable supercapacitor made with MXene-bacterial cellulose nanofiber composite for wearable devices, Journal of Colloid and Interface Science, 2023, 647, 277-286.
    [7]. V. Kamboj, A. Arya, S. Tanwar, V. Kumar, A. L. Sharma, Nanofiller-assisted Na+-conducting polymer nanocomposite for ultracapacitor: structural, dielectric and electrochemical properties, Journal of Materials Science, 2021, 56, 6167-6187.
    [8]. J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: Properties and applications, Journal of Energy Storage, 2018, 17, 224-227.
    [9]. B. Xu, H. Zhang, H. Mei, D. Sun, Recent progress in metal-organic framework-based supercapacitor electrode materials, Coordination Chemistry Reviews, 2020, 420, 213438.
    [10]. Y. W. Cheng , R. K. Pandey , Y. C. Li , C. H. Chen , B. L. Peng , J. H. Huang , Y. X. Chen , C. P. Liu, Conducting nitrogen-incorporated ultrananocrystalline diamond coating for highly structural stable anode materials in lithium ion battery, Nano Energy, 2020, 74, 104811.
    [11]. B. Tao, H. Zheng, L. Feng, J. Li, F. Miao, ZnCoMo nanorods modified with MoS2 nanosheets for supercapacitors and hydrogen evolution reaction, Vacuum, 2023, 215, 112259.
    [12]. R. Mendoza-Jiménez, J. Oliva, A.I. Mtz-Enriquez, N.O. Etafo, V. Rodriguez-Gonzalez, Enhancement of capacitance and widening of the operating voltage window of flexible supercapacitors by adding Li2TiO3/BN on their electrodes, Ceramics International, 2023, 49, 20980-20988.
    [13]. C. K. Maity, S. De, S. Acharya, S. H. Siddiki, S. Sahoo, K. Verma, V. K. Thakur, G. C. Nayak, Copper oxide stabilized oxy-functionalized boron nitride carbon nanotube nanohybrid: An ultra-stable electrode for flexible asymmetric supercapacitor device in ionic electrolyte, Journal of Energy Storage, 2022, 56, 105928.
    [14]. X. Li, H. Chen, C. Wang, C. Chen, M. Jiang, X. Hu, Improvement of adhesion under the scratching condition for diamond film on the steel by adding a precarbonization process, Diamond & Related Materials, 2023, 136, 109927.
    [15]. Y. Zhao, F. Yan, X. Liu, Thermal transport characteristics of diamond under stress, Diamond & Related Materials, 2023, 136, 110016.
    [16]. K. Date, H. Bhatkar, S. Jejurikar, T. Sant, Investigation for conductance behavior of single walled carbon nanotubes decorated with UNCD and graphitic spherules using STM/STS, Applied Surface Science Advances, 2021, 5, 100107.
    [17]. Y.C. Lin, K.J. Sankaran, Y.C. Chen, C.Y. Lee, H.C. Chen, I.N. Lin, N.H. Tai, Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature, Diamond & Related Materials, 2011, 20, 191-195.
    [18]. N. Yang, S. Yu, J. V. Macpherson, Y. Einaga, H. Zhao, G. Zhao, G. M. Swain, X. Jiang, Conductive diamond: synthesis, properties, and electrochemical applications, Chem. Soc. Rev., 2019, 48, 157.
    [19]. C. Xiao, F. C. Hsia, A. Sutton-Cook, B. Weber, S. Franklin, Polishing of polycrystalline diamond using synergies between chemical and mechanical inputs: A review of mechanisms and processes, Carbon, 2022, 196, 29-48.
    [20]. X. Jiang, G. Wu, S. Guan, Y. Mao, Z. Yang, X. Long, L. Zhao, Q. Qi , Z. Tan, A novel low-rotation-speed dynamic friction polishing of diamond, Diamond & Related Materials, 2023, 136, 109932.
    [21]. X. Hao, B. Liu, Y. Li, J. Zhao, S. Zhang, D. Wen, K. Liu, B. Dai, J. Han, J. Zhu, Diamond single crystal-polycrystalline hybrid microchannel heat sink strategy for directional heat dissipation of hot spots in power devices, Diamond & Related Materials, 2023. 135, 109858.
    [22]. H. Li, S. Prinz, Y. Liu, P. Mattfeld, A. J.Shih, Experimentandsmoothparticlehydrodynamicmodelingofsingle-graindiamondscribingofsiliconcarbidefiberreinforcedsiliconcarbide(SiCf/SiC), CIRP Annals, 2023.
    [23]. K. H. Yang, P. Joshi, K. B. Rodenhausen, A. V. Sumant, S. A. Skoog, R. J. Narayan, Correlation of zeta potential and contact angle of oxygen and fluorine terminated nitrogen incorporated ultrananocrystalline diamond (N-UNCD) thin films, Materials Letters, 2021, 295, 129823.
    [24]. K.J. Sankaran, P.T. Joseph, N.H. Tai, I.N. Lin, High dose N ion implantation effects on surface treated UNCD films, Diamond & Related Materials, 2010, 19, 927-931.
    [25]. Y. F. Tzeng, Y. C. Lee, C. Y. Lee, H. T. Chiu, I. N. Lin, Electron field emission properties on UNCD coated Si-nanowires, Diamond & Related Materials, 2008, 17, 753-757.
    [26]. N. Yang, J. S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: A review, Carbon, 2016, 99, 90-110.
    [27]. P. Mou, J. Zhao, G. Wang, S. Shi, G. Wan, M. Zhou, Z. Deng, S. Teng, G. Wang, BCN nanosheets derived from coconut shells with outstanding microwave absorption and thermal conductive properties, Chemical Engineering Journal, 2022, 437, 135285.
    [28]. S. Najib, E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review, Nanoscale Adv., 2019,1, 2817-2827.
    [29]. N. I. Talalah Ramli, S. A. Rashid, M. S. Mamat, Y. Sulaiman, S. A. Zobir, S. Krishnan, Incorporation of Zinc Oxide into Carbon nanotube/Graphite nanofiber as high performance supercapacitor electrode, Electrochimica Acta, 2017, 228, 259-267.
    [30]. K. C. Pham, D. S. McPhail, A. T. S. Wee, D. H. C. Chua, Amorphous molybdenum sulfide on graphene–carbon nanotube hybrids as supercapacitor electrode materials, RSC Adv., 2017, 7, 6856.
    [31]. Y. Zhou, X. C. Hu, S. Guo, C. Yu, S. Zhong, X. Liu, Multi-functional graphene/carbon nanotube aerogels for its applications in supercapacitor and direct methanol fuel cell, Electrochimica Acta, 2018, 264, 12-19.
    [32]. S. Dhibar, A. Roy, S. Malik, Nanocomposites of polypyrrole/graphene nanoplatelets/single walled carbon nanotubes for flexible solid-state symmetric supercapacitor, European Polymer Journal, 2019, 120, 109203.
    [33]. Y. Y. Zhang, Q. X. Pei, Z. D. Sha, Y. W. Zhang, A molecular dynamics study of the mechanical properties of h-BCN monolayer using a modified Tersoff interatomic potential, Physics Letters A, 2019, 383, 2821-2827.
    [34]. S. Xu, X. Ma, H. Wen, G. Tang, C. Li, Effect of annealing on the mechanical and scratch properties of BCNfilms obtained by magnetron sputtering deposition, Applied Surface Science, 2014, 313, 823-827.
    [35]. A.K.M. Pinto, J.M. Pontes, Matheus J.S. Matos, Mario S.C. Mazzoni, S. Azevedo, B-C-N diamondol-like compounds: Stability trends and electronic properties, Computational Materials Science, 2022, 215, 111737.
    [36]. H. Garg, S. Patial, P. Raizada, V. H. Nguyen, S. Y. Kim, Q. V. Le, T. Ahamad, S. M. Alshehri, C. M. Hussain, T. T. H. Nguyen, P. Singh, Hexagonal-borocarbonitride (h-BCN) based heterostructure photocatalyst for energy and environmental applications: A review, Chemosphere, 2023, 313, 137610.
    [37]. M. Doğan, A. Selek, O. Turhan, B. K. Kızılduman, Z. Bicil, Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage, Fuel, 2021, 303, 121335.
    [38]. R. Paul, A. K. Roy, BN-codoped CNT based nanoporous brushes for all-solid-state flexible supercapacitors at elevated temperatures, Electrochimica Acta, 2021, 365, 137345.
    [39]. I. M. Patil, S. Kapse, H. Parse, R. Thapa, G. Andersson, B. Kakade, 2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode Material for supercapacitor, Journal of Power Sources, 2020, 479, 229092.
    [40]. S. Chen, H. Yang, Q. Chen, L. Liu, X. Hou, L. Luo, C. Lin, C. Li, Y. Chen, Synthesis of BCN nanoribbons from coconut shells using as high-performance anode materials for lithium-ion batteries, Electrochimica Acta, 2020, 346, 136239.
    [41]. W.H. Lee, H.N. Yang, K.W. Park, B.S. Choi, S.C. Yi, W.J. Kim, Synergistic effect of boron/nitrogen co-doping into graphene and intercalation of carbon black for Pt-BCN-Gr/CB hybrid catalyst on cell performance of polymer electrolyte membrane fuel cell, Energy, 2016, 96, 314-324.
    [42]. X. Wang, F. Liang, H. Gu, S. Wu, Y. Cao, G. Lv, H. Zhang, Q. Jia, S. Zhang, In situ synthesized a-Fe2O3/BCN heterojunction for promoting, photocatalytic CO2 reduction performance, Journal of Colloid and Interface Science, 2022, 621, 311-320.
    [43]. Y. Zhu, X. Wang, P. Wang, J. Zhu, Y. He, X. Jia, F. Chang, H. Wang, G. Hu, Two-dimensional BCN nanosheets self-assembled with hematite nanocrystals for sensitively detecting trace toxic Pb(II) ions in natural water, Ecotoxicology and Environmental Safety, 2021, 225, 112745.
    [44]. Y. Zhang, H. He, B. Huang, S. Wang, X. He, Enhanced thermal conductivity of polyvinyl alcohol insulation composites with m-BN@CNW hybrid materials, Composites Science and Technology, 2021, 208, 108766.
    [45]. H. Huang, X. Huang, Y. Xie, Y. Tian, X. Jiang, X. Zhang, Fabrication of h-BN-rGO@PDA nanohybrids for composite coatings with enhanced anticorrosion performance, Progress in Organic Coatings, 2019, 130, 124-131.
    [46]. S. S. Karim, A. Sudais, M. S. Shah, S. Farrukh, S. Ali, M. Ahmed, Z. Salahuddin, X. Fan, A contemplating review on different synthesis methods of 2D-Molybdenum disulfide (MoS2) nanosheets, Fuel, 2023, 351, 128923.
    [47]. M. Mohan, N. P. Shetti, T. M. Aminabhavi, Phase dependent performance of MoS2 for supercapacitor applications, Journal of Energy Storage, 2023, 58, 106321.
    [48]. R. Mathew, J. Ajayan, Material processing, performance and reliability of MoS2 field effect transistor (FET) technology- A critical review, Materials Science in Semiconductor Processing, 2023, 160, 107397.
    [49]. Z. Meng, J. Fan, A. Chen, X. Xie, Functionalized MoS2 catalysts for CO2 capture and conversion: a review, Materials Today Chemistry, 2023, 29, 101449.
    [50]. U. Krishnan, M. Kaur, K. Singh, M. Kumar, A. Kumar, A synoptic review of MoS2: Synthesis to applications, Superlattices and Microstructures, 2019, 128, 274-297.
    [51]. X. Zhu, G. Jiang, G. Wang, Y. Zhu, W. Cheng, S. Zeng, J. Zhou, G. Xu, D. Zhao, Cellulose-based functional gels and applications in flexible supercapacitors, Resources Chemicals and Materials, 2023, 2, 177-188.
    [52]. Y. Zhang, F. Wan, S. Huang, S. Wang, Z. Niu, J. Chen, A chemically self-charging aqueous zinc-ion battery, Nature Communications, 2020, 11, 2199.
    [53]. K. K. Patel, T. Singhal, V. Pandey, T.P. Sumangala, M. S. Sreekanth, Evolution and recent developments of high performance electrode material for supercapacitors: A review, Journal of Energy Storage, 2021, 44, 103366.
    [54]. S. C. Abbas, C. Lin, Z. Hua, Q. Deng, H. Huang, Y. Ni, S. Cao, X. Ma, Bamboo-derived carbon material inherently doped with SiC and nitrogen for flexible supercapacitors, Chemical Engineering Journal, 2022, 433, 133738.
    [55]. I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications, Renewable and Sustainable Energy Reviews, 2009, 13, 1513-1522.
    [56]. M. Mirzaeian, Q. Abbas, A. Ogwu, P. Hall, M. Goldin, M. Mirzaeian, H. F. Jirandehi, Electrode and electrolyte materials for electrochemical capacitors, International Journal of Hydrogen Energy, 2017, 42, 25565-25587.
    [57]. X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy, 2015, 137, 511-536.
    [58]. X. Zhao, H. Chen, F. Kong, Y. Zhang, S. Wang, S. Liu, L. A. Lucia, P. Fatehi, H. Pang, Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review, Chemical Engineering Journal, 2019, 364, 226-243.
    [59]. D. Yu, Y. Ma, M. Chen, X. Dong, KOH activation of wax gourd-derived carbon materials with high porosity and heteroatom content for aqueous or all-solid-state supercapacitors, Journal of Colloid and Interface Science, 2019, 537, 569-578.
    [60]. N. Wang, C. Wang, L. He, Y. Wang, W. Hu, S. Komarneni, Incomplete phase separation strategy to synthesize P/N co-doped porous carbon with interconnected structure for asymmetric supercapacitors with ultra-high power density, Electrochimica Acta, 2019, 298, 717-725.
    [61]. G. Wang, S. Oswald, M. Loffler, K. Mullen, X. Feng, Beyond Activated Carbon: Graphite-Cathode-Derived Li-Ion Pseudocapacitors with High Energy and High Power Densities, Adv. Mater., 2019, 31, 1807712.
    [62]. Y. Wang, A. D. Pasquier, D. Li, P. Atanassova, S. Sawrey, M. Oljaca, Electrochemical double layer capacitors containing carbon black additives for improved capacitance and cycle life, Carbon, 2018, 133, 1-5.
    [63]. Q. Abbas, R. Raza, I. Shabbir, A.G. Olabi, Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review, Journal of Science: Advanced Materials and Devices, 2019, 4, 341-352.
    [64]. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, J. L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, J. Chem. Educ., 2018, 95, 197-206.
    [65]. P. S. Chauhan, R. Sengupta, S. Kumar, V. Panwar, S. Sahoo, S. Bose, A. Misra, Role of graded microstructure and electrolyte distribution in electrochemical capacitance of compressible three-dimensional carbon nanotubes-polymer foam based supercapacitor, Electrochimica Acta, 2023, 461, 142595.
    [66]. A. M. Antony, V. Kandathil, M. Kempasiddaiah, B. S. Sasidhar, S. A. Patil, S. A. Patil1, Hexagonal Boron Nitride Supported N‑Heterocyclic Carbene-Palladium(II): A New, Efficient and Recyclable Heterogeneous Catalyst for Suzuki-Miyaura Cross-Coupling Reaction, Catalysis Letters, 2021, 151, 1293-1308.
    [67]. H. Xiong, X. He, T. Lou, X. Bai, Synthesis and characterization of new CNT-loaded CeO2 nanoparticles for antibacterial applications, Biochemical Engineering Journal, 2023, 195, 108931.
