簡易檢索 / 詳目顯示

研究生: 林冠穎
Kuan-Ying Lin
論文名稱: 雙酚A-甲基丙烯酸縮水甘油酯與甲基丙烯酸-2-羥基乙酯光固化樹脂之結構與性質研究
A Study on The Structure and Properties of UV-Cured Bis-phenol A Diglycidyl Methacrylate / 2-Hydroxyethyl Methacrylate Resins
指導教授: 胡孝光
Shiaw-guang Hu
口試委員: 李文福
none
高震宇
none
楊勝俊
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 106
中文關鍵詞: 機械性質轉化率雙酚A-甲基丙烯酸縮水甘油脂紫外光固化
外文關鍵詞: Mechanical properties, Degree of conversion, BisGMA, UV-curing
相關次數: 點閱:245下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以不同比例的進料bis-phenol A diglycidyl methacrylate(BisGMA)及2-hydroxyethyl methacrylate(HEMA),使用2,2-Diethoxy-1-phenylethanone (DEAP)為光起始劑,添加不同含量的silica,並以紫外光聚合固化,討論不同BisGMA/HEMA進料比及silica添加量對反應轉化率,交聯網路結構與性質的影響。
      藉由13C液態及固態核磁共振儀得知,高分子中BisGMA的含量隨著BisGMA進料量增加而上升。由FTIR發現雙鍵轉化率隨BisGMA含量增加而上升。壓縮模數隨BisGMA進料量增加而上升,交聯密度會增加,且網路中物理纏結的密度(Ns)和網路中化學交聯的密度(Nc)都會增加,表示BisGMA的添加同時有助於物理性及化學性的交聯。此外,利用交聯密度與高分子吸水率可計算得出水和高分子間交互作用參數(χ),χ值越大,平衡含水率越低。固化體積收縮率隨BisGMA的進料量增加而下降,因BisGMA比HEMA帶有較多苯環上的不飽和鍵。由TGA實驗發現熱裂解溫度隨BisGMA含量增加而提高,因高分子單體單位中BisGMA的分子結構帶有兩個苯環,與HEMA相比耐熱溫度較高。由動態機械分析發現儲存模數與玻璃轉移溫度(Tg)皆隨BisGMA進料量增加而上升,且玻璃轉移溫度(Tg)隨轉化率增加而上升。接觸角隨BisGMA進料量增加而上升,因BisGMA較HEMA相對疏水。黏著強度隨BisGMA的進料量增加而上升,且樹脂的破壞模式為內聚破壞(cohesive failure)。材料Vickers硬度隨著BisGMA進料量增加而上升。

      另一方面添加silica的高分子,轉化率隨添加量增加而下降,且添加量較多時在SEM下發現silica粒子產生聚集。添加量增加,平衡含水率下降及接觸角度上升,因在高分子中添加的silica為疏水型的二氧化矽。除此之外,silica添加量增加,可提升材料的壓縮模數、交聯密度及材料Vickers硬度,且網路中物理纏結的密度(Ns)和網路中化學交聯的密度(Nc)都會增加。而silica含量增加時,固化體積收縮率會降低。在高分子中添加無機物時,因碳化的高分子受二氧化矽影響,而堆積於二氧化矽的表面,使殘餘率提高。另外,在高分子中添加適量的無機物可以提高其儲存模數與玻璃轉移溫度(Tg)。而高分子的黏著強度隨silica添加量增加而降低。
      實驗結果得知當改變BisGMA/HEMA進料比及silica含量時,會影響高分子的網路結構,進而影響到膨潤交聯產物的交聯密度、力學性質、水與高分子的交互作用,及影響乾交聯產物的動態機械性質及熱性質、黏著強度、硬度等性質。


    Adhesives were prepared by using bis-phenol A diglycidylmethacrylate(BisGMA)and 2-hydroxyethyl methacrylate(HEMA)of different weight ratios in feed, with 2,2-Diethoxy-1-phenylethanone (DEAP) as the photoinitiator. We add silica in various contents of feed and cure BisGMA and HEMA with UV light and the photoinitiator. We examine the effects of BisGMA/HEMA weight ratios in feed and contents of silica on conversion of reaction, network structure, thermodynamic and mechanical properties.
      According to 13C Solid-state NMR analysis, the contents of BisGMA in polymers increase with increasing the contents of BisGMA in feed.
    According to FTIR analysis, as the contents of BisGMA increase, the conversions of double bonds increase. Compressive modulus and crosslinking density increase with increasing the contents of BisGMA in feed. Both of the density of physical entanglement(Ns)and the density of chemical crosslinking in network(Nc) increase with increasing the contents of BisGMA in feed, showing that adding BisGMA is favorable for physical and chemical crosslinking. In addition, the interaction parameters of water and polymers in adhesives (χ) were calculated by crosslinking densities and equilibrium water contents. As the χ values increase, the equilibrium water contents decrease. Curing volume shrinkages decrease with increasing the contents of BisGMA in feed because of BisGMA with more unsaturated bonds than HEMA. We find pyrolysis temperatures by TGA increase with increasing the relative contents of BisGMA. BisGMA monomer units have higher heat resistance temperature compared with HEMA, due to the molecular structure with two benzene rings in BisGMA. According to DMA analysis, the storage modulus and the glass transition temperature (Tg) are increased with the increase in feed amount of BisGMA, and the glass transition temperature (Tg) are increased with increasing the conversion of double bonds. As the contents of BisGMA increase, the contact angle increase, due to BisGMA being relatively more hydrophobic than HEMA. As the contents of BisGMA increase, the adhesive strength increase. And the failure mode of resins is cohesive failure. As the contents of BisGMA increase, the Vickers hardness increase.
    On the other hand, As the contents of silica increase, the conversions(FTIR) of double bonds decrease. And we observed with SEM the aggregation of the silica particles at the excess of silica contents. As the contents of silica increase, increasing contact angle and decreasing equilibrium water contents was found because the silica is hydrophobic relative to momomers. In addition, all of compressive modulus, crosslinking densities, Vickers hardness, the densities of physical entanglement in network, and the densities of chemical crosslinking in network increase with increasing the contents of silica. The polymerization volume shrinkages decrease with increasing the contents of silica. Adding inorganic particles in adhesives can raise storage modulus, glass transition temperature, pyrolysis temperatures, and thermal stability of materials. The char yield increases because the carbonization of the polymer is affected by silica and it accumulates at the silica surface. The adhesive strength decrease with increasing the contents of silica.

    Experimental results show that when we vary BisGMA/HEMA ratios in feed and silica contents, that will influence the network structure of polymer, thereby affecting crosslinking density of adhesives, mechanical properties, equilibrium water contents, interactions between water and polymers in swollen resins, as well as affecting dynamic mechanical properties, thermal stability, adhesive strength, and Vickers hardness of dry resins.

    一、前言.........................................1 二、實驗方法.....................................10 2.1 BisGMA/HEMA高分子的製備.....................10 2.2 含Silica之複合材料的製備......................10 2.3 13C液態及固態核磁共振儀分析....................11 2.4 雙鍵反應轉化率測試............................12 2.5 平衡膨潤測定.................................12 2.6 壓縮變形測試.................................13 2.7固化體積收縮率測試..............................13 2.8材料之表面形態觀察..............................13 2.9 接觸角測量....................................14 2.10熱安定性測試..................................14 2.11 動態機械性質分析..............................15 2.12 黏著強度試驗.................................15 2.13 材料硬度試驗.................................15 三.結果與討論.....................................17 3.1 13C液態及固態核磁共振光譜(13C-SSNMR)分析.......17 3.1.1 BisGMA進料量對高分子中BisGMA含量的影響.........18 3.2 傅立葉轉換紅外線光譜(FTIR)分析.................18 3.2.1 BisGMA進料量對雙鍵轉化率之影響................19 3.2.2 Silica添加量對雙鍵轉化率之影響................20 3.3 平衡含水率分析................................20 3.3.1 BisGMA/HEMA比例對平衡含水率之影響.............20 3.3.2 Silica添加量對平衡含水率之影響................21 3.4 材料之壓縮測試................................21 3.4.1 壓縮模數測定................................ 21 3.4.2 含水率與交聯密度及Flory-Huggins交互作用參數....22 3.4.3膨潤交聯網絡結構對黏彈性質之影響分析..............25 3.5 固化體積收縮率分析.............................27 3.5.1 BisGMA/HEMA比例對固化體積收縮率之影響.........27 3.5.2 Silica添加量對固化體積收縮率之影響.............27 3.6 材料之表面形態分析.............................27 3.7 交聯產物之熱安定性分析..........................28 3.7.1 BisGMA/HEMA比例對熱安定性之影響...............28 3.7.2 Silica添加量對熱安定性之影響..................28 3.8 材料之動態機械性質分析...........................29 3.8.1 BisGMA/HEMA比例對動態機械性質之影響............29 3.8.2 Silica添加量對動態機械性質之影響...............30 3.9 材料表面之接觸角分析.............................31 3.9.1 BisGMA/HEMA比例對材料表面接觸角之影響...........31 3.9.2 Silica添加量對材料表面接觸角之影響...............31 3.10 材料之黏著強度分析..............................31 3.10.1 BisGMA/HEMA比例對黏著強度之影響...............31 3.10.2 Silica添加量對黏著強度之影響...................32 3.11 材料之硬度分析.................................33 3.11.1 BisGMA/HEMA比例對材料硬度之影響...............33 3.11.2 Silica添加量對材料硬度之影響...................33 四.結論............................................34 五.參考文獻.........................................36 附錄A 環化反應示意圖..................................88 附錄B 玻璃轉移溫度(Tg)與轉化率之關係圖...................89

    1.T. Sugaya, M. Kawanami, H. Noguchi, H. Kato, and N. Masaka, Periodontal healing after bonding treatment of vertical root fracture, Dent. Traumatol., 17(4), 174 (2001).
    2.D. W. Jones, Has dental amalgam been torpedoed and sunk, J. Dent. Res.,87(2),101 (2008).
    3.W. Geurtsen, Biocompatibility of Resin-Modified Filling Materials, Crit. Rev. Oral. Biol. Med. , 11(3) ,333 (2000).
    4.K. S. Gronberg , J.W.V. van Dijken, U. Funegard, A. Lindberg ,and M. Nilsson, Selection of dental materials and longevity of replaced restorations in public dental health clinics in northern Sweden , J. Dent. ,37, 673 (2009).
    5.A. Peutzfeldt, Resin composites in dentistry: the monomer systems, Eur. J. Oral. Sci. ,105, 97 (1997).
    6.U. V. Lӓuppi, Radiation curing-an overview, Radiat. Phys. Chem., 35, 30 (1990).
    7.C. Decker, Photoinitiated crosslinking polymerization, Prog. Polym .Sci., 21, 593 (1996).
    8.J. P. Fouassier, Photoinitiation, photopolymerization, and photocuring, fundamentals and application, Hanser., 1 (1995).
    9.H. H. Chandler, R. L. Bowen, and G. C. Paffenbarger , Physical properties of a radiopaque denture base material, J. Biomed. Mater. Res., 5, 335(1971).
    10.M. G. Mantellini, T. M. Botero, P. Yaman, J. B. Dennison, C. T. Hanks, and J. E. Nӧr, Adhesive resin and the hydrophilic monomer HEMA induce VEGF expression on dental pulp cells and macrophages, Dent. Mater., 22(5), 434 (2006).
    11.I. Sideridou, D. S. Achilias, C. Spyroudi, and M. Karabela , Water sorption characteristics of light-cured dental resins and composites based on Bis-EMA/PCDMA ,Biomaterials,25,367 (2004).
    12.L. C. Mendes , A. D. Tedesco , M. S. Miranda , M. R. Benzi ,and B. S. Chagas , Determination of degree of conversion as a function of depth of a photo-initiated dental restoration composite—III application to commercial Prodigy Condensablee , Polymer Testing ,24, 963 (2005).
    13.C. S. Pfeifer, Z. R. Shelton, R. R. Braga, D. Windmoller, J. C. Machado, and J. W. Stansbury, Characterization of dimethacrylate polymeric networks: A study of the crosslinked structure formed by monomers used in dental composites, Eur. Polym. J., 47, 162 (2011).
    14.Q. Ye, P. Spencer, Y. Wang, and A. Misra , Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives , J. Biomed. Mater. Res. A. , 80(2), 342 (2007).
    15.J. Park, J. Eslick, Q. Ye, A. Misra, and P. Spencer ,The influence of chemical structure on the properties in methacrylate-based dentin adhesives , Dent. Mater., 27, 1086 (2011).
    16.P. Spencer and Y. Wang, Adhesive phase separation at dentin interface under wet bonding conditions, J. Biomed. Mater. Res., 62, 447 (2002).
    17.S. J. Paul, M. Leach, F. A. Rueggeberg, and D. H. Pashley, Effects of water content on the physical properties of model dentine primer and bonding resins, J. Dent., 27, 209 (1999).
    18.J. L. Ferracane , Hygroscopic and hydrolytic effects in dental polymer networks, Dent. Mater., 22, 211 (2006).
    19.C. I. Vallo, Flexural Strength Distribution of a PMMA-Based Bone Cement, J. Biomed. Mater. Res., 63, 226 (2002).
    20.S.H. Park, Comparison of degree of conversion for light-cured and additionally heat-cured composites ,J. Prosthet. Dent. ,76 ,613 (1996).
    21.R.H. Halvorson, R.L. Erickson, and C.L. Davidson, Energy dependent polymerization of resin-based composite, Dent. Mater.,18,463 (2002).
    22.A.D. Neves, J.A. Discacciati, R.L. Orefice, and M.I. Yoshida, Influence of the power density on the kinetics of photopolymerization and properties of dental composites, J. Biomed. Mater. Res.B: Appl Biomater , 72,393 (2005).
    23.R.L. Bowen , Properties of a silica-reinforced polymer for dental restorations, J. Am. Dent. Assoc., 66,57 (1963).
    24.I.E. Ruyter and H. Byszd , Composites for use in posterior teeth: Composition and conversion, J. Biomed. Mater. Res., 21, 11 (1987).
    25.E. Asmussen, Composite restorative resins: Composition versus wall-to-wall polymerization contraction, Acta. Odontol. Scand., 33 , 337(1975).
    26.K. S. Anseth, S. M. Newman, and C. N. Bowman, Polymeric dental composites: properties and reaction behavior of multimethacrylate dental restorations, Adv. Polym. Sci., 122, 177(1995).
    27.J. L. Ferracane, Current trends in dental composites, Crit. Rev. Oral. Biol. Med., 6, 302(1995).
    28.N. Moszner and U. Salz, New development of polymeric dental composites, Prog. Polym. Sci., 26, 535(2001).
    29.J. Tinschert, D. Zwez, R. Marx, and K.J. Anusavice , Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics, J. Dent., 28, 529 (2000).
    30.J. Luo, R. Seghi, and J. Lannutti, Effect of silane coupling agents on the wear resistance of polymer-nanoporous silica gel dental composites, Mater. Sci. Eng., C5, 15(1997).
    31.L. Musanje and J. L. Ferracane, Effects of resin formulation and nanofiller surface treatment on the properties of experimental hybrid resin composite, Biomaterials, 25, 4065(2004).
    32.K. S. Wilsona, K. Zhang, and J. M. Antonucci, Systematic variation of interfacial phase reactivity in dental nanocomposites, Biomaterials, 26, 5095(2005).
    33.B.A. Rozenberg and R. Tenne, Polymer-assisted fabrication of nanoparticles and nanocomposites, Prog. Polym. Sci., 33,40 (2008).
    34.M.H. Chen, C.R. Chen, S.H. Hsu, S.P. Sun, and W.F. Su, Low shrinkage light curable nanocomposite for dental restorative material, Dent. Mater.,22, 138 (2006).
    35.C. H. Lee, S. H. Park, W. Chung, J. Y. Kim, and S. H. Kim, Preparation and characterization of surface modified silica nanoparticles with organo-silane compounds, Colloid. Surf. A Physicochem. Eng. Asp., 384,318 (2011).
    36.Y.Y. Yu, C.Y. Chen, and W.C. Chen, Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica, Polymer, 44, 593 (2003).
    37.R. H. Halvorson, R. L. Erickson, and C. L. Davidson , The effect of filler and silane content on conversion of resin-based composite, Dent. Mater., 19, 327 (2003).
    38.E. Kontou and M. Niaounakis , Thermo-mechanical properties of LLDPE/SiO2 nanocomposites, Polymer ,47,1267 (2006).
    39.N. Moszner, A. Gianasmidis, S. Klapdohr, U. K. Fischer, and V. Rheinberger, Sol–gel materials 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components, Dent. Mater., 24, 851 (2008).
    40.S. M. Lai, C. Y. Huang, S.C. Li, Y.H. Chen, H.C. Hsu, Y.F. Yu, and Y. F. Hsiou, preparation and properties of melt-mixed metallocene polyethylene/silica nanocomposites, Polym. Eng. Sci., 51,434 (2011).
    41.R. Frankenberger and F. R. Tay, Self-etch vs etch-and-rinse adhesives: effect of thermo-mechanical fatigue loading on marginal quality of bonded resin composite restorations, Dent. Mater., 21(5), 397 (2005).
    42.B. V. Meerbeek, K. V. Landuyt, J. D. Munck, M. Hashimoto, M. Peumans, P. Lambrechts, Y. Yoshida, S. Inoue, and K. Suzuki, Technique-sensitivity of contemporary adhesives, Dent. Mater., 24(1), 1 (2005).
    43.D.R. Morgan, S. Kalachandra, H.K. Shobha, N. Gunduz, and E.O. Stejskal, Analysis of a dimethacrylate copolymer (Bis-GMA and TEGDMA) network by DSC and 13C solution and solid-state NMR spectroscopy , Biomaterials, 21, 1897(2000).
    44.L. C. Mendes, A. D.Tedesco, and M. S. Miranda , Determination of degree of conversion as function of depth of a photo-initiated dental restoration composite, Polymer Testing, 24, 418 (2005).
    45.J.E. Elliott and C.N. Bowman, kinetics of primary cyclization reaction in cross-linked polymers: An analytical and numerical approach to heterogeneity in network formation, Macromolecules, 32,8621 (1999).
    46.J.E. Elliott, J. Nie, and C.N. Bowman, the effect of primary cyclization of free radical polymerization kinetics: Experimental characterization, Polymer,44 , 327 (2003).
    47.J. E. Elliott, L. G. Lovell, and C. N. Bowman, Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins, Dent. Mater., 17(3), 221 (2001).
    48.H. Sano, W.G. Mattews, and D.H. Pashley, tensile properties of mineralized and demineralized human and bovine dentine, J. Dent. Res. ,73, 1205(1994).
    49.R. H. Halvorson, R. L. Erickson, and C. L. Davidson, The effect of filler and silane content on conversion of resin-based composite, Dent. Mater., 19, 327(2003).
    50.Vero’nica, L. Mucci, G. F. Arenas, C. J. Pe’rez , and C. I. Vallo, Prepolymerized organic–inorganic hybrid nanoparticles as fillers for light-cured methacrylate monomers, J. Mater. Sci., 47, 2951(2005).
    51.Y .Zhang and J. Xu, Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions. J. Mater. Sci. Mater. Med.,19,2477(2008).
    52.U. Ortengren, H .Wellendorf, S. Karlsson, and I.E. Ruyter, Water sorption and solubility of dental composites and identification of monomers released in aqueous environment. J. Oral. Rehabil. ,28,1106(2001).
    53.J. Durner, P. Wellner , R. Hickel , and F.X. Reichl, Synergistic interaction caused to human gingival fibroblasts from dental monomers, Dent. Mater., 28, 818(2012).
    54.S. Garoushi, P. Vallittu, D. C. Watts, and L. Lassila, Effect of nanofiller fractions and temperature on polymerization shrinkage on glass fiber reinforced filling material, Dent. Mater., 24, 606 (2008).
    55.K. Ulbrich, K. Dušek, M. Ilavsky, and J. Kopeček, Preparation and properties of poly-(n-butylmethacrylamide) networks, Eur. Polym. J., 14, 45 (1978).
    56.K. Ulbrich, M. Ilavsky, K. Dušek, and J. Kopeček, Preparation and properties of poly-(n-ethylmethacrylamide) networks, Eur. Polym. J., 13, 579 (1977).
    57.P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, N. Y., Chapter 12, 13 (1953).
    58.L. B. Peppas and N. A. Peppas, Structural analysis of charged polymeric networks, Polym. Bull., 20, 285(1988).
    59.L. H. Sperling, Introduction to Physical Polymer Science, Wiley-Interscience, N. Y., 439 (1986).
    60.R. C. Ball, M. Doi, S. F. Edwards, and M. Warner, Elasticity of entangled networks, Polymer, 22, 1010 (1981).
    61.R. G. Matthews, R. A. Duckett, I. M. Ward, and D. P. Joned, The biaxial drawing behaviour of poly(ethylene terephthalate), Polymer, 38, 4795 (1997).
    62.I. Sakurada, A. Nakajima, and H. Fujiwara, Elasticity of entangled networks, J. Appl. Polym. Sci., 35, 479 (1959).
    63.P. Thirion and T. Weil, Assessment of the sliding link model of chain entanglement in polymer networks, Polymer, 25, 609 (1984).
    64.M. G. Brereton and P. G. Klein, Analysis of the rubber elasticity of polyethylene networks based on the slip link model of S. F. Edwards et al., Polymer, 29, 970 (1988).
    65.M. Podgorski, Structure–property relationship in new photo- cured dimethacrylate-based dental resins, Dent. Mater., 28, 398 (2012).
    66.M.P. Patel, M. Braden and K.W.M. Davy, Polymerization shrinkage of methacrylate esters, Biomaterials,8,53(1987).
    67.H. Wang, M. Zhu, Y. Li, Q. Zhang, and H. Wang, Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles, Mater. Sci. Eng., C31, 600 (2011).
    68.C. Rigoli, C. C. S. Cavalheiro, M. G. Neumann, and E .T. G. Cavalheiro, Thermal decomposition of copolymers used in dental resins formulations photocured by ultra blue IS, Appl. Polym. Sci., 105, 3295 (2007).
    69.W. Teshima, Y. Nomura, A. Ikeda, T. Kawahara, M. Okazaki, and Y. Nahara, Thermal degradation of photo-polymerized BisGMA/TEGDMA-based dental resins, Polym. Degrad. Stab. , 84, 167 (2004).
    70. J. Park, Q. Ye, E. M. Topp, A. Misra, S. L. Kieweg, and P. Spencer, Effect of photoinitiator system and water content on dynamic mechanical properties of a light-cured bisGMA/HEMA dental resin, J. Biomed. Mater. Res. ,93A, 1245(2009).
    71.M. Sangermano , W. D. Cook , S. Papagna , and S. Grassini, Hybrid UV-cured organic–inorganic IPNs, Eur. Polym. J., 48,1796(2012).
    72.W.D. Cook ,Thermal aspects of the kinetics of dimethacrylate photopolymerization, Polymer, 33, 2152(1992).
    73.D. Jack and L. Ferracane, Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins, Dent. Mater.,1,11(1985).
    74.J. F. McCabe and R. W. Wassell, Hardness of model dental composites - the effect of filler volume fraction and silanation, J. Mater. Sci.: Mater. Med., 10,291(1999).
    75.J. P. Pascault and R. J. J. Williams, Glass transition temperature versus conversion relationships for thermosetting polymers ,J Polym Sci Part B: Polym Phy, 28, 85(1990).

    QR CODE