簡易檢索 / 詳目顯示

研究生: 陳憲為
Hwien-Wei Chen
論文名稱: 自我學習粒子群演算法於海底油管最佳路徑設置規劃之應用
Optimal Layout of Submarine Oil Pipeline via Self-Learning Particle Swarm Optimization
指導教授: 徐勝均
Sheng-Dong Xu
口試委員: 郭永麟
Yong-Lin Kuo
陸敬互
Ching-Hu Lu
石大明
TA-MING, SHIH
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 70
中文關鍵詞: 粒子群演算法自我學習粒子群演算法最佳化海底油管自我學習
外文關鍵詞: Particle Swarm Algorithm, Self-Learning Particle Swarm Algorithm, Optimization, Submarine Pipeline, Self-Learning
相關次數: 點閱:656下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

海底油管是進口原油從外海卸油站運輸至岸邊油槽的主要幹道。本研究基於粒子群演算法(PSO)與自我學習粒子群演算法(SLPSO),探討在地形變化、油管流量及油管長度等因素下對海底油管路徑做最佳化設置規劃。
粒子群演算法是解決全域最佳化最有效率的工具之一。在文獻顯示中粒子群算法的粒子在做下一步選擇時皆使用相同的策略,意即僅使用一種學習模式。在這種情況下因為社會及認知模式牽制的關系會使得粒子容易陷入局部最佳解的問題而無法處理太過於複雜的問題。為了解決此問題,本研究應用了自我學習演算法的方法。在此演算法中,為因應不同的環境而將學習策略分為四種,使得每個粒子可以依據自身不同的適應值而做相對應的學習策略選擇
一般而言,最佳路徑規劃在工程應用上最佳解表示為最短路徑,換言之,即為所需費用最低的路徑。然而在實際工程應用上,需考量到不同地形狀況而所需的工程難度及費用亦會有所不同。在本文研究中,基於這個出發點來考慮海底油管路徑規劃,最短路徑並非代表費用最低的路徑。本論文應用自我學習粒子群演算法於不同施工費用權重下來解決海底油管路徑設置規劃的問題。由本研究的模擬結果顯示出,自我學習粒子群演算法相較粒子群演算法能更有效率且更能準確地找到最佳解。


Submarine pipeline is the main access route for transporting imported crude oil from the offshore oil dump station to the oil tank near the shore. In this study, the particle swarm optimization (PSO) and the self-learning particle swarm optimization (SLPSO) were used to obtain the optimal submarine pipeline layout planning considering the facts including the changes in the subsea terrain, pipeline flow, and pipeline lengths.

PSO is one of the most efficient tools for solving global optimization. Literatures have shown that when particles in the PSO make a subsequent selection, the same strategy is used. That is, only one learning model is used. Under this situation, due to social and cognitive model constraints, particles are likely to fall into local optimal solutions and thus be unable to process excessively complex problems. In order to resolve this problem, the self-learning algorithm was applied in this study. This algorithm divides learning strategies into four types to adapt to different environments, thus enabling each particle to choose a corresponding learning strategy based on their varied adaptation values.

In general, the best solution for engineering applications related to optimum path planning, i.e., the shortest path. In other words, it refers to the path requiring the lowest cost. However, in actual engineering applications, the degree of engineering difficulty and costs that arise based on different terrain conditions should be taken into consideration. Based on the viewpoint in this study, the shortest path does not represent the path with the lowest costs. Hence, the shortest path does not necessarily represent the path with the lowest cost. The SLPSO with different construction cost weights was applied in this thesis to solve submarine pipeline layout planning. The simulation results in this study show that the SLPSO can derive the optimal solution more efficiently and more accurately compared to the PSO.