    [68]. P. Giusto, D. Cruz, T. Heil, N. Tarakina, M. Patrini, M. Antonietti, Chemical Vapor Deposition of Highly Conjugated, Transparent Boron Carbon Nitride Thin Films, Adv. Sci., 2021, 8, 2101602.
    [69]. A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Communications, 2007, 143, 47-57.
    [70]. T. Zhang, J. Zhang, G. Wen, B. Zhong, L. Xia, X. Huang, H. Zhao, H. Wang, L. Qin, Ultra-light h-BCN architectures derived from new organic monomers with tunable electromagnetic wave absorption, Carbon, 2018, 136, 345-358.
    [71]. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, Anchal Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, P. M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains, Nature Materials, 2010, 9, 430-435.
    [72]. Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode, Adv. Energy Mater., 2017, 7, 1701336.
    [73]. A. Bashir, M. Maqbool, R. Lv, A. Usman, W. Aftab, H. Niu, L. Kang, S. L. Bai, Engineering of Interfacial Interactions Among BN And CNT Hybrid Towards Higher Heat Conduction Within TPU Composites, Composites: Part A, 2023, 167, 107428.
    [74]. G. J. H. Melvin, Q. Q. Ni, Y. Suzuki, T. Natsuki, Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites, J Mater Sci., 2014, 49, 5199-5207.
    [75]. Y. Wang, F. Gu, L. Cao, L. Fan, T. Hou, Q. Zhu, Y. Wu, S. Xiong, TiCN MXene hybrid BCN nanotubes with trace level Co as an efficient ORR electrocatalyst for Zn-air batteries, International Journal of Hydrogen Energy, 2022, 47, 20894-20904.
    [76]. Y. Min, X. Zhou, J. J. Chen, W. Chen, F. Zhou, Z. Wang, J. Yang, C. Xiong, Y. Wang, F. Li, H. Q. Yu, Y. Wu, Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design, Nat. Commun., 2021, 12, 303.
    [77]. M. A. R. Anjum, M. H. Lee, J. S. Lee, Boron and Nitrogen Co-doped Molybdenum Carbide Nanoparticles Imbedded in BCN Network as a Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution Reactions, ACS Appl. Nano Mater., 2021, 4, 8897-8905.
    [78]. T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao, F. Gao, All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials, Scientific Reports, 2016, 6, 23289.
    [79]. S. A. Pande, B. Pandit, B. R. Sankapal, Electrochemical approach of chemically synthesized HgS nanoparticles as supercapacitor electrode, Materials Letters, 2017, 209, 97-101.
    [80]. J. L. Hong, J. H. Liu, X. Xiong, S. Y. Qin, X. Y. Xu, X. Meng, K. Gu, J. Tang, D. Z. Chen, Temperature-dependent pseudocapacitive behaviors of polyaniline-based all-solid-state fiber supercapacitors, Electrochemistry Communications, 2023, 148, 107456.
    [81]. B. Pandit, A. Agarwal, P. Patel, B. R. Sankapal, Electrochemical kinetics of cerium selenide nano-pebbles: Design of device grade symmetric configured wide-potential flexible solid-state supercapacitor, Nanoscale Adv., 2021, 3, 1057-1066.
    [82]. Y. Zheng, S. Lu, W. Xu, G. He, Y. Cheng, T. Yu, Y. Zhang, The fabrication of graphene/polydopamine/nickel foam composite material with excellent electrochemical performance as supercapacitor electrode, Journal of Solid State Chemistry, 2018, 258, 401-409.
    [83]. W. C. Ke, C. Y. Chiang, T. G. Kim, Y. C. Lin, C. Y. Liao, K. J. Chang, J. C. Lin, Nitrogen doped ultrananocrystalline diamond conductive layer grown on InGaN-based light-emitting diodes using nanopattern enhanced nucleation, Applied Surface Science, 2021, 546, 149052.
    [84]. W. Zhang, L. Guan, B. Wang, H. Liu, J. Wang, X. Hong, J. Long, S. Wei, X. Xiong, Y. Xiong, Directly tuning the surface morphologies and electron pathway of graphite/diamond composite films for enhanced electron field emission, Journal of Alloys and Compounds, 2022, 928, 167243.
    [85]. Y. F. Tzeng, Y. C. Lee, C. Y. Lee, H. T. Chiu, I. N. Lin, Electron field emission properties on UNCD coated Si-nanowires, Diamond & Related Materials, 2008, 17, 753-757.
    [86]. H. Li, Y. Xiong, B. Wang, B. Yang, N. Huang, Y. Liu, J. Wen, Microstructural modification of diamond-graphite nanohybrid films via adjusting deposition temperatures for enhanced electron field emission, Diamond & Related Materials, 2018, 87, 228-232.
    [87]. S. Veeresh, H. Ganesha, Y.S. Nagaraju, H. Vijeth, H. Devendrappa, Activated carbon incorporated graphene oxide with SnO2 and TiO2-Zn nanocomposite for supercapacitor application, Journal of Alloys and Compounds, 2023, 952, 169907.
    [88]. Q. Lin, X. Dong, Y. Wang, N. Zheng, Y. Zhao, W. Xu, T. Ding, Molybdenum disulfide with enlarged interlayer spacing decorated on reduced graphene oxide for efficient electrocatalytic hydrogen evolution, J. Mater Sci., 2020, 55, 6637-6647.
    [89]. D. Jhankal, M. S. Khan, K.K. Jhankal, K. Sachdev, Charge storage kinetics of MoS2 flower decorated reduced graphene oxide for quasi solid-state symmetric supercapacitor, Journal of Physics and Chemistry of Solids, 2023, 173, 111117.
    [90]. R. Ramachandran, Y. Wang, S. Chandrasekaran, M. Li, A. Luo, Z. X. Xu, F. Wang, Construction of MoS2 intercalated Siloxene heterostructure for all-solid-state symmetric supercapacitors, Applied Materials Today, 2022, 29, 101578.
    [91]. A. Patel, M. Gyanprakash, C. K. Rastogi, Enhancement of supercapacitor activity of MoS2 electrocatalyst via incorporation of copper interlayer, Materials Today: Proceedings, 2023, 79, 214-218.
    [92]. P. Kumar, S. Sharma, S. Jabeen, K. S. Samra, Hybrid microwave annealing assisted synthesis of MoS2-RGO nanostructures: Optimization and characterization for application in supercapacitors, Electrochimica Acta, 2022, 426, 140738.
    [93]. J. Devarajan, P. Arumugam, G. Govindasamy, Synthesis of B-C-N nanotubes by CVD method and their electrochemical performance towards supercapacitors, Materials Today: Proceedings, 2023, Available online 20 January.
    [94]. A. K. Thakur, M.Majumder, R. B. Choudhary, S. B. Singh, MoS2 flakes integrated with boron and nitrogen-doped carbon: Striking gravimetric and volumetric capacitive performance for supercapacitor applications, Journal of Power Sources, 2018, 402, 163-173.
    [95]. M. Hassan, M.A. Gondal, E. Cevik, T.F. Qahtan, A. Bozkurt, M.A. Dastageer, High performance pliable supercapacitor fabricated using activated carbon nanospheres intercalated into boron nitride nanoplates by pulsed laser ablation technique, Arabian Journal of Chemistry, 2020, 13, 6696-6707.
    [96]. X. Peng, W. Yuan, J. Zou, B. Wang, W. Hu, Y. Xiong, Nitrogen-incorporated ultrananocrystalline diamond/multilayer graphene composite carbon films: Synthesis and electrochemical performances, Electrochimica Acta, 2017, 257, 504-509.

    無法下載圖示 全文公開日期 2025/08/15 (校內網路)
    全文公開日期 2025/08/15 (校外網路)
    全文公開日期 2025/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE