簡易檢索 / 詳目顯示

研究生: 洪任宇
Jen-Yu Hung
論文名稱: 利用紫外線/過氧化氫程序處理水溶液中Amoxicillin及Bisphenol A反應行為及生物活性之研究
Reaction Behaviors and Biological Function of Amoxicillin and Bisphenol A in Aqueous Solution Treated by UV/H2O2 Process
指導教授: 顧 洋
Young Ku
口試委員: 申永順
Yung-Shuen Shen
蔣本基
Pen-Chi Chiang
劉志成
Jhy-Chern Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 127
中文關鍵詞: Amoxicillin雙酚A過氧化氫肺纖維母細胞細胞生物活性
外文關鍵詞: MRC5, MTT activity, UV/H2O2
相關次數: 點閱:363下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用紫外線/過氧化氫程序處理中低濃度雙酚A和Amoxicillin,分別探討溶液pH值、過氧化氫添加量、雙酚A和Amoxicillin初始濃度、紫外線光強度對反應物去除、中間產物生成之影響,並透過人類肺纖維母細胞株MRC5來測試經過紫外光/過氧化氫程序處理後對人體細胞功能之影響。
    本研究之實驗結過顯示,雙酚A隨著pH 增加去除效率隨之下降,故本研究針對過氧化氫添加量、雙酚A和Amoxicillin初始濃度及紫外線光強度於pH 5之下行。研究指出,針對過雙酚A和Amoxicillin去除效率隨著過氧化氫量和光強度增加而增加,但針對固定過氧化氫下處理不同初始濃度雙酚A和Amoxicillin增加而減少。本研究透過質量平衡針對中間產物和CO2、SO42-之生成進行計算探討。
    利用人類肺纖維細胞母細胞存活率來測試不同操作條件下細胞存活率之影響。研究指出過量過氧化氫抑制細胞成長並降低細胞增長速率。針對細胞存活率利用紫外光/過氧化氫處理過量BPA和Amoxicillin濃度,研究中發現處理過量初始濃度汙染物抑制細胞增長。針對不同光強度下處理汙染物探討細胞存活率,細胞增生速率隨著光強度增加而增加。於不同pH值之下利用紫外線/過氧化氫處理BPA對細胞存活率進行探討;研究中指出於高pH值之下細胞增生速率隨之下降。藉由肺纖維母細胞來測試經紫外線/過氧化氫程序降解之amoxicillin和BPA之廢液其生物活性研究發現,對於細胞並無明顯抑制效應。


    Decomposition of amoxicillin and bisphenol A in aqueous solution by UV/H2O2 process was studied under various solution pH, H2O2 dosage, initial concentration of amoxicillin and BPA, and light intensities to investigate the removal efficiencies of reactants and intermediates. MRC5 cells were used in MTT assay to assess the decomposition of reactants by UV/H2O2 process under the effect of solution pH values, H2O2 dosage, initial concentration of reactant, and light intensities.
    Experiments were carried out at pH 5 in this study. Results showed that the decomposition of BPA and amoxicillin increased with increasing H2O2 dosage and light intensities. Decomposition of amoxicillin and BPA decreased with increased initial concentration of reactants. Mass balances for carbon and sulfur elements were calculated to discuss reaction behaviors for formation of intermediate, CO2 and SO42-.
    MTT activity of MRC5 cells was conducted to determine the effect of different operating the conditions on the decomposition of reactant. Results indicated that excess of H2O2 would inhibit MRC5 cell activity. Decomposition of BPA and amoxicillin by UV/H2O2 processes with excess of initial reactant exhibited similar result. MTT activity of MRC5 cells increased with increasing light intensities. Increasing solution pH led to the decrease in MTT activity of MRC5 cells. In conclusion, MTT activity used to determine the cytotoxicity of amoxicillin and BPA wastewaters treated by UV and UV/H2O2 process indicated no significantly inhibitive effect on MRC5 cells in this study.

    Table of Contents English Abstract I Chinese Abstract II Acknowledgment III Table of Contents IV List of Figures VII List of Tables XIII List of Symbols XV Chapter 1 Introduction 1 Chapter 2 Literature Reviews 3 2.1 Endocrine Disrupting Chemicals (EDCs) and Pharmaceutical and Personal Care Products (PPCPs) 3 2.1.1 Properties of Amoxicillin 5 2.1.2 Properties of Bisphenol A 7 2.1.3 Decomposition of EDCs and PPCPs 8 2.2 Priciple and Mechanism of UV/H2O2 Process 22 2.3 Influences of Operating Factors on UV/H2O2 Process 26 2.3.1 Effect of Initial Concentration of H2O2 26 2.3.2 Effect of Initial Concentration of Pollutants 27 2.3.3 Effect of Light Intensity 27 2.3.3 Effect of solution pH 28 2.4 Biological Function 30 2.4.1 MTT assay 30 Chapter 3 Experimental 33 3.1 Chemicals 33 3.2 Experimental Instruments 35 3.3 Apparatus 36 3.4 Experimental Procedure 38 3.4.1 Experimental Framework 38 3.4.2 Quantity of H2O2 39 3.4.3 Analytic Methods 41 Chapter 4 Result and Discussion 51 4.1 Preliminary Experiments 52 4.1.1 Stability of H2O2, Amoxicillin and Bisphenol A 52 4.1.2 Photolysis of H2O2, Amoxicillin and Bisphenol A 54 4.1.3 Elemental Mass Balance of Carbon and Sulfur 57 4.1.4 Background for Biological Function of Amoxicillin and BPA in Aqueous Solution Treated by UV/H2O2 Process 59 4.1.5 Measurement of Light Intensity 61 4.2 Decomposition of Amoxicillin by UV/H2O2 Process in Aqueous Solution 62 4.2.1 Effect of Initial Concentration of H2O2 62 4.2.2 Effect of Initial Concentration of Amoxicillin 71 4.2.3 Effect of Light Intensity 79 4.3 Decomposition of Bisphenol A by UV/H2O2 Process in Aqueous Solution 88 4.3.1 Effect of Solution pH 88 4.3.2 Effect of Initial H2O2 Concentration 95 4.3.3 Effect of Initial BPA Concentration 104 4.3.4 Effect of Light Intensity 110 Chapter 5 Conclusions and Recommendations 115 Reference 117 Vita 127

    Adams, C., Y. Wang, K. Loftin and M. Meyer, “Removal of Antibiotics from Surface and Distilled Water in Conventional Water Treatment Processes,” J. Environ. Eng, Vol. 128, pp. 253-260 (2002).
    Aleboyeh, A., Y. Moussa and H. Aleboyeh, “The Effect of Operational Parameters on Decolourisation of Acid Blue 74,” Dyes. Pigm, Vol. 66, pp. 129-134 (2005).
    Andreozzi, R., R. Marotta, G. Pinto and A. Pollio, “Carbamazepine in Water: Persistence in the Environment, Ozonation Treatment and Preliminary Assessment on Algal Toxicity,” Water Res, Vol. 36, pp. 2869-8877 (2002).
    Andreozzi, R., V. Caprio, R. Marotta and D. Vogna, “Paracetamol Oxidation from Aqueous Solution by Ozonation and H2O2/UV System,” Water Res, Vol. 37, pp. 993-1004 (2003).
    Andreozzi, R., V. Caprio, R. Marotta and A. Radovnikovic, “Ozonation and H2O2/UV Treatment of Clofibric Acid in Water: A Kinetic Investigation,” J. Hazard. Mater., Vol. 103, pp. 233-246 (2003).
    Andreozzi, R., M. Canterino, R. Marotta and N. Paxeus, “Antibiotic Removal from Wastewaters,” J. Hazard. Mater., Vol. 122, pp. 243-250 (2005).
    Boyd, G. R., H. Reemtsma, D. A. Grimm and S. Mitra, “Pharmaceuticals and Personal Care Products (PPCPs) in Surface and Treated Waters of Louisiana, USA and Ontario, Canda,” Sci. Total Environ., Vol. 311, pp. 135-149 (2003).
    Carballa, M., F. Omil, J. M. Lema, M. Llompart, C. Garcia-Jares, I. Rodriguez, M. Gomez and T. Ternes, “Behavior of Pharmaceuticals, Cosmetics and Hormones in a Sewage Treatment Plant,” Water Res. Vol. 38, pp. 2918-2926 (2004).
    Carballa, M., G. Manterola, L. Larrea, T. Ternes, F. Omil and J. M. Lema, “Influence of Ozone Pre-Treatment on Sludge Anaerobic Digestion: Removal of Pharmaceutical and Personal Care Products,” Chemosphere, Vol. 67, pp. 1444-1452 (2007).
    Chen, P. J., K. G. Linden, D. E. Hinton, S. Kashiwada, E. J. Rosenfeldt and S. W. Kullman, “Biolgical Assessment of Bisphenol A Degradation in Water Following Direct Photolysis and UV Advanced Oxidation,” Chemosphere, Vol. 65, pp. 1094-1102 (2006).
    Chen, P. J., E. J. Rosenfeldt, S. W. Kullman, D. E. Hinton and K. G. Linden, “Biological Assessments of a Mixture of Endocrine Disruptors at Environmentally Relavant Concentrations in Water Following UV/H2O2 Oxidation,” Sci. Total Environ., Vol. 376, pp 18-26 (2007).
    Coleman, H. M., B. R. Eggins, J. A. Byrne, F. L. Palmer and E. King, “Photocatalytic Degradation of 17- oestradiol on Immobilised TiO2,” Appl. Catal. B, Vol. 24, pp. L1-L5 (2000).
    Coleman, H. M., E. J. Routledge, J. P. Sumpter, B. R. Eggins and J. A. Byrne, “Rapid Loss of Estrogenicity of Steroid Estrogens by UVA Photolysis and Photocatalysis over an Immobilised Titanium Dioxide Catalyst,” Water Res, Vol. 38, pp. 3233-3240 (2004)
    Coleman, H. M., M. I. Abdullah, B. R. Eggins and F. L. Palmer, “Photocatalytic Degradation of 17- oestradiol, Oestriol and Fluorescence Spectroscopy,” Appl. Catal. B, Vol. 55, pp. 23-30 (2005).
    Cui, Y. H., X. Y. Li and G. Chen, “Electrochemical Degradation of Bisphenol A on Different Anodes,” Water Res., Vol. 43, pp. 1968-1976 (2009).
    Daughton, C. D. and T. A. Ternes, “Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change?” Environ. Health Perspect., Vol. 107, pp. 907-942 (1999).
    Danta, R. F., M. Canterino, R. Marotta, C. Sans, S. Esplugas and R. Andreozzi, “Bezafibrate Removal by Means of Ozonation: Primary intermediates, Kinetics and Toxicity Assessment,” Water Res, Vol. 41, pp. 2525-2532 (2007).
    Elmolla, E. S. and M. Chaudhuri, “Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution by the UV/ZnO Photocatalytic Process,” J. Hazard. Mater., Vol. 173, pp. 445-449 (2010).
    Elmolla, E. S. and M. Chaudhuri, “Optimization of Fenton Process for Treatment of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution,” J. Hazard. Mater., Vol. 170, pp. 666-672 (2009).
    Elmolla, E. S. and M. Chaudhuri, “Photocatalytic Degradation of Amoxicillin, Ampicillin and Cloxacillin Antibiotics in Aqueous Solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis,” Desalination, Vol. 252, pp. 46-52 (2010).
    Esplugas, S., D.M. Bila, L.G.T. Krause and M. Dezotti, "Ozonation and Advanced Oxidation Technologies to Remove Endocrine Disrupting Chemicals (EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) in Water Effluents," J. Hazard. Mater., Vol. 149, pp. 631-642 (2007).
    Feng, X., S. Ding, J. Tu, F. Wu and N. Deng, “Degradation of Estrone in Aqueous Solution by Photo-Fenton System,” Sci. Total Environ., Vol. 345, pp.229-237 (2005).
    Fujihira, M., Y. Satoh and T. Osa, “Heterogeneous Photocatalytic Reaction on Semiconductor Material: III. Effect of pH and Cu2+ Ions on the Photo-Fenton Type Reaction,” Bull Chem. Soc. Jpn., Vol. 55, pp 666 (1982)
    Hartig, C., M. Ernst and M. Jekel, “Membrane Filtration of Two Sulphonamides in Tertiary Effluents and Subsequent Adsorption on Activated Carbon,” Water Res., Vol. 35, pp 3998-4003 (2001).
    Heberer, T., “Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data,” Toxicol. Lett., Vol. 131, pp. 5-17 (2002).
    Hone, H. J. and P. Schulte, “Evaluation of the H2O2/UV Process for the Oxidation of Hazardous Waste Media in Industrial Effluents and Process,” paper presented at ACS Sym. Atlanta, Georgia (1991).
    Ho, P. C., “Photooxidation of 2, 4-dinitrotoluene in Aqueous Solution in the Presence of Hydrogen Peroxide,” Environ. Sci. Technol., Vol. 20, pp. 260 (1986).
    Hsiao, I. L., and Y. J. Huang, “Effects of Various Physicochemical Characteristics on the Toxicities of ZnO and TiO2 Nanoparticles toward Human Lung Epithelial Cells,” Sci. Total. Environ, Vol. 409, pp. 1219-1228 (2011).
    Hua, W., E. R. Bennett and R. J. Letcher, “Ozone Treatment and the Depletion of Detectable Pharmaceuticals and Atrazine Herbicide in Drinking Water Sourced from the Upper Dectroit River, Ontarioo, Canada,” Water Res, Vol. 40, pp. 2259-2266 (2006).
    Irmak, S., O. Erbatur and A. Akgerman, “Degradation of 17- estradiol and Bisphenol A in Aqueous Medium by using Ozone and Ozone/UV Techniques,” J. Hazard. Mater., Vol. 126, pp. 54-62 (2005).
    Kafi, M. A., T. H. Kim, J. H. An and J. W. Choi, “Electrochemical Cell-based Chip for the Detection of Toxic Effects of Bisphenol-A on Neuroblastoma Cells,” Biosens. Bioelectron, Vol. 26, pp. 3371-3375 (2011).
    Khan, S. J. and J. E. Ongert, “Estimation of Pharmaceutical Residues in Primary and Secondary Sewage Sludge based on Quantities of Use and Fugacity Modeling,” Water Sci. Technol. Vol. 46, pp. 105-113 (2002).
    Klavarioti, M., D. Mantzavinos and D. Kassinos, “Removal of Residual Pharmaceuticals from Aqueous System by Advanced Oxidation Process,” Environ. Int, Vol. 35, pp. 402-417 (2009).
    Kochany, J. and J. R. Bolton, “Mechanism of Photodegradation of Aqueous Organics Pollutant 2 Measurement of the Primary Rate Constant for Reaction of OH.Radicals with Benzene and Some Halobenzenes Using an EPR Spin-Tapping Method Following the Photolysis of H2O2,” Environ. Sci. Technol., Vol. 26, pp. 262 (1992)
    Ku, Y., L. S. Wang and Y. S. Shen, “Decomposition of EDTA in Aqueous Solution by UV/H2O2 Process,” J. Hazard. Mater., Vol. 60, pp. 41-45 (1998).
    Kuo, C. Y., C. H. Wu and H. Y. Lin, “Photocatalytic Degradation of Bisphenol A in a Visible Light/TiO2 System,” Desalination, Vol. 256, pp. 37-42 (2010).
    Ku, Y. and C. B. Hsieh “Photodecomposition of 2, 4-dichlorophenol in aqueous solution,” J. Chin. Environ, Engng., Vol. 2, pp. 255-260 (1992)
    Lister, A. L. and G. J. van der KraaK, “Endocrine Disruption: Why is it so complicated?” Water Qual. Res. J. Can. Vol. 36, pp. 175-190 (2001).
    Liu, B. and X. Liu, “Direct Photolysis of Estrogens in Aqueous Solutions,” Sci. Total Environ, Vol. 320, pp. 269-274 (2004).
    Li, W. Z., S. G. Lu, Z. F. Qiu and K. F. Lin, “Clofibric Acid Degradation in UV254/H2O2 Process: Effect of Temperature,” J. Hazard. Mater., Vol. 176, pp. 1051-1057 (2010).
    Maria, K., M. Dionissios and K. Despo, “Removal of Residual Pharmaceuticals from Aqueous System by Advanced Process,” Environ. Int, Vol. 35, pp. 402-417 (2009).
    Mavronikola, C., M. Demetriou, E. Hapeshi, D. Partassides, C. Michael, D. Mantzavinos and D. Kassinos, “Mineralisation of the Antibiotic Amoxicillin in Pure and Surface Waters by Artificial UVA- and Sunlight-induced Fenton Oxidation,” J. Chem. Technol. Biotechnol., Vol. 84, pp. 1212-1217 (2009).
    Maldonado, M. I., S. Malato, L. A. Perez-Estrada, W. Gernjak, I. Oller, X. Domenech and J. Peral, “Partial Degradation of Five Pesticides and An Industrial Pollutant by Ozonation in a Pilot-Plant Scale Reactor,” J. Hazard. Mater., Vol. 138, pp. 363-369 (2006).
    Mosmann, T., “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” J. Immunol. Meth., Vol. 65, pp 55-63 (1983).
    Nakashima, T., Y. Ohko, D. A. Tryk and A. Fujishima, “Decomposition of Endocrine-Disrupting Chemicals in Water by using of TiO2 Photocatalysts Immobilized on Polyterafluoroethylene Mesh Sheets,” J. Photochem. Photobiol. A, Vol. 151, pp. 207-212 (2002).
    Nakashima, T., Y. Ohko, Y. Kubota and A. Fujishima, “Photocatalytic Decomposition of Estrogens in Aquatic Environment by Reciprocating Immersion of TiO2-modified Polyterafrafluoroethylene Mesh Sheets,” J. Photochem. Photobiol. A, Vol. 160, pp. 115-120 (2003).
    Oh, B. S., H. Y. Jang, T. M. Hwang and J. W. Kang, “Role of Ozone for Reducing Fouling due to Pharmaceuticals in MF (microfiltration) Process,” J. Membr. Sci, Vol. 289, pp. 178-186 (2007).
    Parolini, M., B. Quinn, A. Binelli and A. Provini, “Cytotoxicity Assessment of Four Pharmaceutical Compounds on the Zebra Mussel (Dreissena Polymorpha) Haemocytes, Gill and Digestive Gland Primary Cell Cultures,” Chemosphere, Article in press (2011).
    Pardeshi, S. K. and A. B. Patil, “Solar Photocatalytic Degradation of Resorcinol a Model Endocrine Disrupter in Water using Zinc Oxide,” J. Hazard. Mater., Vol. 163, pp. 403-409 (2009)
    Pan, J. and Y. Chen, “Oxidative Degradation of Bisphenol A (BPA) by UV/H2O2 Process,” ICBBE, Vol. 5517101 (2010).
    Shen, Y. S., Y. Ku and K. C. Lee, “Decomposition of Chlorophenols in Aqueous Solution by UV/H2O2 Process,” Toxicol. Environ. Chem, Vol. 54, pp. 51-67 (1996).
    Segner, H., K. Caroll, M. Fenske, C. R. Janssen, G. Maack, D. Pascoe, C. Schafers, G. F. Vandenbergh, M. Watts and A. Wenzel, “Identification of Endocrine-Disrupting Effects in An Aquatic Vertebrates and Invertebrates: Report from the European IDEA Projects,” Ecotoxicol. Environ. Saf, Vol. 54, pp. 302-314 (2003).
    Shen, Y. S., Y. Ku and K. C. Lee, “The Effect of Light Absorbance on the Decomposition of Chlorophenols by Ultraviolet Radiation and UV/H2O2 Processes,” Water Res., Vol. 29, pp. 907-914 (1995).
    Shemer, H., Y. K. Kunukcu and K. G. Linden, “Degradation of the Pharmaceutical Metronidazole via UV, Fenton and photo-Fenton Process,” Chemosphere, Vol. 63, pp. 269-276 (2006).
    Staples, C. A., P. B. Dorn, G. M. Klecka, S. T. O’Block and L. R. Harris, “A Review of the Environmental Fate, Effects, and Exposures of Bisphenol A,” Chemosphere, Vol. 36, pp. 2149-2173 (1998).
    Ternes, T. A., M. Meisenheimer, D. McDowell, F. Sacher, H. J, Brauch, B. Haist-Gulde, G. Preuss, U. Wilme and N. Zulei-Seibert, “Removal of Pharmaceuticals During Drinking Water Treatment,” Environ. Sci. Techno., Vol. 36, pp. 3855-3863 (2002).
    Ternes, T. A., “Occurrence of Drugs in German Sewage Treatment Plants and Rivers,” Water Res., Vol. 32, pp. 3245-3260 (1998).
    Ternes, T. A., M. Meisenheimer, D. McDowell, F. Sacher, H. J, Brauch, B. Haist-Gulde, G. Preuss, U. Wilme and N. Zulei-Seibert, “Removal of Pharmaceuticals During Drinking Water Treatment,” Environ. Sci. Techno., Vol. 36, pp. 3855-3863 (2002).
    Torres-Palma, R. A., J. I. Nieto, E. Combet, C. Petrier and C. Pulgarin, “An Innovative Ultrasound, Fe2+ and TiO2 Photoassisted Process for Bisphenol A Mineralization,” Water Res, Vol. 44, pp. 2245-2252 (2010).
    Tsai, W. T., M. K. Lee, T. Y. Su and Y. M. Chang, “Photodegradation of Bisphenol A in a Batch TiO2 Suspension Reactor,” J. Hazard. Mater., Vol.168, pp. 269-275 (2009).
    Von Gunten, U. and J. Hoigne, “Bromate Formation during Ozonization of Bromide-Containing Waters: Interaction of Ozone and Hydroxyl Radical Reductions,” Environ. Sci. Techno., Vol. 28, pp. 1234-1242 (1994).
    Vogna, D., R. Marotta, R. Andreozzi, A. Napolitano and M. Ischia, “Kinetic and Chemical Assessment of the UV/H2O2 Treatment of Antiepileptic Drug Carbamazepine,” Chemosphere, Vol. 54, pp. 497-505 (2004).
    Vogna, D., R. Marotta, R. Andreozzi, A. Napolitano and M. d’Ischia, “Kinetic and Chemical Assessment of the UV/H2O2 Treatment of Antiepileptic Drug Carbamazepin,” Chemosphere, Vol. 54, pp. 497-505 (2004).
    Vogna, D., R. Marotta, A. Napolitano, R. Andreozzi and M. d’Ischia, “Advanced Oxidation of the Pharmaceutical Drug Diclofenac with UV/H2O2 and Ozone,” Water Res., Vol. 38, pp 414-442 (2004).
    Xu, X. R., S. X. Li, X. Y. Li, J. D. Gu, F. Chen, X. Z. Li and H. B. Li, “Degradation of n-butyl Benzyl Pathalate Using TiO2/UV,” J. Hazard. Mater., Vol. 164, pp. 527-532 (2009).
    Yang, F., C. Hu, X. Hu, J. Qu and M. Yang, “Degradation of Selected Pharmaceuticals in Aqueous Solution with UV and UV/H2O2,” Water Res., Vol. 43, pp 1766-1774 (2009).
    Ku, Y., L. S. Wang and Y. S. Shen, “Decomposition of EDTA in Aqueous solution by UV/H2O2 process,” J. Hazard. Mater., Vol. 60, pp. 41-55 (1998).
    Zwiener, C and H. Frimmel, “Oxidative Treatment of Pharmaceuticals in Water,” Water Res, Vol. 34, pp. 1881-1885 (2000).
    Zwiener, C. and F. H. Frimmel, “Oxidative Treatment of Pharmaceuticals in water,” Water Res., Vol. 34, pp 1881-1885 (2009).

    QR CODE