中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第1章 簡介 1.1 研究背景與動機 1.2 論文架構 第2章 預備知識 2.1 群體智能介紹 (Swarm Intelligence Algorithm) 2.2 粒子群演算法 (PSO) 2.2.1 粒子群演算法 2.2.2 鳥群覓食行為 2.2.3 粒子移動方式 2.2.4 粒子演算法參數設定 2.2.5 粒子演算法運算流程 2.3 自我學習粒子群演算法 (SL-PSO) 2.3.1 自我學習粒子群演算法 2.3.2 自我學習粒子群演算法的適應策略 2.3.3 自我學習演算法演算流程 2.3.5 自我學習粒子群演算法策略機率更新流程圖: 第3章 海底油管最佳設置路徑規劃之應用 3.1 台灣海峽海底地形組成及管路設置工程介紹 3.1.1 工程介紹 3.2 海底地形權重分析 3.2.1 地形權重分析 3.3 六角柵格法和一般柵格法 3.3.1 柵格法原理 (Grid) 3.3.2 六角柵格法 (hGrid) 3.3.3 油管彎折產生的損失 3.4 中值插入法 3.4.1 中值插入原理 3.4.2 六角柵格法之實現-中值插入法 3.4.3 六角柵格法之實現-擴散式中值插入法 3.5 演算法PSO路徑規劃 3.6 適應值 (Fitness)評估 3.6.1 一般地形 3.6.2 變化地形 第4章 模擬結果與討論 4.1 環境建立與問題描述 4.1.1 地圖與障礙物的建立 4.2 參數設定 4.2.1 ω之參數設計 4.2.2 c1之參數設計 4.2.3 c2之參數設計 4.2.4 參數設計 4.3 模擬結果一 (一般地形) 4.3.1 一般地形Map 20 × 20 結果 4.3.2 一般地形Map 30 × 30 結果 4.4 模擬結果二 (變換地形) 4.5 模擬結果三 (實際油管設置地形) 4.6 不同起點模擬結果 4.7 討論 第5章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

[1] T. Jingwen, G. Meijuan, Z. Hao, and L. Kai, “Corrosion Detection System for Oil Pipelines Based on Multi-sensor Data Fusion by Wavelet Neural Network,” IEEE International Conference on Control and Automation (ICCA), Guangzhou, China, 30 May. - 01 Jun. 2007, pp. 2958-2963.

[2] G. Meijuan, T. Jingwen, and L. Kai, “Research on Detecting Method of Submarine Oil Pipelines Corrosion Degree Based on Chaos Genetic Algorithm Neural Network,” ACIS International Conference on Software Engineering, Artificial Intelligence Networking, and Parallel/Distributed Computing (SNPD), vol. 2, 30,July- 1,Aug. 2007, pp. 464-469.

[3] Q. Shufen, L. Jiao, and J. Guangfen, “Study of submarine pipeline corrosion based on ultrasonic detection and wavelet analysis,” International Conference on Computer Application and System Modeling (ICCASM), Taiyuan, China, 22 Oct. ~24 Oct. 2010, pp. V12-440-V12-444.

[4] L. Peng and Y. Kun, “Development of Submarine Pipeline 3D GIS Platform,” Seventh International Conference on Image and Graphics (ICIG), Qingdao, China, 26 July - 28 July 2013, pp. 784-788.

[5] X. Ming, G. Qingjun, L. Jianguo, L. Wei, and L. Xiao, “Simulation of Submarine Pipeline Oil Spill Based on Wave Motion,” Second International Conference on Computer Modeling and Simulation (ICCMS), vol. 1, Sanya, China, 24 Mar.- 26 Mar. 2010, pp. 433-437.

[6] Z. Hongjun, J. Jiaqiang, C. Junwen, L. Qingping, and Y. Xichong, “Notice of Retraction Simulations of deposition rate of asphaltene and flow properties of oil-gas-water three-phase flow in submarine pipelines by CFD,” IEEE International Conference on Computer Science and Information Technology (ICCSIT), vol. 5, Chengdu, China, 09 Jul. - 11 Jul. 2010, pp. 16-22.

[7] X. Ming, G. Qingjun, L. Jianguo, L. Wei, and L. Xiao, “Dynamics Modeling for Submarine Pipeline Oil Spill,” International Conference on Computer Modeling and Simulation ( ICCMS), vol. 1, Sanya, China, 22 Jan. - 24 Jan. 2010, pp. 333-337.

[8] R. Xuejing, S. Bing, Y. Lipeng, and Z. Zhiyong, “An experimental study on scour around the submarine pipeline with spoilers under wave conditions,” International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), NanJing, China, 24 Jun. - 26 Jun. 2011, pp. 2891-2895.

[9] Z. L. Gaing, C. H. Lin, M. H. Tsai, M. F. Hsieh, and M. C. Tsai, “Rigorous design and optimization of brushless PM motor using response surface methodology with quantum-behaved PSO operator,” IEEE Transactions on Magnetics, vol. 50, pp. 1-4, 2014.

[10] M. K. Alam, K. Faisal, and A. M. Imtiaz, “Optimization of subcell interconnection for multijunction solar cells using switching power converters,” IEEE Transactions on Sustainable Energy vol. 4, pp. 340-349, 2013.

[11] S. H. Sandra and G. P. Emiliano, “Channel time allocation PSO for gigabit multimedia wireless Networks,” IEEE Transactions on Multimedia, vol. 16, pp. 828-836, 2014.

[12] K. B. Lee and J. H. Kim, “Multiobjective particle swarm optimization with preference-based sort and its application to path following footstep optimization for humanoid robots,” IEEE Transactions on Evolutionary Computation, vol. 17, pp. 755-766, 2013.

[13] M. Gabbouj, “Multidimensional particle swarm optimization and applications in data clustering and image retrieval,” in Proc. 2nd International Conference on Image Processing Theory Tools and Applications (IPTA), Paris, France, 7 July - 10 July 2010, pp. 5-5.

[14] K. Matsuo and J. Miura, “Outdoor visual localization with a hand-drawn line drawing map using FastSLAM with PSO-based mapping,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura-Algarve, Portugal, 07 Oct. - 12 Oct. 2012, pp. 202-207.

[15] W. Low, R. Nagarajan, and S. Yaacob, “Visual based SLAM using modified PSO,” International Colloquium on Signal Processing and Its Applications (CSPA) 2010, Chico, California, USA, 21 May - 23 May 2010, pp. 1-5.

[16] W. Xian, B. Long, M. Li, and H. Wang, “Prognostics of lithium-ion batteries based on the verhulst model, particle swarm optimization and particle filter,” IEEE Transactions on Instrumentation and Measurement, vol. 63, pp. 2-17, 2014.

[17] T. H. Nguyen, H. Morishita, Y. Koyanagi, K. Izui, and S. Nishiwaki, “A multi-level optimization method using PSO for the optimal design of an l-shaped folded monopole antenna array,” IEEE Transactions on Antennas and Propagation, vol. 62, pp. 206-215, 2014.

[18] Y. V. Pehlivanoglu, “A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks,” IEEE Transactions on Evolutionary Computation, vol. 17, pp. 436-452, 2013.

[19] M. Hu, T. Wu, and J. D. Weir, “An adaptive particle swarm optimization with multiple adaptive methods,” IEEE Transactions on Evolutionary Computation, vol. 17, pp. 705-720, 2013.

[20] H. Duan, Q. Luo, Y. Shi, and G. Ma, “Hybrid particle swarm optimization and genetic algorithm for multi-UAV formation reconfiguration,” IEEE Computational Intelligence Magazine, vol. 8, pp. 16-27, 2013.

[21] L. Changhe, Y. Shengxiang, and N. Trung Thanh, “A Self-Learning Particle Swarm Optimizer for Global Optimization Problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, pp. 627-646, 2012.

[22] 青年參考,(2007, Aug. 04),「向螞蟻和蜜蜂學習群體智慧[Online]」。” Available: http://qnck.cyol.com/content/2007-08/04/content_1849481.htm

[23] 維基百科,(2015, Feb. 11),「集體智慧[Online]」。”Available: https://zh.wikipedia.org/wiki/集體智慧

[24] Y. J. Zheng, H. F. Ling, J. Y. Xue, and S. Y. Chen, “Population classification in fire evacuation: a multiobjective particle swarm optimization approach,” IEEE Transactions on Evolutionary Computation, vol. 18, pp. 70-81, 2014.

[25] Z. Zhang, Q. Zhou, and A. Kusiak, “Optimization of wind power and its variability with a computational intelligence approach,” IEEE Transactions on Sustainable Energy, vol. 5, pp. 228-236, 2014.

[26] H. Bevrani, P. R. Daneshmand, P. Babahajyani, Y. Mitani, and T. Hiyama, “Intelligent LFC concerning high penetration of wind power: synthesis and real-time application,” IEEE Transactions on Sustainable Energy, vol. 5, pp. 655-662, 2014.

