簡易檢索 / 詳目顯示

研究生: 莊彥皜
Yen-Hao Chuang
論文名稱: 符合EPC UHF Gen-2 Air Interface協定 之無線射頻辨識標籤設計
Design of a Low-power RFID Tag for EPC UHF Gen-2 Air Interface Protocol
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 陳筱青
Hsiao-Chin Chen
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 127
中文關鍵詞: 被動式 UHF RFID tagEPC Gen2低功耗電荷幫浦基頻處理器
外文關鍵詞: Passive UHF RFID tag, EPC Gen-2, low power, Charge pump, baseband processor
相關次數: 點閱:288下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為基於EPC UHF Gen2 Air Interface Protocol所設計之被動式RFID tag,應用在UHF頻帶中的925 MHz頻段。Tag包含射頻/類比前端電路、基頻處理器以及記憶體單元。
    由於被動式RFID tag沒有外部電源供應,因此低功耗的設計格外重要,在射頻/類比前端電路以及基頻處理器的設計過程中,也都是以此為主要考量。
    射頻/類比前端電路主要有四個功能,第一、轉換RF能量為直流電壓供電給整個電路。第二、偵測出輸入RF訊號中的訊息。第三、產生系統時脈以及重置訊號。第四、反射基頻處理器運算完的訊號回RFID interrogator。為了較低的功率消耗,我們以Beta-multiplier Voltage reference circuit取代Bandgap Voltage reference circuit,以Multivibrator取代其他功耗較高的震盪器。
    基頻處理器則是處理收到的指令及參數後做出相對應的動作,例如改變標籤中flag的狀態、回傳random number或是讀取記憶體等等。而在降低功率消耗方面也運用了Clock gating、Operand isolation以及為編碼電路特別設計之演算法來達成。
    記憶體單元在本論文中是以ROM實現,儲存了RFID tag的EPC、密碼以及使用者儲存的資料等等。其大小為64 words,每組word有16位元的資料。
    晶片以TSMC 0.18 um CMOS process實現,考慮類比電路佈局後模擬以及數位電路APR後的功耗,於TT corner下晶片可工作之輸入功率範圍為-18.75至23 dBm。於量測時測得可工作之輸入功率範圍為-15至12 dBm,面積約為0.65 mm2。


    In this work, we designe a low-power passive RFID tag based on EPC UHF Gen 2 Air Interface Protocol. The tag operates at 925 MHz and it comprises RF/analog frontend circuits, a baseband processor and memory unit.
    Reducing power consumption is essential in passive RFID tags because they are not powered by any power supply. Consequently, the primary consideration for designing both analog and digital circuits is low power consumption.
    The RF/analog frontend circuits have four functions. First, it converts the RF to DC to power the whole Tag. Second, it demodulates the input signal to data. Third, it generates the clock and the reset signals. Four, it backscatters data computed by the baseband processor to the interrogator. For less power consumption we employ the beta-multiplier voltage reference circuit instead of bandgap voltage reference circuit and use a multivibrator to generate the clock signal.
    The baseband processor handles received commands and then operates accordingly, for instance, changing states of flags, replying random number, reading memory, etc. Also, in order to lower the power consumption, several low power techniques are employed, including clock gating, operand isolation and an algorithm developed for encoding.
    The memory unit is a ROM in our design. It stores the Tag’s EPC, passwords and user data. It has 64 words and each word consists of 16 bits in the ROM.
    The chip is designed and fabricated in TSMC 0.18 um CMOS process. Considering the power consumption of post-layout simulation for the analog circuits and simulation after APR for the digital circuits, the workable input power range is from -18.75 to 23 dBm at TT corner. The workable input power range is from -15 to 12 dBm in measuring. The chip area is approximately 0.65 mm2.

    目錄 致謝 摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 XIV 第一章 緒論 1 1.1 簡介 1 1.2 研究動機 2 1.3 製程與軟體 4 1.4 論文架構 5 第二章 RFID系統介紹 6 2.1 RFID系統使用頻段選擇 6 2.2 RFID系統規範- EPC UHF Gen2 Air Interface Protocol簡介 7 2.3 RFID系統的通訊調變與編碼 10 2.3.1 ASK, FSK, PSK Modulation 10 2.3.2 OOK Modulation 12 2.3.3 PIE Symbol Encoding 13 2.3.4 FM0 Symbol Encoding 15 2.3.5 Miller Symbol Encoding 17 第三章 RFID tag Design 19 3.1 RFID tag系統架構 19 3.2 射頻/類比前端電路 21 3.2.1 RF/Analog Frontend Circuits Overview 21 3.2.2 Charge Pump 23 3.2.3 Envelope Detector 27 3.2.4 Limiter 28 3.2.5 Power-On-Reset Circuit 30 3.2.6 Voltage Reference Circuit 31 3.2.7 Comparator 40 3.2.8 Delay Chain 43 3.2.9 Preamble Check Circuit 46 3.2.10 Multivibrator 48 3.2.11 Backscatter 50 3.3 基頻處理器 52 3.3.1 Baseband Processor Overview 52 3.3.2 Metastable State and Synchronizer 56 3.3.3 Low Operating Frequency 59 3.3.4 Clock Gating 61 3.3.5 Operand Isolation 64 3.3.6 Power Report 66 3.4 記憶體單元 67 第四章 晶片模擬與量測結果 69 4.1 Chip Implementation 69 4.1.1 Design Flow 69 4.1.2 Chip Layout 70 4.2 Pre-layout SIM for RF/Analog Frontend Circuits 73 4.2.1 Charging Part 73 4.2.2 Signal-Processing Part 79 4.3 Post-layout SIM for RF/Analog Frontend Circuits 85 4.3.1 Charging Part 85 4.3.2 Signal-Processing Part 90 4.4 Measurement 95 4.4.1 PCB Implementation 95 4.4.2 Measurement Environment 96 4.4.3 Measurement Results 97 4.4.4 Mistakes 106 4.5 文獻比較 108 第五章 結論與未來研究方向 109 5.1 Conclusion 109 5.2 Future Work 110 Bibliography 111

    [1] 陳昱仁,「RFID概論」,華泰文化,民國九十八年。
    [2] P. B. Khannur, et al., “An 860 to 960 MHz RFID reader IC in CMOS”, IEEE Radio Frequency Integrated Circuits Symposium, pp. 269-272, 2007.
    [3] EPCTM Radio-Frequency Identity Protocols Generation-2 UHF RFID. Specification for RFID Air Interface. Protocol for Communications at 860 MHz - 960 MHz. Version 2.0.1 Ratified.
    [4] J. P. Curty, N. Joehl, C. Dehollain, and M. J. Declercq, “Remotely powered addressable UHF RFID integrated system,” IEEE J. Solid-State Circuits, vol. 40, pp. 2193-2202, Nov. 2005.
    [5] 羅君恆,「簡易匹配型倍壓器雙頻段15位元CMOS被動式UHF RFID標籤設計」,國立臺灣科技大學電機工程學系論文,民國一百零三年。
    [6] U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7μW minimum RF input power,” IEEE J. Solid-State Circuits, vol. 38, pp. 1602-1608, Oct. 2003.
    [7] J. W. Lee and B. Lee “A long-range UHF-band passive RFID tag IC based on high-Q design approach,” IEEE Trans. Ind. Electron., vol. 56, pp. 2308-2316, Jul. 2009.
    [8] 柯宜欣,「工作於UHF之高效率被動式CMOS RFID tag」,國立臺灣科技大學電機工程學系論文,民國一百年。
    [9] 李泳祿,「雙頻段15位元CMOS被動式UHF RFID 標籤設計」,國立臺灣科技大學電機工程學系論文,民國一百零一年。
    [10] 劉邦瑞,「簡易匹配型倍壓器雙頻段15位元CMOS被動式UHF RFID標籤設計」,國立臺灣科技大學電機工程學系論文,民國一百零二年。
    [11] F. Emnett and M. Biegel, “Power reduction through RTL clock gating,” presented at the Synopsys User Group (SNUG), San Jose, CA, 2000.
    [12] M. Munch, B. Wurth, R. Mehra, J. Sproch, and N. Wehn, “Automating RT-level operand isolation to minimize power consumption in datapaths,” in Proc. Design Automation and Test in Europe Conference and Exhibition, pp. 624-631, Paris, France, Mar. 2000.
    [13] J. G. Proakis, M. Salehi, “Digital Communication,” TMH, 5th ed., 2008.
    [14] D. M. Dobkin, “The RF in RFID: Passive UHF RFID in Practice,” Elsevier, 2nd ed., 2007.
    [15] S. Liu and R. J. Baker, “Process and temprature performance of a CMOS beta-multiplier voltage reference,” Midwest Symposium on System and Circuits, pp. 33-36, South Bend, Indiana, Aug. 1998.
    [16] B. Razavi, “Design of Analog CMOS Integrated Circuit,” McGraw-Hill, 2nd ed., 2000.
    [17] R. Barnett, G. Balachandran, S. Lazar, et al., “A passive UHF RFID transponder for EPC Gen2 with -14dBm sensitivity in 0.13 um CMOS,” IEEE ISSCC Dig Tech Papers, pp. 582-583, Feb. 2007.
    [18] D. Wei, C. Zhang, Y. Cui, H. Chen, and Z. Wand, “Design of a low-cost low-power baseband-processor for UHF RFID tag with asynchronous design technique,” IEEE Int. Symposium on Circuits and Systems, pp. 2789-2792, 2012.
    [19] V. Roostaie, V. Najafi, S.Mohammadi, and A. Fotowat-Ahmady, “A low power baseband processor for a dual mode UHF EPC Gen2 RFID tag,” Int. Conf. DTIS, pp. 1-5, 2008.
    [20] M. Zgaren, et al., “EPC Gen-2 UHF RFID tags with low-power CMOS temperature sensor suitable for gas application,” IEEE Int. NEWCAS, pp. 26-29, 2016.
    [21] Vinh-Hao Duong, et al., “A Battery-Assisted Passive EPC Gen-2 RFID Sensor Tag IC With Efficient Battery Power Management and RF Energy Harvesting” IEEE Transactions in Industrial Electronics, pp. 7112-7123, 2016.
    [22] Jong-Wook Lee, “A Fully Integrated EPC Gen-2 UHF-Band Passive Tag IC Using an Efficient Power Management Technique,” IEEE Transactions in Industrial Electronics, pp. 2922-2932, 2014.
    [23] Hannes Reinisch, et al., “A Multifrequency Passive Sensing Tag With On-Chip Temperature Sensor and Off-Chip Sensor Interface Using EPC HF and UHF RFID Technology,” IEEE Journal of Solid-State Circuits, pp. 3075-3088, 2011.
    [24] Daniel Yeager, et al., “A 9 μA, Addressable Gen2 Sensor Tag for Biosignal Acquisition,” IEEE Journal of Solid-State Circuits, pp. 2198-2209, 2010.
    [25] 陳彥廷,「接收前導碼並回傳16位元隨機碼之CMOS被動式UHF RFID電路設計」,國立臺灣科技大學電機工程學系論文,民國一百零五年。

    無法下載圖示 全文公開日期 2022/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE