Basic Search / Detailed Display

Author: 黃淑容
Shu-Rong Huang
Thesis Title: 於無線射頻標籤辨識系統中之行動性感知二元樹演算法
A Mobility Aware Binary Tree Algorithm in RFID Tag Identification
Advisor: 賴源正
Yuan-Cheng Lai
Committee: 徐俊傑
Chiun-Chieh Hsu
林志宗
Chih-Chung Lin
Degree: 碩士
Master
Department: 管理學院 - 資訊管理系
Department of Information Management
Thesis Publication Year: 2014
Graduation Academic Year: 102
Language: 中文
Pages: 34
Keywords (in Chinese): 無線射頻標籤辨識標籤辨識防碰撞動態式標籤
Keywords (in other languages): RFID, tag identification, anti-collision, mobile tag
Reference times: Clicks: 417Downloads: 2
Share:
School Collection Retrieve National Library Collection Retrieve Error Report

無線射頻標籤辨識技術(RFID)廣泛應用於自動化辨識系統中,因與傳統條碼系統相比具有便利性、立即性和無需接觸欲辨識物體的特性。為了提高標籤辨識的速度,許多防標籤訊號碰撞的演算法提出以解決標籤碰撞造成的問題。但傳統的防碰撞演算法並沒有考慮標籤會進出讀取器的覆蓋範圍的移動環境,行動標籤和固定標籤相較下會產生兩個額外的問題:(1)讀取器對行動標籤的辨識時間有限;(2)由於標籤的行動性造成提供符合標籤數量的時槽數量具困難性。為處理行動標籤的辨識問題,本論文提出了行動感知二元樹演算法(Mobility Aware Binary Tree algorithm, MABT)用於解決行動標籤會進出讀取器覆蓋範圍的辨識問題。MABT具有三個特點:(1)透過將標籤作分群,以區分出標籤進出的順序和辨識的優先權;(2)為精確地預估標籤數,其透過統計方式決定恰當的訊框時槽數;(3)於隨機選取時發生碰撞的標籤採BT (Binary Tree)辨識,以縮短辨識的延遲並避免飢餓問題的發生。模擬結果顯示在輸送帶環境下,MABT的辨識效能,在移動速率是6 m/s且平均每公尺標籤密度為4個的情況下,辨識率提升了約20%,而在移動速率是4 m/s且維持辨識率98%以上的情況下,平均每公尺標籤密度增加了約17%。


The Radio Frequency Identification (RFID) technique is widely applied into the automated identification system because its convenience, immediate and contactless identification compared with the bar-code system. In order to accelerate the tag identification process, many RFID anti-collision algorithms were proposed to solve the RFID collisions. However, these conventional algorithms did not consider the mobile tags which will move in and out the reader’s interrogation range. Mobile tags different from fixed tags will cause two problems: (1) the reader must identify the tags under limited identification duration; (2) the reader must accurately determine the number of time slots, which is suitable to the number of tags. To cope with these problems, this thesis proposes the Mobility Aware Binary Tree algorithm (MABT) to improve the identification performance under the condition that mobile tags will enter and leave the reader’s interrogation range. The MABT has three novel features: (1) it groups the tags in order to distinguish their sequences and priorities in recognition; (2) it statistically determines the optimal number of slots in a frame according to the number of tags; (3) It adopts the BT (Binary Tree) algorithm to resolve the collisions in the slots of a frame to shorten the identification delay and avoid the starvation problem. The simulation results show that MABT can raise 20% identification rate when speed is 6 m/s and the average tag density is 4 tags/m. It also increases 17% tag density when speed is 4 m/s and the identification rate is 98% in the conveyor environment.

摘要 Abstract 誌謝 目錄 圖目錄 表目錄 壹、導論 貳、背景 2.1RFID系統概觀 2.2動態式RFID系統模型 2.3相關文獻探討 參、MABT演算法 3.1估計最佳的訊框長度 3.2MABT演算法 3.3MABT範例 肆、模擬結果 伍、結論 參考文獻

[1] “Information technology -- Radio frequency identification for item management -- Part 6: Parameters for air interface communications at 860 MHz to 960 MHz General,” ISO/IEC, 18000-6, 2013.
[2] “EPC TM radio-frequency identity protocols class 1 generation-2 UHF RFID protocol for communications at 860-960MHz version 1.2.0,” EPCglobal Inc TM, May 2008.
[3] M. Azambuja, C. A. M. Marcon, and F. P. Hessel, “Survey of Standardized ISO 18000-6 RFID Anti-collision Protocols,” presented at the Sensor Technologies and Applications, 2008. SENSORCOMM ’08. Second International Conference on, 2008, pp. 468–473.
[4] J.-R. Cha and J.-H. Kim, “Dynamic framed slotted ALOHA algorithms using fast tag estimation method for RFID system,” presented at the Consumer Communications and Networking Conference, 2006. CCNC 2006. 3rd IEEE, 2006, vol. 2, pp. 768–772.
[5] H. Vogt, “Efficient Object Identification with Passive RFID Tags,” in Proceedings of the First International Conference on Pervasive Computing, 2002, pp. 98–113.
[6] V. Namboodiri and Lixin Gao, “Energy-Aware Tag Anti-Collision Protocols for RFID Systems,” presented at the Pervasive Computing and Communications, 2007. PerCom ’07. Fifth Annual IEEE International Conference on, 2007, pp. 23–36.
[7] C. Law, K. Lee, and K.-Y. Siu, “Efficient memoryless protocol for tag identification,” in Proceedings of the 4th international workshop on Discrete algorithms and methods for mobile computing and communications, 2000, pp. 75–84.
[8] C. Saygin and B. Natarajan, “RFID-based baggage-handling system design,” Sensor Review, vol. 30, no. 4, pp. 324–335, 2010.
[9] X. Wang and D. Wang, “Experimental Study on RFID Performance Factors of Conveyor Belt System Using DOE Methodology,” presented at the Future Networks, 2010. ICFN ’10. Second International Conference on, 2010, pp. 139–143.
[10] “HKIA Boosts Baggage Handling Efficiency with RFID Technology,” Hong Kong International Airport, 15-Jan-2008. [Online]. Available: http://www.hongkongairport.com/eng/media/press-releases/pr_914.html. [Accessed: 23-Jun-2014].
[11] M. Roberti, “Wal-Mart Begins RFID Rollout,” RFID Journal, 30-Apr-2004. [Online]. Available: http://www.rfidjournal.com/articles/view?926. [Accessed: 23-Jun-2014].
[12] B. Bacheldor, “China Post Deploys EPC RFID System to Track Mailbags,” RFID Journal, 13-Jul-2006. [Online]. Available: http://www.rfidjournal.com/articles/view?2487. [Accessed: 23-Jun-2014].
[13] W. Zhu, J. Cao, H. Chan, X. Liu, and V. Raychoudhury, “Mobile RFID with a High Identification Rate,” Computers, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2013.
[14] M. U. Farooq, M. Asif, S. W. Nabi, and M. A. Qureshi, “Optimal Adjustment Parameters for EPC Global RFID Anti-collision Q-Algorithm in Different Traffic Scenarios,” presented at the Frontiers of Information Technology (FIT), 2012 10th International Conference on, 17, pp. 302–305.
[15] J.-R. Cha and J.-H. Kim, “Novel Anti-collision Algorithms for Fast Object Identification in RFID System,” presented at the Parallel and Distributed Systems, 2005. Proceedings. 11th International Conference on, 2005, vol. 2, pp. 63–67.
[16] J. Myung, W. Lee, J. Srivastava, and T. K. Shih, “Tag-splitting: adaptive collision arbitration protocols for RFID tag identification,” Parallel and Distributed Systems, IEEE Transactions on, vol. 18, no. 6, pp. 763–775, 2007.
[17] K. W. Chiang, C. Hua, and T.-S. P. Yum, “Prefix-randomized query-tree protocol for RFID systems,” in Communications, 2006. ICC’06. IEEE International Conference on, 2006, vol. 4, pp. 1653–1657.
[18] J.-S. Cho, J.-D. Shin, and S. K. Kim, “RFID tag anti-collision protocol: query tree with reversed IDs,” in Advanced Communication Technology, 2008. ICACT 2008. 10th International Conference on, 2008, vol. 1, pp. 225–230.
[19] J. Choi, I. Lee, D.-Z. Du, and W. Lee, “FTTP: a fast tree traversal protocol for efficient tag identification in RFID networks,” IEEE Communications Letters, vol. 14, no. 8, pp. 713–715, 2010.
[20] M.-K. Yeh, J.-R. Jiang, and S.-T. Huang, “Adaptive splitting and pre-signaling for RFID tag anti-collision,” Computer Communications, vol. 32, no. 17, pp. 1862–1870, 2009.

無法下載圖示 Full text public date 2019/07/30 (Intranet public)
Full text public date This full text is not authorized to be published. (Internet public)
Full text public date This full text is not authorized to be published. (National library)
QR CODE