簡易檢索 / 詳目顯示

研究生: 儲涵
Han Chu
論文名稱: 微波輔助萃取廢鋰電池中有價金屬
Microwave-Assisted Leaching of Valuable Metals from Spent Li-ion Batteries
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 陳嘉明
王丞浩
何豐謀
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 112
中文關鍵詞: 抗壞血酸萃取微波系統廢鋰電池
外文關鍵詞: Ascorbic acid, cobalt, leaching, lithium, microwave, spent Li-ion batteries(LIBs)
相關次數: 點閱:229下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰電池(LIBs)具有高能量密度、重量輕以及高性能等特性,因此被廣泛應用於可攜式電子設備中。全球鋰電池的使用越來越普遍,如何處理廢鋰電池成為一大課題。鋰電池中含有有價金屬鈷及鋰,將鋰電池拆解分類後再回收提取價值較高的物質是一較經濟且環保的作法。其中,酸萃取法常作為回收廢鋰電池的技術,但此技術較耗時。因此,本研究利用微波輔助萃取法回收廢鋰電池中的鈷、鋰、錳,此技術較環境友善且具成本效益,其中比較鹽酸、硫酸、醋酸和抗壞血酸在不同濃度(0.5-1.5 N)、固液比(10-40 g/L)以及微波功率(100-300 W)下之萃取效果,結果顯示使用抗壞血酸進行萃取最能有效溶解正極材料。抗壞血酸具有強還原性,因此可以有效提升鈷和錳的萃取效果。關於酸強度的影響,可得知萃取效果隨著濃度增加而提升,當鹽酸為0.5 N、固液比為10 g/L、微波功率為300 W時,在5分鐘內鈷、鋰、錳的萃取效果分別可達44.74%、87.92%、47.57%。當鹽酸濃度提升為1.5 N時,鈷、鋰、錳的萃取效果提升至80.09%、102.81%、69.80%。而使用0.5 N抗壞血酸時,鈷、鋰、錳的萃取效果分別可達113.03%、101.13%、111.13%。從實驗中也證實在萃取過程中,氫離子濃度及錯合物的形成也會影響萃取效果。相較於傳統萃取法,微波輔助萃取法可在短時間獲得較高的萃取效果。因此,微波輔助萃取法可作為回收廢鋰電池中有價金屬最有潛力的技術之一。


    Lithium-ion batteries (LIBs) have been widely used for energy storage because of their high energy density, lightweight, and durability. The amount of spent LIBs increased rapidly recently. Recovery of metals from spent lithium-ion batteries (LIBs) is essential for sustainable utilization of resources. Acid leaching is commonly used for leaching of metals from spent LIBs. However, it could be time-consuming. Microwave-assisted leaching is studied for leaching of cobalt (Co), lithium (Li), and manganese (Mn) from spent LIBs as a cost-effective, green, and environmentally friendly method.
    Effects of parameters such as acid types (HCl, H2SO4, CH3COOH, and ascorbic acid), acid concentration (0.5-1.5 N), solid to liquid ratio (10-40 g/L), and microwave power (100-300 W) were investigated. When at 10 g/L solid to liquid ratio, microwave power of 300 W, and 5 min of reaction time, the leaching efficiency of Co, Li, and Mn were 44.74, 87.92%, and 47.57%, respectively using 0.5 N of HCl. It increased to 80.09% for Co, 102.81% for Li, and 69.80% for Mn as HCl concentration increased to 1.5 M. And the leaching efficiency of Co, Li, and Mn were 113.03, 101.13%, and 111.13%, respectively using 0.5 N of ascorbic acid. It was found that the leaching of Co and Mn were significantly dependent on the reducibility of acid. Ascorbic acid has high reducibility which can leach Co, Li, and Mn effectively. The hydrogen ion concentration and complex formation between metals and acid are also involved in the leaching process. Compared with conventional leaching, microwave-assisted leaching was more efficient and required shorter reaction time. This method offers high potential to be applied for recycling of spent LIBs.