[27] J. Sun, V. Palade, X. J. Wu, W. Fang, and Z. Wang, “Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization,” IEEE Transactions on Industrial Informatics, vol. 10, pp. 222-232, 2014.

[28] P. Regulski, D. S. Vilchis-Rodriguez, S. Djurovic, and V. Terzija, “Estimation of composite load model parameters using an improved particle swarm optimization method,” IEEE Transactions on Power Delivery, vol. PP, pp. 1-1, 2014.

[29] A. Laudani, F. R. Fulginei, and A. Salvini, “Bouc–wen hysteresis model identification by the metric-topological evolutionary optimization,” IEEE Transactions on Magnetics, vol. 50, pp. 621-624, 2014.

[30] T. H. S. Li, W. Yin-Hao, C. Ching-Chang, and L. Chih-Jui, “A Fast Color Information Setup Using EP-Like PSO for Manipulator Grasping Color Objects,” IEEE Transactions on Industrial Informatics, vol. 10, pp. 645-654, 2014.

[31] M. Castillo-Cagigal, E. Matallanas, I. Navarro, E. Caamano-Martin, F. Monasterio-Huelin, and A. Gutierrez, “Variable threshold algorithm for division of labor analyzed as a dynamical system,” IEEE Transactions on Cybernetics, vol. PP, pp. 1-1, 2014.

[32] Z. Zhang, K. Long, J. Wang, and F. Dressler, “On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches,” IEEE Transactions on Communications Surveys & Tutorials, vol. 16, pp. 513-537, 2014.

[33] W. Hu, J. Gao, Y. Wang, O. Wu, and S. Maybank, “Online adaboost-based parameterized methods for dynamic distributed network intrusion detection,” IEEE Transactions on Cybernetics, vol. 44, pp. 66-82, 2014.

[34] S. K. Goudos, K. Siakavara, and J. N. Sahalos, “Novel spiral antenna design using artificial bee colony Optimization for UHF RFID applications,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 528-531, 2014.

[35] S. Saxena, K. Sharma, S. Shiwani, and H. Sharma, “Lbest artificial bee colony using structured swarm,” in Proc. IEEE International Advance Computing Conference (IACC), Gurgaon, India, 21 Feb. - 22 Feb. 2014, pp. 1354-1360.

[36] M. Mishra, U. Chaturvedi, and S. K. Pal, “A multithreaded bound varying chaotic firefly algorithm for prime factorization,” in Proc. IEEE International Advance Computing Conference (IACC), Gurgaon, India,21 Feb. - 22 Feb. 2014, pp. 1322-1325.

[37] K. Kiran, T. Shivapriya, A. A. Singh, N. Begum, R. Ramya, P. D. Shenoy, et al., “Performance analysis of bee-hive routing in multi-radio networks,” IEEE International Advance Computing Conference (IACC), Gurgaon, India,21 Feb. - 22 Feb. 2014, pp. 360-364.

[38] S. K. Goudos, K. Siakavara, and J. N. Sahalos, “Novel spiral antenna design using artificial bee colony Optimization for UHF RFID applications,” IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 528-531, 2014.

[39] B. Anand, I. Aakash, Akshay, V. Varrun, M. K. Reddy, T. Sathyasai, et al., “Improvisation of particle swarm optimization algorithm,” International Conference on Signal Processing and Integrated Networks (SPIN), Noida, Delhi-NCR, India, 20 Feb. - 21 Feb. 2014, pp. 20-24.

[40] S. M. R. Islam, M. A. Ahsan, and B. C. Ghosh, “Optimization of power system operation with static var compensator applying ACO algorithm,” International Conference on Electrical Information and Communication Technology (ICEEICT), Dhaka, Bangladesh, 10 Apr. - 12 Apr. 2014, pp. 1-6.

[41] P. Ganesh Kumar, C. Rani, D. Devaraj, and T. Victoire, “Hybrid ant bee algorithm for fuzzy expert system based sample classification,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. PP, pp. 1-1, 2014.

[42] F. Xhafa, X. Herrero, A. Barolli, and M. Takizawa, “A simulated annealing algorithm for ground station scheduling problem,” in Proc. 16th International Conference on Network-Based Information Systems (NBiS), Gwangju, Korea, 04 Sep. - 06 Sep. 2013, pp. 24-30.

[43] Z. Wang, M. Zhao, and M. Hu, “Study of the immune simulated annealing algorithm and dual-resource job shop order scheduling,” Chinese Control and Decision Conference (CCDC), Guiyang, China, 25 May - 27 May 2013, pp. 2375-2379.

[44] X. Wang, M. Zhang, and Y. Yang, “3D face registration on simulated annealing algorithm,” International Conference on Information Science and Technology (ICIST), Yangzhu, CHina, 23 Mar. - 25 Mar. 2013, pp. 647-651.

[45] W. Tao and Y. Huang, “Research on disposal station location problem based on genetic and simulated annealing algorithm,” Fifth International Conference on Computational and Information Sciences (ICCIS), Vienna, Austria, 21 Oct. - 23 Oct. 2013, pp. 1897-1900.

[46] S. Sakamoto, T. Oda, E. Kulla, M. Ikeda, L. Barolli, and F. Xhafa, “Performance analysis of WMNs using simulated annealing algorithm for different temperature values,” International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS), Taichung, Taiwan, 03 Jun. - 05 Jun. 2013, pp. 164-168.

[47] R. Li and M. Chen, “Flight control law evaluation for UAV based on simulated annealing algorithm,” Chinese Control Conference (CCC), Xi'an, China, 26 Jul. - 28 Jul. 2013, pp. 8697-8702.

[48] J. Tongpang and P. Tantatsanawong, “An Application of Tabu Search Algorithms and Genetic Algorithms in Collaborative Logistics Optimization,” Annual SRII Global Conference (SRII), San Jose, CA, USA, 29 Mar. - 02 Apr. 2011, pp. 699-706.

[49] X. Liang, Y. Li, and X. Jiao, “Based on Tabu Search and Particle Swarm Optimization Algorithms Solving Job Shop Scheduling Optimization Problems,” International Conference on Digital Manufacturing and Automation (ICDMA), Hong Kong, 29 Jun. - 30 Jun. 2013, pp. 322-324.

[50] C. h. Guan, C. Yan, and S. Jing, “Tabu search algorithm for solving the vehicle routing problem,” International Symposium on Information Processing (ISIP), 2010, pp. 74-77.

[51] M. Gong, Q. Cai, X. Chen, and L. Ma, “Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition,” IEEE Transactions on Evolutionary Computation, vol. 18, pp. 82-97, 2014.

[52] P. Kitak, A. Glotic, and I. Ticar, “Heat transfer coefficients determination of numerical model by using particle swarm optimization,” IEEE Transactions on Magnetics, vol. 50, pp. 933-936, 2014.

[53] P. Ghamisi, M. S. Couceiro, F. M. L. Martins, and J. Atli Benediktsson, “Multilevel image segmentation based on fractional-order darwinian particle swarm optimization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, pp. 2382-2394, 2014.

[54] J. J. Lake, A. E. Duwel, and R. N. Candler, “Particle swarm optimization for design of slotted MEMS resonators with low thermoelastic dissipation,” Journal of Microelectromechanical Systems, vol. 23, pp. 364-371, 2014.

[55] X. Weiming, L. Bing, L. Min, and W. Houjun, “Prognostics of Lithium-Ion Batteries Based on the Verhulst Model, Particle Swarm Optimization and Particle Filter,” IEEE Transactions on Instrumentation and Measurement, vol. 63, pp. 2-17, 2014.

[56] J. Qi, B. Guo, H. Lei, and T. Zhang, “Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization,” Journal of Systems Engineering and Electronics, vol. 25, pp. 69-76, 2014.

[57] J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation for wireless sensor network using modified binary particle swarm optimization,” IEEE Sensors Journal, vol. 14, pp. 882-892, 2014.

[58] 散點透視,(2012, Aug. 03),「粒子群最佳化法(Particle Swarm Optimization)簡介[Online]」。” Available: http://blog.xuite.net/metafun/life/58295146-粒子群最佳化法(Particle+Swarm+Optimization)簡介

[59] A. M. Mora, J. J. Merelo, P. A. Castillo, and M. G. Arenas, “hCHAC: A family of MOACO algorithms for the resolution of the bi-criteria military unit pathfinding problem,” Computers & Operations Research, vol. 40, pp. 1524-1551, 2013.

無法下載圖示 全文公開日期 2020/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE