簡易檢索 / 詳目顯示

研究生: 賴惠慈
Hui-Tzu Lai
論文名稱: TTE作為稀釋劑對碳酸鹽電解質溶劑化結構和還原行為的影響:藉由 AIMD 模擬之研究
The influence of TTE as a diluent on solvation structure and reduction mechanisms of carbonate-based electrolytes: Insights from AIMD Simulations
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
Shawn D. Lin
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 104
中文關鍵詞: 局部高濃度電解質溶劑化結構鋰電池
外文關鍵詞: AIMD simulation, solvation structure, TTE
相關次數: 點閱:145下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電解液對高壓鋰離子電池(LIBs)的性能和循環穩定性至關重要。相較於傳統電電解液在高壓鋰離子電池(LIBs)中的性能和循環穩定性至關重要。相對於傳統電解液(通常為 > 1~2 M),高濃度電解液(HCEs)(通常為 > 3M)在嚴苛條件下改善陽極材料的循環穩定性方面展現出潛力。然而,HCEs在實際應用中面臨著多個挑戰,例如高黏度、差濕潤性、低離子導電性、低溫性能差和高成本,其主要是由其獨特的溶劑結構引起的。為了進一步提升HCEs,目前已開發出局部高濃度電解液(LHCEs),通過在HCEs中引入稀釋劑製成。本研究考慮了一種先進的電解液,該電解液在鹽/碳酸鹽溶劑基電解液(LiTFSI/EC-EMC)中添加了1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(TTE)作為稀釋劑。通過密度泛函理論(DFT)和分子動力學(AIMD)模擬,本研究探討了不同鹽濃度下的溶劑結構、還原行為和固體電解質界面(SEI),包括傳統電解液(2M LiTFSI/EC/EMC)、高濃度電解液(6M LiTFSI/EC/EMC)和局部高濃度電解液(2M LiTFSI/EC/EMC/TTE)。本研究首先考慮了TTE對電解液系統之溶劑結構的影響,然後研究了這些溶劑結構在銅電流收集器界面的反應。

    計算結果顯示在純電解液系統中,TTE與鋰離子之間的相互作用是研究的所有物種中最弱的。它在LHCE系統中位於第二層次的溶劑化結構,有效地保持了HCE的團簇結構和其特徵。然而,添加TTE部分改變了每個鋰離子周圍的配位環境,從而影響了電解液的還原/氧化性質。此外,三維網絡結構被破壞,導致導離率增加。TTE分子的加入,也顯著影響固體電解質界面(SEI)的形成和穩定性。TTE促進了氟化鋰(LiF)的加速形成並增加其含量。通過將TTE作為稀釋劑,可以促進更穩定的SEI成分的生成,並且能夠承受多次還原反應。這項理論研究探討了以TTE作為稀釋劑對LHCE電解液的溶劑化結構和動力學影響。


    The electrolyte is critical to the performance and cycling stability of high-voltage lithium-ion batteries (LIBs). High-concentration electrolytes (HCEs) (typically > 3M) have shown promising potential in improving the cyclic stabilities of anode materials under stringent conditions compared to conventional electrolytes (typically > 1~2 M). However, HCEs face several challenges in practical applications, including high viscosity, poor wettability, low ionic conductivity, poor low-temperature performance, and high costs, which are attributed to a unique solvation structure. To further advance HCEs, localized high-concentration electrolytes (LHCEs) have been developed by introducing diluent into HCEs. Herein, an advanced electrolyte is considered that includes the addition of 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) as a diluent in salt/carbonate-solvent-based electrolytes (LiTFSI/EC-EMC). The solvation structure, and the reduction behaviors and SEI formation are explored with different salt concentrations such as conventional electrolyte referred to here as dilute (2M LiTFSI/EC/EMC), HCE (6M LiTFSI/EC/EMC), and LHCE (2M LiTFSI/EC/EMC/TTE) using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. This study first considers the role of TTE on the solvation structures of systems with only electrolytes (dilute, HCE, LHCE) and then investigates when they are exposed to the Cu current collector surface.

    In the pure electrolyte system, TTE exhibits the weakest interaction with lithium ions among all the species studied. It occupies the second shell solvation structure in LHCE system, effectively maintaining the salt-solvent clusters of HCE and the characteristic features of HCE. However, the addition of TTE partially alters the coordination environment surrounding each lithium ion, thereby influencing the reductive/oxidative processes of the electrolytes. Additionally, the three-dimensional (3D) network structure is disrupted, resulting in a decrease in the population of aggregate species (AGG) and an increase in ionic conductivity. The inclusion of TTE molecules significantly affects the formation and stability of the solid-electrolyte interphase (SEI) components. TTE facilitates the accelerated formation of lithium fluoride (LiF) and enhances its abundance. By incorporating TTE as a diluent, the generation of more stable SEI components is promoted, capable of enduring multiple reduction reactions. This theoretical study offers a detailed atomic-level understanding of the effects of TTE as a diluent on the solvation structure and dynamics of LHCE electrolytes.

    List of Figures vii List of Tables x Chapter 1 Introduction 1 1.1 Lithium-Ion Battery 1 1.2 The Working Principle of Lithium-ion Battery 4 1.3 Main Components of Li-ion Battery 5 1.3.1 Anode 7 1.3.2 Cathode 9 1.3.3 Electrolyte 11 1.3.3.1 Lithium-salt 13 1.3.3.2 Solvents 16 1.4 Conventional electrolyte 20 1.5 High-Concentration Electrolytes 21 1.6 Localized High-Concentration Electrolytes 23 1.7 Diluent 25 1.7 Present Study 27 Chapter2 Computation Details 28 2.1 Model 28 2.2 AIMD simulation 30 2.3 Binding energy 32 Chapter 3 The influence of TTE as diluent on solvation structure and reduction behavior of electrolytes 33 3.1 Introduction 33 3.2 Coordination Behavior Analysis 34 3.2.1 Radial Distribution Function 34 3.2.2 The Coordination Site Analysis 35 3.2.3 The Coordination Number Analysis 41 3.2.4 Aggregate network structure 45 3.3 Reductive Behavior Analysis 55 3.4 Binding Energy Analysis 57 3.5 Conclusions 59 Chapter 4 The influence of TTE as diluent on the reactivity on the copper anode surface 61 4.1 Introduction 61 4.2 Reactivity on the copper anode surface 63 4.2.1 Conventional electrolyte 63 4.2.2 High concentration electrolyte 68 4.2.3 Localized high concentration electrolyte 73 4.2.4 Trajectories of lithium ions 78 4.3 Conclusions 80 Chapter 5 Summary 82 Reference 83

    1. Bhatt, M.D. and C.J.P.c.c.p. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. 2015. 17(7): p. 4799-4844.
    2. Liu, D., G.J.E. Cao, and E. Science, Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation. 2010. 3(9): p. 1218-1237.
    3. Lu, L., et al., A review on the key issues for lithium-ion battery management in electric vehicles. 2013. 226: p. 272-288.
    4. Etacheri, V., et al., Challenges in the development of advanced Li-ion batteries: a review. 2011. 4(9): p. 3243-3262.
    5. Hameer, S. and J.L.J.I.j.o.e.r. van Niekerk, A review of large‐scale electrical energy storage. 2015. 39(9): p. 1179-1195.
    6. Peters, J.F., et al., The environmental impact of Li-Ion batteries and the role of key parameters–A review. 2017. 67: p. 491-506.
    7. Schipper, F. and D.J.R.J.o.E. Aurbach, A brief review: past, present and future of lithium ion batteries. 2016. 52: p. 1095-1121.
    8. Tarascon, J.-M. and M.J.n. Armand, Issues and challenges facing rechargeable lithium batteries. 2001. 414(6861): p. 359-367.
    9. Winter, M., B. Barnett, and K.J.C.r. Xu, Before Li ion batteries. 2018. 118(23): p. 11433-11456.
    10. Kim, T., et al., Lithium-ion batteries: outlook on present, future, and hybridized technologies. 2019. 7(7): p. 2942-2964.
    11. Goodenough, J.B. and K.-S.J.J.o.t.A.C.S. Park, The Li-ion rechargeable battery: a perspective. 2013. 135(4): p. 1167-1176.
    12. Blomgren, G.E.J.J.o.T.E.S., The development and future of lithium ion batteries. 2016. 164(1): p. A5019.
    13. Cheng, F., et al., Functional materials for rechargeable batteries. 2011. 23(15): p. 1695-1715.
    14. Korthauer, R., Lithium-ion batteries: basics and applications. 2018: Springer.
    15. Zhou, M., et al., High-performance silicon battery anodes enabled by engineering graphene assemblies. 2015. 15(9): p. 6222-6228.
    16. Feng, K., et al., Silicon‐based anodes for lithium‐ion batteries: from fundamentals to practical applications. 2018. 14(8): p. 1702737.
    17. Zuo, X., et al., Silicon based lithium-ion battery anodes: A chronicle perspective review. 2017. 31: p. 113-143.
    18. Sun, L., et al., Recent progress and future perspective on practical silicon anode-based lithium ion batteries. 2022.
    19. Franco Gonzalez, A., N.-H. Yang, and R.-S.J.T.J.o.P.C.C. Liu, Silicon anode design for lithium-ion batteries: progress and perspectives. 2017. 121(50): p. 27775-27787.
    20. Wang, R., et al., Lithium metal anodes: Present and future. 2020. 48: p. 145-159.
    21. Xu, W., et al., Lithium metal anodes for rechargeable batteries. 2014. 7(2): p. 513-537.
    22. Adams, B.D., et al., Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. 2018. 8(7): p. 1702097.
    23. Zhang, Y., et al., Towards better Li metal anodes: challenges and strategies. 2020. 33: p. 56-74.
    24. Zhang, J.-G., et al., Lithium metal anodes with nonaqueous electrolytes. 2020. 120(24): p. 13312-13348.
    25. Goriparti, S., et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. 2014. 257: p. 421-443.
    26. Yang, J., et al., Study of nano-porous hard carbons as anode materials for lithium ion batteries. 2012. 135(2-3): p. 445-450.
    27. Fujimoto, H., et al., The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. 2010. 195(21): p. 7452-7456.
    28. Bridges, C.A., et al., In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. 2012. 116(14): p. 7701-7711.
    29. Stern, P.C., B.K. Sovacool, and T.J.N.C.C. Dietz, Towards a science of climate and energy choices. 2016. 6(6): p. 547-555.
    30. Nishidate, K. and M.J.P.R.B. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes. 2005. 71(24): p. 245418.
    31. Zhao, J., et al., First-principles study of Li-intercalated carbon nanotube ropes. 2000. 85(8): p. 1706.
    32. Meunier, V., et al., Ab initio investigations of lithium diffusion in carbon nanotube systems. 2002. 88(7): p. 075506.
    33. Hou, J., et al., Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. 2011. 13(34): p. 15384-15402.
    34. Chen, Z., et al., Titanium‐based anode materials for safe lithium‐ion batteries. 2013. 23(8): p. 959-969.
    35. Szczech, J.R., S.J.E. Jin, and E. Science, Nanostructured silicon for high capacity lithium battery anodes. 2011. 4(1): p. 56-72.
    36. Park, C.-M., et al., Li-alloy based anode materials for Li secondary batteries. 2010. 39(8): p. 3115-3141.
    37. Rudawski, N., et al., Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries. 2013. 223: p. 336-340.
    38. Chockla, A.M., et al., Solution-grown germanium nanowire anodes for lithium-ion batteries. 2012. 4(9): p. 4658-4664.
    39. Bruce, P.G., B. Scrosati, and J.M.J.A.C.I.E. Tarascon, Nanomaterials for rechargeable lithium batteries. 2008. 47(16): p. 2930-2946.
    40. Wang, Z., L. Zhou, and X.W. Lou, Metal oxide hollow nanostructures for lithium‐ion batteries. 2012, Wiley Online Library.
    41. Yang, J., et al., SiOx-based anodes for secondary lithium batteries. 2002. 152: p. 125-129.
    42. Kalluri, S., et al., Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High‐Energy and High‐Voltage Li‐Ion Cells. 2017. 7(1): p. 1601507.
    43. Xu, B., et al., Recent progress in cathode materials research for advanced lithium ion batteries. 2012. 73(5-6): p. 51-65.
    44. Zhang, J.-G., W. Xu, and W.A. Henderson, Lithium metal anodes and rechargeable lithium metal batteries. Vol. 249. 2017: Springer International Publishing Cham.
    45. Whittingham, M.S.J.C.r., Lithium batteries and cathode materials. 2004. 104(10): p. 4271-4302.
    46. Aurbach, D., et al., Studies of aluminum-doped LiNi0. 5Co0. 2Mn0. 3O2: electrochemical behavior, aging, structural transformations, and thermal characteristics. 2015. 162(6): p. A1014.
    47. Xu, K.J.C.r., Electrolytes and interphases in Li-ion batteries and beyond. 2014. 114(23): p. 11503-11618.
    48. Xu, K.J.C.r., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. 2004. 104(10): p. 4303-4418.
    49. Bushkova, O., T. Yaroslavtseva, and Y.A.J.R.J.o.E. Dobrovolsky, New lithium salts in electrolytes for lithium-ion batteries. 2017. 53: p. 677-699.
    50. Kalhoff, J., et al., Safer electrolytes for lithium‐ion batteries: state of the art and perspectives. 2015. 8(13): p. 2154-2175.
    51. Aurbach, D., et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. 2002. 47(9): p. 1423-1439.
    52. Campion, C.L., W. Li, and B.L.J.J.o.T.E.S. Lucht, Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries. 2005. 152(12): p. A2327.
    53. Li, Q., et al., Wide-temperature electrolytes for lithium-ion batteries. 2017. 9(22): p. 18826-18835.
    54. Arbizzani, C., G. Gabrielli, and M.J.J.o.P.S. Mastragostino, Thermal stability and flammability of electrolytes for lithium-ion batteries. 2011. 196(10): p. 4801-4805.
    55. Gond, R., et al., Non-flammable liquid electrolytes for safe batteries. 2021. 8(11): p. 2913-2928.
    56. Cao, X., et al., Localized high-concentration electrolytes for lithium batteries. 2021. 168(1): p. 010522.
    57. Fan, X. and C.J.C.S.R. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. 2021. 50(18): p. 10486-10566.
    58. Qian, J., et al., High rate and stable cycling of lithium metal anode. 2015. 6(1): p. 6362.
    59. Fan, X., et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. 2018. 4(1): p. 174-185.
    60. Matsumoto, K., et al., Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. 2013. 231: p. 234-238.
    61. Jiang, G., et al., Perspective on high‐concentration electrolytes for lithium metal batteries. 2021. 2(5): p. 2000122.
    62. Ren, X., et al., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. 2019. 4(4): p. 896-902.
    63. Yamada, Y., et al., Advances and issues in developing salt-concentrated battery electrolytes. 2019. 4(4): p. 269-280.
    64. Yamada, Y. and A.J.J.o.T.E.S. Yamada, Superconcentrated electrolytes for lithium batteries. 2015. 162(14): p. A2406.
    65. Watanabe, Y., et al., Does Li-ion transport occur rapidly in localized high-concentration electrolytes? 2023. 25(4): p. 3092-3099.
    66. Lin, S., et al., A multifunctional dual‐salt localized high‐concentration electrolyte for fast dynamic high‐voltage lithium battery in wide temperature range. 2021. 11(36): p. 2101775.
    67. Perez Beltran, S., et al., Localized high concentration electrolytes for high voltage lithium–metal batteries: correlation between the electrolyte composition and its reductive/oxidative stability. 2020. 32(14): p. 5973-5984.
    68. Jia, M., et al., Advanced Nonflammable Localized High‐Concentration Electrolyte for High Energy Density Lithium Battery. 2022. 5(4): p. 1294-1302.
    69. Chen, S., et al., High‐voltage lithium‐metal batteries enabled by localized high‐concentration electrolytes. 2018. 30(21): p. 1706102.
    70. Lin, S., et al., Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery. 2020. 12(30): p. 33710-33718.
    71. Cheng, H., et al., Emerging era of electrolyte solvation structure and interfacial model in batteries. 2022. 7(1): p. 490-513.
    72. van Ekeren, W.W., et al., A comparative analysis of the influence of hydrofluoroethers as diluents on solvation structure and electrochemical performance in non-flammable electrolytes. 2023. 11(8): p. 4111-4125.
    73. Zheng, J., et al., Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. 2018. 3(2): p. 315-321.
    74. Jiang, L.L., et al., Inhibiting solvent co‐intercalation in a graphite anode by a localized high‐concentration electrolyte in fast‐charging batteries. 2021. 60(7): p. 3402-3406.
    75. Yu, L., et al., A localized high-concentration electrolyte with optimized solvents and lithium difluoro (oxalate) borate additive for stable lithium metal batteries. 2018. 3(9): p. 2059-2067.
    76. Zhang, X., et al., Advanced electrolytes for fast‐charging high‐voltage lithium‐ion batteries in wide‐temperature range. 2020. 10(22): p. 2000368.
    77. Zhang, X., et al., Unravelling high-temperature stability of lithium-ion battery with lithium-rich oxide cathode in localized high-concentration electrolyte. 2020. 5: p. 100024.
    78. Ren, X., et al., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. 2018. 4(8): p. 1877-1892.
    79. Cai, Q., et al., Outstanding performances of graphite|| NMC622 pouch cells enabled by a non-inert diluent. 2023.
    80. Cao, X., et al., Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. 2021. 118(9): p. e2020357118.
    81. Zheng, Y. and P.B.J.T.J.o.C.P. Balbuena, Localized high concentration electrolytes decomposition under electron-rich environments. 2021. 154(10): p. 104702.
    82. Cao, X., et al., Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. 2021. 34: p. 76-84.
    83. Beltran, S.P., et al., Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent-Li+ interactions and Li+ transport mechanism. 2021. 9(32): p. 17459-17473.
    84. Bouibes, A., S. Saha, and M.J.S.r. Nagaoka, Theoretically predicting the feasibility of highly-fluorinated ethers as promising diluents for non-flammable concentrated electrolytes. 2020. 10(1): p. 1-10.
    85. Kresse, G. and J.J.P.R.B. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. 1994. 49(20): p. 14251.
    86. Kresse, G. and J.J.P.r.B. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. 1996. 54(16): p. 11169.
    87. Kresse, G. and J.J.C.m.s. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. 1996. 6(1): p. 15-50.
    88. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. Vol. 1. 2001: Elsevier.
    89. Kresse, G. and D.J.P.r.b. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. 1999. 59(3): p. 1758.
    90. Perdew, J.P., K. Burke, and M.J.P.r.l. Ernzerhof, Generalized gradient approximation made simple. 1996. 77(18): p. 3865.
    91. Nosé, S.J.T.J.o.c.p., A unified formulation of the constant temperature molecular dynamics methods. 1984. 81(1): p. 511-519.
    92. Hoover, W.G.J.P.r.A., Canonical dynamics: Equilibrium phase-space distributions. 1985. 31(3): p. 1695.
    93. Mennucci, B.J.W.I.R.C.M.S., Polarizable continuum model. 2012. 2(3): p. 386-404.
    94. Seo, D.M., et al., Electrolyte solvation and ionic association. 2012. 159(5): p. A553.
    95. Borodin, O., et al., Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. 2017. 11(10): p. 10462-10471.
    96. Okoshi, M., C.-P. Chou, and H.J.T.J.o.P.C.B. Nakai, Theoretical analysis of carrier ion diffusion in superconcentrated electrolyte solutions for sodium-ion batteries. 2018. 122(9): p. 2600-2609.
    97. Chen, X., et al., Cation− solvent, cation− anion, and solvent− solvent interactions with electrolyte solvation in lithium batteries. 2019. 2(2): p. 128-131.
    98. Hwang, S., et al., Ionic conduction and solution structure in LiPF6 and LiBF4 propylene carbonate electrolytes. 2018. 122(34): p. 19438-19446.
    99. Xu, S., et al., Decoupling of ion pairing and ion conduction in ultrahigh-concentration electrolytes enables wide-temperature solid-state batteries. 2022. 15(8): p. 3379-3387.

    QR CODE