    內容 摘要 I Abstract II Acknowledgment III Contents IV List of Figures VI List of Tables VIII CHAPTER 1 1-1 1.1 Background 1-1 1.1 Objectives 1-2 CHAPTER 2 2-1 2.1 Lithium-ion batteries 2-1 2.1.1 Cathode material of lithium-ion batteries 2-3 2.2 Lithium………………………………………………………………………………..2-4 2.2.1 Application of lithium 2-4 2.2.2 Resources of lithium 2-5 2.2.2.1 Primary resources 2-5 2.2.2.2 Secondary resources 2-5 2.3 Cobalt………………………………………………………….………………………2-7 2.3.1 Application of Cobalt 2-7 2.3.2 Resources of cobalt 2-7 2.4 Recovery of lithium and cobalt from spent LIBs…………………………..2-8 2.5 Microwave-assisted leaching…………………………………………….…….2-14 2.5.1 Fundamentals of microwave irradiation 2-14 2.5.2 Principles of microwave heating 2-15 CHAPTER 3 3-1 3.1 Materials and reagents ……………………………………………………………3-1 3.2 Instruments…………………………………………………..………………………3-2 3.3 Source of spent LIBs…………………………………………...………………….3-3 3.4 Methods ………………………………………………………………………………3-4 3.4.1 Experimental framework and procedures 3-4 3.4.2 Characterization of cathode powder from spent LIBs 3-6 3.4.2.1 FESEM-EDS analysis 3-6 3.4.2.2 X-ray diffraction (XRD) 3-6 3.4.2.3 Aqua-regia digestion (NIEA S321.63B) 3-6 3.4.2.4 Water content-weight method (NIEA S280.61C) 3-7 3.4.2.5 ICP-AES analysis 3-8 3.4.3 Microwave-assisted leaching 3-8 3.4.4 Conventional leaching 3-10 3.4.5 Chemical equilibrium diagram software (HYDRA/MEDUSA) 3-10 CHAPTER 4 4-1 4.1 Characterization of cathode powder from spent LIBs…………………..4-1 4.2 Microwave-assisted leaching…………………………………………………….4-6 4.2.1 Effect of acid type 4-6 4.2.2 Effect of acid concentration 4-13 4.2.3 Effect of solid to liquid ratio (S/L) 4-15 4.2.3 Effect of microwave power 4-17 4.2.4 Characterization of leaching residue 4-23 4.3 Conventional leaching……………………………………………………………4-26 4.3.1 Kinetic study……………………………………….………………………………4-27 CHAPTER 5 5-1 5.1 Conclusions……………………………………………………………………………..5-1 5.2 Recommendations…………………………………………….………………………5-2 REFERENCE R-1 APPENDIX A A-1 APPENDIX B B-1 APPENDIX C C-1

    Abdel-Aal, E. A., & M. M. Rashad (2004). Kinetic study on the leaching of spent nickel oxide catalyst with sulfuric acid. Hydrometallurgy, 74(3–4), 189–194.
    Abu-Zied, B. M., S. M. Bawaked, S. A. Kosa & W. Schwieger (2015). Effect of microwave power on the thermal genesis of Co3O4 nanoparticles from cobalt oxalate micro-rods. Applied Surface Science, 351, 600-609.
    Al-Harahsheh, M. & S. W. Kingman (2004). Microwave-assisted leaching—a review. Hydrometallurgy, 73, 189-203.
    Al-Thyabat, S., T. Nakamura, E. Shibata & A. Iizuka (2013). Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review. Minerals Engineering, 45, 4-17.
    Baba, A. A., K. I. Ayinla., F. A. Adekola, R. B. Bale, M. K. Ghosh, Alabi, A. G. F. & I. O. Folorunso (2013). Hydrometallurgical application for treating a Nigerian chalcopyrite ore in chloride medium: Part I. Dissolution kinetics assessment. International Journal of Minerals, Metallurgy and Materials, 20(11), 1021–1028.
    Barik, S. P., G. Prabaharan & L. Kumar (2017). Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. Journal of Cleaner Production, 147, 37-43.
    Bell, R. P (1959). The Proton in Chemistry, University of Stirling. Cornell University Press, Ithaca, New York.
    Bhattacharya, M. & T. Basak (2016). A review on the susceptor assisted microwave processing of materials. Energy, 97, 306-338.
    Bilecka, I. & M. Niederberger (2010). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2, 1358-1374.
    Brininstool, M. (2017). U.S. Geological Survey, Mineral Commodity Summaries, January 2017. S. USG. U.S. Department of the Interior, Reston, Virginia, 54-55.
    CDI – Cobalt Development Institute (2016). Co¬balt Facts. Cobalt Supply and Demand, 53 – 58. – URL: http://www.thecdi.com/cobaltfacts.php
    Chagnes, A & B. Pospiech (2013). A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. Journal of Chemical Technology and Biotechnology, 88(7): 1191-1199.
    Chandrasekaran, S., S. Ramanathan & T. Basak (2013). Microwave food processing—A review. Food Research International, 52, 243-261.
    Christmann, P. Gloaguen, E., J.-F. Labbé, J. Melleton & P. Piantone (2015). Chapter 1 - Global Lithium Resources and Sustainability Issues A2 - Chagnes, Alexandre. Lithium Process Chemistry, J. Światowska. Amsterdam, Elsevier: 1-40.
    Chen, G., H. Yang, H. Li & L. Tong (2016). Recovery of Cobalt as Cobalt Oxalate from Cobalt Tailings Using Moderately Thermophilic Bioleaching Technology and Selective Sequential Extraction. Minerals, 6, 67.
    Chen, X., H. Ma, C. Luo & T. Zhou (2017). Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. Journal of Hazardous Materials, 326, 77-86.
    Demianenko, E., Ilchenko, M., Grebenyuk, A., Lobanov, V., &Tsendra, O (2014). A theoretical study on ascorbic acid dissociation in water clusters. Journal of Molecular Modeling, 20(3).
    Gao, W., C. Liu, H. Cao, X. Zheng, X. Lin, H. Wang, Y. Zhang & Z. Sun (2018a). Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries. Waste Management, 75, 477-485.
    Gao, W., J. Song, H. Cao, X. Lin, X. Zhang, X. Zheng, Y. Zhang & Z. Sun (2018b). Selective recovery of valuable metals from spent lithium-ion batteries – Process development and kinetics evaluation. Journal of Cleaner Production, 178, 833-845.
    Golmohammadzadeh, R., F. Rashchi & E. Vahidi (2017). Selective recovery of valuable metals from spent lithium-ion batteries. Waste Management, 64, 244-254.
    Granata, G., E. Moscardini, F. Pagnanelli, F. Trabucco & L. Toro (2012). Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations. Journal of Power Sources, 206, 393–401.
    Guan, J., Y. Li, Y. Guo, R. Su, G. Gao, H. Song, H. Yuan, B. Liang & Z. Guo (2017). Mechanochemical Process Enhanced Cobalt and Lithium Recycling from Wasted Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 5, 1026-1032.
    Guo, Y., F. Li, H. Zhu, G. Li, J. Huang & W. He (2016). Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Management, 51, 227-233.
    He, L.-P., S.-Y. Sun, X.-F. Song & J.-G. Yu (2017). Leaching process for recovering valuable metals from the LiNi1/3Co1/3Mn1/3O2 cathode of lithium-ion batteries. Waste Management, 64, 171-181.
    Hu, J., J. Zhang, H. Li, Y. Chen & C. Wang (2017). A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. Journal of Power Sources, 351, 192-199.
    Jaskula, B. W (2017). U.S. Geological Survey, Mineral Commodity Summaries, January 2017. S. USG. U.S. Department of the Interior, Reston, Virginia, 100-101.
    Jha, M. K., A. Kumari, A. K. Jha, V. Kumar, J. Hait & B. D. Pandey (2013). Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone. Waste Management, 33, 1890-1897.
    Joël, P.T.K (2006). Cobalt production and markets: A brief overview. Journal of Metals (JOM), 58, 33–36.
    Joulié, M., R. Laucournet & E. Billy (2014). Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. Journal of Power Sources, 247, 551-555.
    Kanako, J.-J (1989). Clinical Biochemistry of Domestic Animals. Academic Press. San Diego, 932.
    Kimball, S.J.S.M (2016). U.S. Geological Survey, 2016, Mineral Commodity Summaries 2016, U.S. Geological Survey, Reston, Virginia, January 2016.
    Kingston, H.-M & L.-B Jessie (1988). Introduction to microwave sample preparation theory and practice. American Chemical Society, Washington D.C.
    Kolthoff, H. I. M. & P.-J. Elving (1959). Treatise on Analytical Chemistry, New York, Interscience Encyclopedia, Inc.
    Ku, H., Y. Jung, M. Jo, S. Park, S. Kim, D. Yang, K. Rhee, E.-M. An, J. Sohn & K. Kwon (2016). Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. Journal of Hazardous Materials, 313, 138-146.
    Kumar, K. Vasanth, Issam A. Khaddour, & Vinod K. Gupta (2010). A pseudo second-order kinetic expression for dissolution kinetic profiles of solids in solutions. Industrial and Engineering Chemistry Research, 49.16: 7257–7262.
    Lee, J., Kim, S., Kim, B. & J.-C. Lee (2018). Effect of mechanical activation on the kinetics of copper leaching from copper sulfide (CuS). Metals, 8(3).
    Li, L., E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu & R. Chen (2017). Sustainable Recovery of Cathode Materials from Spent Lithium-Ion Batteries Using Lactic Acid Leaching System. ACS Sustainable Chemistry and Engineering, 5, 5224-5233.
    Li, L., J. Lu, Y. Ren, X. X. Zhang, R. J. Chen, F. Wu & K. Amine (2012). Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources, 218, 21-27.
    Li, L., L. Zhai, X. X. Zhang, Lu, R. J. Chen, F. Wu & K. Amine (2014). Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources, 262, 380–385.
    Li, L., W. Qu, X. Zhang, J. Lu, R. Chen, F. Wu & K. Amine (2015). Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 282, 544-551.
    Lin, T. I., Lee, Y. H., & Y.-C. Chen (1993). Capillary electrophoretic analysis of inorganic cations. Role of complexing agent and buffer pH. Journal of Chromatography A, 654(1), 167–176.
    Luque, R., J. A. Menendez, A. Arenillas & J. Cot (2012). Microwave-assisted pyrolysis of biomass feedstocks: the way forward. Energy and Environmental Science, 5, 5481-5488.
    Lv, W., Z. Wang, H. Cao, Y. Sun, Y. Zhang & Z. Sun (2018). A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 6, 1504-1521.
    Madakkaruppan, V., Pius, A., Sreenivas, T., Giri, N. Sarbajna, C. (2016). Influence of microwaves on the leaching kinetics of uraninite from a low grade ore in dilute sulfuric acid. Journal of Hazardous Materials, 313, 9–17.
    Manthiram, A., B. Song & W. Li (2017). A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 6, 125-139.
    Martín, Á. & A. Navarrete (2018). Microwave-assisted process intensification techniques. Current Opinion in Green and Sustainable Chemistry, 11, 70-75.
    Meng, Q., Zhang, Y., Dong, P. & F. Liang (2018). A novel process for leaching of metals from LiNi1/3Co1/3Mn1/3O2 material of spent lithium ion batteries: Process optimization and kinetics aspects, Journal of Industrial and Engineering Chemistry, 61, 133–141.
    Meshram, P., B. D. Pandey & T. R. Mankhand (2014). Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150, 192-208.
    Meshram, P., B. D. Pandey& T. R. Mankhand (2015). Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects. Waste Management, 45, 306–313.
    Molenda, M., M. Bakierska, D. Majda, M. Świętosławski & R. Dziembaj (2015). Structural and electrochemical characterization of sulphur-doped lithium manganese spinel cathode materials for lithium ion batteries. Solid State Ionics, 272, 127-132.
    Motasemi, F. & M. T. Afzal (2013). A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews, 28, 317-330.
    Mushtaq, F., R. Mat & F. N. Ani (2014). A review on microwave assisted pyrolysis of coal and biomass for fuel production. Renewable and Sustainable Energy Reviews, 39, 555-574.
    Nayaka, G. P., K. V. Pai, G. Santhosh & J. Manjanna (2016). Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent. Journal of Environmental Chemical Engineering, 4, 2378-2383.
    Nitta, N., F. Wu, J. T. Lee & G. Yushin (2015). Li-ion battery materials: present and future. Materials Today, 18, 252-264.
    Ordoñez, J., E. J. Gago & A. Girard (2016). Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60, 195-205.
    Paulino, J. F., N. G. Busnardo & J. C. Afonso (2008). Recovery of valuable elements from spent Li-batteries. Journal of Hazardous Materials, 150, 843-849.
    Peng, C., J. Hamuyuni, B. P. Wilson & M. Lundström (2018). Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system. Waste Management, 76, 582-590.
    Pickles, C. A. (2009). Microwaves in extractive metallurgy: Part 1 – Review of fundamentals. Minerals Engineering, 22, 1102-1111.
    Schnebele, E. K. (2017). U.S. Geological Survey, Mineral Commodity Summaries, January 2017. S. USG. U.S. Department of the Interior, Reston, Virginia, 114-115.
    Shao-Horn, Y., L. Croguennec, C. Delmas, E. C. Nelson & M. A. O'Keefe (2003). Atomic resolution of lithium ions in LiCoO2. Nature Materials, 2, 464.
    Shedd, K. B. (2017) U.S. Geological Survey, Mineral Commodity Summaries, January. S. USG. U.S. Department of the Interior, Reston, Virginia, 52-53.
    Shin, S. M., N. H. Kim, J. S. Sohn, D. H. Yang & Y. H. Kim (2005). Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79, 172-181.
    Smith, R.M., Martell, A. E. (1976). Critical stability constants, Volume 4: Inorganic Complexes. Springer, New York.
    Stuerga, D. (2008). Microwave-Material Interactions and Dielectric Properties, Key Ingredients for Mastery of Chemical Microwave Processes. Microwaves in Organic Synthesis, Second Edition (Vol. 1).
    Sun, L. & K. Qiu (2011). Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Journal of Hazardous Materials, 194, 378-384.
    Sun, Z., H. Cao, X. Zhang, X. Lin, W. Zheng, G. Cao, Y. Sun & Y. Zhang (2017). Spent lead-acid battery recycling in China – A review and sustainable analyses on mass flow of lead. Waste Management, 64, 190-201.
    Swain, B. (2017). Recovery and recycling of lithium: A review. Separation and Purification Technology, 172, 388-403.
    Takacova, Z., T. Havlik, F. Kukurugya & D. Orac (2016). Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach. Hydrometallurgy, 163, 9-17.
    Talens Peiró, L., G. Villalba Méndez & R. U. Ayres (2013). Lithium: Sources, Production, Uses, and Recovery Outlook. Journal of Metals (JOM), 65, 986-996.
    Tyagi, V. K. & S.-L. Lo (2013). Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renewable and Sustainable Energy Reviews, 18, 288-305.
    Uçar, G (2009). Kinetics of sphalerite dissolution by sodium chlorate in hydrochloric acid. Hydrometallurgy, 95(1–2), 39–43.
    Veggi, P. C., J. Martinez & M. A. A. Meireles (2013). Fundamentals of Microwave Extraction. In Microwave-assisted Extraction for Bioactive Compounds: Theory and Practice, eds. F. Chemat & G. Cravotto, 15-52. Boston, MA: Springer US.
    Vereš, J., M. Lovás, Š. Jakabský, V. Šepelák & S. Hredzák (2012). Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy, 129-130, 67-73.
    Wang, W. & Y. Wu (2017). An overview of recycling and treatment of spent LiFePO4 batteries in China. Resources, Conservation and Recycling, 127, 233-243.
    Wen, T., Y. Zhao, Q. Xiao, Q. Ma, S. Kang, H. Li & S. Song (2017). Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy. Results in Physics, 7, 2594-2600.
    Wilburn, D. R. (2009). Material use in the United States-selected case studies for cadmium, cobalt, lthium and nickel in rechargeable batteries. Reston, VA: United States Geological Survey, pp. 1–18.(table2.2)
    Wu, S (2007). Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC. Materials Letters, 61(4–5), 1125–1129.
    Zeng, X., J. Li & N. Singh (2014). Recycling of spent lithium-ion battery: A critical review. Critical Reviews in Environmental Science and Technology, 44, 1129-1165.
    Zhang, X., Xue, Q., Li, L., Fan, E., Wu, F., & R. Chen (2016). Sustainable Recycling and Regeneration of Cathode Scraps from Industrial Production of Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 4(12), 7041–7049.
    Zhang, X., K. Rajagopalan, H. Lei, R. Ruan & B. K. Sharma (2017). An overview of a novel concept in biomass pyrolysis: microwave irradiation. Sustainable Energy and Fuels, 1, 1664-1699.
    Zubi, G., R. Dufo-López, M. Carvalho & G. Pasaoglu (2018). The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89, 292-308.

    QR CODE