簡易檢索 / 詳目顯示

研究生: 楊君涵
Chun-Han Yang
論文名稱: 電解/臭氧程序處理雙酚A水溶液之研究
Mineralization of BPA in Aqueous Solution by Electrolysis/ozonation Process
指導教授: 顧洋
Young Ku
口試委員: 劉志成
none
蔣本基
none
曾迪華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 120
中文關鍵詞: 電解臭氧動力式協同效應
外文關鍵詞: Ozone, Electrolysis, Bisphenol A, Kinetic model, Synergy effect
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將電解及臭氧之程序結合用以處理BPA水溶液,並建立電解-臭氧程序在半批式反應器之動力學模式。利用電解-臭氧程序來礦化BPA,探討不同氣相臭氧進料濃度、電流密度、溶液pH及電解質濃度對協同效應發生的影響;且進一步與單獨臭氧程序作比較。由動力式推導結果與實驗結果了解,單獨只有臭氧雖然能夠完全分解BPA,但是無法有效去除水中總有機碳含量,其原因是臭氧氧化BPA產生之中間產物無法有效繼續被臭氧氧化,必須靠電解還原臭氧並進一步產生氫氧自由基來攻擊中間產物並完全礦化成二氧化碳及水。在初始反應時間,臭氧主要以攻擊BPA分子進一步分解為中間產物,當BPA被完全分解後,氧化反應進入第二階段,此時氫氧自由基產生主要以攻擊中間產為主。而由動力式推導結果來看,第一階段臭氧溶入溶液中隨即與有機物反應,在此階段的氧化反應是為質傳控制,當氧化反應進入下一階段,有機物氧化靠電解臭氧產生之氫氧自由基,故第二階段之氧化反應是為反應控制。由實驗結果得知,氫氧自由基的提升主要靠增加氣相臭氧進料濃度及電流密度而協同效應是隨著提升氣相臭氧進料濃度及電流密度而更明顯。


    Electrolysis as a process assisting in ozonation mineralization of BPA in aqueous solution was studied under various gaseous ozone concentrations, current densities, solution pH and sodium sulfate concentrations. The kinetic model of electrolysis/ozonation proceeding in a semi-batch reactor was developed. The electrolysis/ozonation process revealed significant synergy effect during the reaction of degradation BPA. The intermediate, ethylenephenol and 2-formylethanol derivative, generation from BPA decomposition was indicated that was hard reacting with dissolved ozone after reaction time of 12minutes, therefore, the synergy effect of electrolysis/ozonation process mainly enhanced the oxidation of intermediates which only reacted with hydroxyl radical. The kinetic reaction in this study had to divide to two stages and consider as second-order rather than pseudo-first-order reaction. .The mineralization efficiency of BPA by electrolysis/ozonation was linearly increased with increasing gaseous ozone concentration, current density and solution pH, and the operation of electrolyte concentration had no significant effectiveness for electrolysis/ozonation. Cathodic reduction of ozone for electrolysis/ozonation was the main pathway of hydroxyl radical, and the quantity of hydroxyl radical generation by cathodic reduction of ozone was far large than ozone self-decomposition in bulk solution.

    Table of Figures English Abstract I Chiness Abstract III Table of Figures V Table of Figures VIII Table of Figures VIII Table of Figures XII Appendix 103 1 Introduction 2 Review of Literatures 2.2 Electrolysis Process 2.2.1 Electrochemical Oxidation Mechanism 2.2.2 The Effect of Variables 2.3 Electrolysis/Ozonation Process 2.3.1 Properties of Ozone 2.3.1.1 Solution pHysical and chemical properties of ozone 2.3.1.2 Mass transfer behavior of ozone 2.3.1.3 Ozone self-decomposition 2.3.1.4 Ozonation pathway 2.3.2 Mechanism of Electrolysis/Ozonation Process 2.3.3 Effect of Variables 3 Experimental Design 3.1 Instruments 3.2 Chemicals 3.3 Apparatus 3.4 Experimental Procedure 3.4.1 Background Experiments 3.4.2 Experimental procedure 3.4.2.1 Ozonation process 3.4.2.2 Electrolysis 3.4.2.3 Electrolysis/Ozonation process 3.2.3.4 Analytic methods 4 Results and discussion 4.1 Effect of retention time in reactor of 500mL for degradation of BPA by electrolysis/ozonation process 4.2 Comparison of ozone solubility in aqueous solution with/without applied electric current 4.2.1 Effect of solution pH 4.2.2 Effect of gaseous ozone concentration 4.2.3 Effect of current density 4.2.4 Effect of electrolyte concentration 4.3 The degradation and mineralization of BPA in aqueous solution by ozonation 4.3.1 Effect of gaseous ozone concentration 4.3.2 Effect of solution pH 4.3.3 Effect of electrolyte concentration 4.3.4 Conclusion 4.4 The degradation and mineralization of BPA in aqueous solution by electrolysis/ozonation 4.4.1 Effect of gaseous ozone concentration 4.4.2 Effect of current density 4.4.3 Effect of solution pH 4.4.4 Effect of electrolyte concentration 4.4.5 Conclusion 4.5 Kinetic model of electrolysis/ozonation and ozonation 4.5.1 Derivation of kinetic model 4.5.2 Effect of gaseous ozone concentration 4.5.3 Effect of current density 4.5.4 Effect of solution pH 4.5.5 Effect of electrolyte concentration 4.5.6 Conclusions 4.6 The intermediaes by BPA decomposition

    B.S. Chen and Y.H. Tseng,“A Theory on Bubble-size Dependence of the Critical Electrolyte Concentration for Inhibition of Coalescence,”J. Colloid. Interf. Sci., vol. 286, pp. 410-413 (2005).
    Can˜izares, P., F. Martı´nez, M. Dı´az, J. Garcı´a-Go´mez and M. A. Rodrigo,“Electrochemical Oxidation of Aqueous Phenol Wastes Using Active and Nonactive Electrodes,”J. Electrochem. Soc., vol. 149, pp. 118-124 (2002).
    Cui, Y.H., X.Y. Lib and G. Chenc,“Electrochemical Degradation of Bisphenol A on Different Anodes,”Water Res., vol. 43, pp. 968-976 (2009).
    Elovitz, M.S. and U.V. Gunten, “Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept,” Ozone Sci. Eng., vol. 21, pp. 239-260 (1999).
    Elovitz, M.S., U.V Gunten and H.P. Kaiser, “Hydroxyl Radical/Ozone Ratios During Ozonation Processes. II. The Effect of Temperature, pH, Alkalinity, and DOM Properties,”Ozone Sci. Eng., vol. 22, pp. 123-150 (2000).
    Gultekin, I. and N.H. Ince, “Synthetic Endocrine Disruptors in the Environment and Water Remediation by Advanced Oxidation Processes,” J. Environ. Manage., vol. 85, pp. 816-832 (2007).
    Haag, W.R. and C.C.D. Yao, “Ozonation of U.S. Drinking Water Sources: HO. Concentration and Oxidation-competition Values,”Eleventh Ozone World Congress, vol. 2, pp.S-17-119-126, San Francisco, CA, USA (1993).
    Imamura, K., I. Watanabe, M. Imada, T. Sakiyama, “The Kinetics of Removal of Proteins Adsorbed on a Stainless Steel Surface by H2O2–Electrolysis and Factors Affecting its Performance,” J. Colloid Interface Sci., vol. 256, pp. 49-55 (2003).
    Imamura, K., I. Watanabe, T. Sakiyama and K. Nakanishi, “Effects of the Supporting Electrolyte on the Kinetics of the Removal of Proteins Adsorbed on a Stainless Steel Surface by H2O2-Electrolysis,” Langmuir, vol. 22, pp. 7035-7040 (2006).
    Imamura, K., Y. Tada, H. Tanaka, T. Sakiyama and K. Nakanishi, “Removal of Proteinaceous Soils Using Hydroxyl Radicals Generated by the Electrolysis of Hydrogen Peroxide,” J. Colloid Interface Sci., vol. 250, pp. 409-414 (2002).
    Ince, N.H. and I.G. Apikyan,“Combination of Activated Carbon Adsorption with Light-enhanced Chemical Oxidation via Hydrogen Peroxide,” Water Res., vol. 34, pp. 4169-4176(2000).
    Irmak, S., O. Erbatur and A. Akgerman,“Degradation of 17b-estradiol and Bisphenol A in Aqueous Medium by Using Ozone and Ozone/UV Techniques,”J. Hazard. Mater., vol. 126, pp. 54–62 (2005).
    Katsumata, H., S. Kawabe, S. Kaneco, T. Suzuki and K. Ohta,“Degradation of Bisphenol A in Water by the Photo-Fenton Reaction”J. Photochem. Photobiol., A, vol. 162, pp. 297–305 (2004).
    Kishimoto N., Y. Morita, H. Tsuno, T. Oomura and H. Mizutani, ”Advanced Oxidation Effect of Ozonation Combined with Electrolysis,”Water Res., vol. 39, pp. 4661-4672 (2005).
    Kishimoto, N., T. Matsutani, Y. Yasuda, M. Asano and H. Mizutani, “Ozonation Combined with Electrolysis of Night Soil Treated by Biological Nitrification-Denitrification Process,” Ozone Sci. Eng., vol. 30, pp. 282-289 (2008).
    Oyama, T., I. Yanagisawa, M. Takeuchi, T. Koike, N. Serpone and H. Hidaka, “Remediation of Simulated Aquatic Sites Contaminated with Recalcitrant Substrates by TiO2/ozonation under Natural Sunlight,” Appl. Catal., B, vol. 91, pp. 242-246 (2009).
    Pawlowski, S., M. Islinger, A. Volkl and T. Braunbeck,“Temperature Dependent Vitellogenin-mRNA Expression in Primary Cultures of Rainbow Trout (Oncorhynchus Mykiss) Hepatocytes at 14 and 18 Degrees C,” Toxicol. in Vitro, vol. 14, pp. 531-540 (2000).
    Perez, P., R. Pulgar, F. Olea-Serrano, M. Villalobos, A. Rivas, M. Metzler, V. Pedraza and N. Olea, “The Estrogenicity of Bisphenol A-related Diphenylalkanes with Various Substituents at the Central Carbon and the Hydroxy Groups,”Environ. Health Perspect., vol. 106, pp. 167-174 (1998).
    Rajeshwar, K and J.G. Ibanez, “Electrochemistry and Environment,” Appl. Electrochem., vol. 24, pp. 1077-1091 (1994).
    Rivas, F.J., A. Encinas, B. Acedo and F. J. Beltran,“Mineralization of Bisphenol A by Advanced Oxidation Processes,” J. Chem. Techno.l Biotechnol., vol. 84, pp. 589-594 (2009).
    Rosenfeldt, E.J. and K.G. Linden, “Degradation of Endocrine Disrupting Chemicals Bisphenol A, Ethinyl Estradiol, and Estradiol During UV Photolysis and Advanced Oxidation Processes”Environ. Sci. Technol., vol.38, pp. 5476–5483 (2004).
    Routledge, E.J. and J.P. Sumpter,“Estrogenic Activity of Surfactants and Some of their Degradation Products Assessed Using a Recombinant Yeast Screen,” Environ. Toxicol. Chem., vol. 15, pp. 241-248 (1996).
    Tahar, N.B. and A. Savall, “Mechanistic Aspects of Phenol Electrochemical Degradation by Oxidation on a Ta/PbO2 Anode,” J. Electrochem. Soc., vol. 145, pp. 3427-3434 (1995).
    Tanaka, S., Y. Nakata, T. Kimura, Yustiawati, M. Kawasaki and H. Kuramtyz,“Electrochemical Decomposition of Bisphenol A Using Pt/Ti and SnO2/Ti
    Wang, R., D. Ren, S. Xia, Y. Zhang and J. Zhao, “Photocatalytic Degradation of Bisphenol A (BPA) Using Immobilized TiO2 and UV Illumination in a Horizontal Circulating Bed Photocatalytic Reactor (HCBPR),” J. Hazard. Mater., vol. 169, pp. 926-932 (2009).
    Yavuz Y. and A.S. Koparal, “Electrochemical Oxidation of Phenol in a Parallel Plate Reactor Using Ruthenium Mixed Metal Oxide Electrode,”J. Hazard. Mater., vol. 136, pp. 296-302 (2006).
    Yin, H.S., Y.L. Zhou and S.Y. A, “Preparation and Characteristic of Cobalt Phthalocyanine Modified Carbon Paste Electrode for Bisphenol A,”J. Electroanal. Chem., vol. 626, pp. 80-88 (2009).
    Rischbieter, E., H. Stein, and A. Schumpe, “Ozone Solubilities in Water and Aqueous Salt Solutions,”J. Chem. Eng. Data, vol. 45, pp. 338-340 (2000).
    Yoshihara, S. and M. Murugananthan, “Decomposition of Various Endocrine-disrupting Chemicals at Boron-doped Diamond Electrode,” Electrochim. Acta, vol. 54, pp. 2031-2038 (2009).
    申永順“以紫外線/過氧化氫程序處理含氯酚類有機溶液反應行為之研究”國立台灣科技大學化學工程學糸碩士論文,台灣,台北 (1982)
    陳修斌“氣泡形成對臭氧質傳及其對含2-氯酚水溶液分解反應行之影響”國立台灣科技大學化學工程學糸碩士論文,台灣,台北 (1990)
    陳華偉“在氣泡式反應器中氣泡大小對臭氧程序處理含2-氯酚水溶液之影響”國立台灣科技大學化學工程學糸碩士論文,台灣,台北 (1991)
    謝長原“電解催化氧化氯酚之研究”國立成功大學環境工程學系碩士論文,台灣,台南 (2002)

    無法下載圖示 全文公開日期 2015/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE