簡易檢索 / 詳目顯示

研究生: 李夏天
Pawisa Kanokpaka
論文名稱: 開發新型自供電摩擦發電生物感測器應用於非侵入式人體汗液生理檢測
Self-powered Triboelectric Sensor for Non-invasive Biological Markers Monitoring in Human Perspiration
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 何明樺
Ming-Hua Ho
林律吟
Lin Lu Yin
楊伯康
Po Kang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 130
中文關鍵詞: 生醫感測器葡萄糖水凝膠乳酸分子模板高分子非酵素型非侵入式自供電自修復汗液摩擦起電感測器
外文關鍵詞: Biosensor, Glucose, Hydrogels, Lactate, Molecular imprinted polymer, Non-enzymatic, Non-invasive, Self-powered, Self-healable, Sweat, Triboelectric sensors
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網技術快速發展,居家醫療診斷技術徹底改變了個人化醫療保健和無線遠醫療。可穿戴式汗液感測器的發展克服了傳統感測器的許多限制,使健康生理監測系統掌握更細緻之生理資訊,對長期慢性疾病患者的病情管理產生了極大之助益。然而,為了改善傳統生醫感測器應用於連續監控所面臨的問題,例如感測電極的壽命、複雜的電路設計以及長時間待機等;因此,以摩擦起電現象為基礎的摩擦起電感測器能有效解決上述等問題。藉由靜電感應和接觸起電的共軛效應,能使摩擦起電感測器能透過運動過程中收集能量轉換為電力進而實現自供電感測平台;且因結構簡單、材料選擇性多,使自供電摩擦起電感測器在未來的發展備受矚目。
    乳酸是人體汗液中的主要代謝物,可作為監控人體運動時的生理狀態之關鍵因素。為了有效感測乳酸待測物,已具有專一性的酵素型感測器為目前應用最為廣泛的技術,然而其生物耐受性不佳與製造成本昂貴限制了此種感測器應用於穿戴式生醫感測平台的應用。為了解決上述問題,本論文的第四章設計出一種全新概念的分子模板修飾摩擦起電感測器,能以非侵入式的方法檢測人體汗液中的乳酸濃度並進一步的實現自供電穿戴式監控平台。分子模板修飾電極是使用PVDF/石墨烯柔性電極並藉由具乳酸分子模板結構之3-APBA進行表面修飾所製備。從實驗結果可證實分子模板電極可隨著人體汗液中乳酸濃度的變化而產生穩定的輸出信號變化,展示了分子模板電極在乳酸吸收後表面性質的改變。進一步將此種分子模板修飾電極引入摩擦起電感測器中,透過接觸/分離的過程中獲取機械能並轉換為電能訊號輸出。當檢測到高濃度的乳酸時,由於分子模板電極所吸附的乳酸量增加將會導致表面電荷下降而使訊號輸出降低。另外,分子模板修飾摩擦起電感測器可在無需外部供電下直接點亮多個LED燈,並且可透過亮度來推斷其乳酸濃度,驗證自供電可穿戴式摩擦起電感測器實現非侵入式監控人體生理狀態的可行性應用。
    另一方面,葡萄糖是生物體內細胞活動的主要能量來源,對於維持適當濃度以避免糖尿病發生至關重要。儘管目前商業用葡萄糖監測系統種類繁多,但目前能實現長時間連續監控並以非侵入方式檢測體內葡萄糖濃度技術還是非常缺少的。有鑒於此,延續摩擦起電感測器與自供電穿戴式監控平台的優勢,本論文的第五章設計了一種具有自修復功能的葡萄糖響應性水凝膠並將其應用在摩擦起電感測器來檢測人體汗液中的葡萄糖濃度變化。具有生物相容性的PVA水凝膠可藉由葡萄糖氧化酵素酶(GOx)與β-環糊精的導入來達到具葡萄糖響應性;在葡萄糖水溶液環境下,水凝膠中的GOx與不同濃度的葡萄糖反應所產生的雙氧水將改變其水凝膠網絡性質並造成其電導率的變化。將葡萄糖響應性水凝膠集成到摩擦起電感測器中可以有效地分析人體汗液中的葡萄糖濃度,當檢測高葡萄糖濃度時,通過酶催化反應能增加離子強度導致的導電率和極化效應增強,使其輸出增加。從實驗結果也可證實葡萄糖響應性水凝膠摩擦起電感測器具有廣泛的葡萄糖感測應用,並且具有良好的選擇性、穩定性、可再現性和可重複性等優勢。此外,葡萄糖響應性水凝膠摩擦起電感測器在穿戴式檢測方面具有無需外部電源即可警示人體葡萄糖濃度含量過高的應用。另外,本研究也透過此平台分析膳食消耗前後對於真實人體汗液中葡萄糖濃度變化,進一步證實葡萄糖響應性水凝膠可應用於自供電連續監控人體汗液,讓糖尿病管理開闢了更多可能性。


    The tremendous development of Internet of Things (IoT) Technology for point of care (POC) diagnostics potentially revolutionizes personalized healthcare and telemedicine. Recent progress in wearable sweat sensors had overcome numerous limitations of conventional sensors and provided methods of collecting molecular-level insight into the dynamics of human bodies. However, pioneering works in biosensors for biomarkers detection in sweat has been encountered major challenges such as noble material usage, immobile power supply, and complicated circuit connection to realize the compact sustainable sensing systems. Thus, these shortcomings encourage the development of emerging technology between energy harvester powering biosensors to realize the self-powered sensor. Triboelectric nanogenerator (TENG)-based sensors are capable of extracting biomechanical energy from human motion based on the conjugation of electrostatic induction and contact-electrification and sufficiently supply the power to the elaborate self-powered chemical sensors because of simple structure, extensive range of alternative and affordable materials.
    Lactate, a major metabolite in human sweat, can serve as the critical limiting factor for continuing physical activity. In chapter 4, the self-powered molecular imprinted polymers-based triboelectric sensor (MIP-TES) was designed to offer a multifunctional noninvasive approach for specific and simultaneous lactate detection. Free-standing PVDF/graphene flexible electrode modified poly-3-aminophenyl boronic acid imprinted lactate molecule demonstrated the change of the surface properties after lactate absorption. MIP-modified electrode revealed the selective lactate sensing over non molecular imprinted polymers (NIP) electrode through the superior and stable signal change with variation of lactate concentration in human sweat. Moreover, MIP modified lactate sensor was further introduced in the triboelectric nanogenerator system to harvest mechanical energy from contact and separation into electrical output. The more adsorbed lactate led to lower energy barriers and decreasing electrical potential when detecting higher lactate concentration. Self-power triboelectric lactate sensor could directly power the number of LED lights without an external energy supply. Eventually, it was validated the feasible application of wearable sensors on human skin.
    Moreover, Glucose is a major energy source of cellular activity in the living body which is crucial to maintaining a proper concentration to avoid diabetic complications. Despite the variety of available commercial glucose monitoring systems, the limitations of painless compact glucose sensors have been addressed by the burden of repeated blood collections, delamination of rigid layers, and complex power requirements. Therefore, in chapter 5, the self-healable glucose responsive hydrogel based triboelectric sensors (GRH-TES) was proposed to offer a biocompatible noninvasive approach for simultaneous glucose monitoring. Glucose-responsive PVA hydrogels can be used as an immobilization matrix for glucose oxidase enzyme (GOx) with the aid of beta-cyclodextrin (β-CD) inclusion complex. The alteration of dynamic hydrogel networks in the presence of variable glucose environments endows the changes in conductivity, which facilitates electrical performance. The integration of glucose-responsive hydrogel into a triboelectric nanogenerator offers effective energy conversion from motion-based glucose stimuli in human sweat into electrical output. The increasing TENG output was found when detecting higher glucose concentration due to the enhanced conductivity and polarization effect resulting from the increased ionic strength via enzymatic reaction. GRH-TES has the potential in medical aspects toward the excessive glucose level alarm without an external power supply. Eventually, GRH-TES validated the reliable self-powered glucose concentration from real human sweat associated with meal consumption. The proposed self-powered glucose-responsive hydrogel has opened more possibilities for diabetes management in terms of stand-alone highly selective, deformable, and stable real-time analysis of human perspiration.

    ACKNOWLEDGEMENT I 摘要 I ABSTRACT III TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX NOMENCLATURE XIII CHAPTER 1 INTRODUCTION 1 1.1 Overview of Self-Powered Biosensor 1 1.1.1 Introduction of Self-Powered Biosensor 1 1.1.2 Lactate Detection 3 1.1.3 Glucose Detection 7 1.2 Triboelectric Nanogenerator 11 1.2.1 Triboelectrification Phenomena 11 1.2.2 Triboelectric Series 12 1.2.3 Fundamental Operation Modes 13 1.2.4 Working Principle of Contact-Separation TENG 14 1.2.5 TENG applications 16 1.3 TENG-Based Chemical or Biological Sensor 18 CHAPTER 2 LITERATURE REVIEW AND RESEARCH SCOPE 21 2.1 Overview of Material Aspects for TENG Sensors 21 2.2 Molecularly Imprinted Polymer (MIP) 23 2.2.1 Fundamental Principle 23 2.2.2 MIP in Sensing Applications 24 2.2.3 MIP-based non-enzymatic lactate sensor 25 2.3 Hydrogels 26 2.3.1 Overview of Hydrogel 26 2.3.2 Theory of Swelling 27 2.3.3 Hydrogels for Glucose Responsive 29 2.4 Motivation and Research Scope 31 CHAPTER 3 EXPERIMENTAL PROCEDURE 36 3.1 Experimental Chemicals and Instrument 36 3.1.1 Electrochemical analysis 37 3.1.2 Programable electrometer 43 3.1.3 Field Emission-Scanning Electron Microscopy (FE-SEM) 44 3.1.4 Energy-dispersive X-ray Spectroscopy (EDS) 45 3.1.5 X-ray Photoelectron Spectroscopy (XPS) 47 3.1.6 Fourier-Transform Infrared Spectroscopy (FTIR) 49 3.2 Experimental Materials 50 3.3 Experimental Procedure 51 3.3.1 Synthesis of PVDF/graphene electrode 51 3.3.2 Synthesis of MIP-modified PVDF/graphene electrode 51 3.3.3 Synthesis of glucose responsive hydrogel 52 3.3.4 Preparation of PBS and Artificial Sweat 52 3.3.5 Electrochemical analysis 53 3.3.6 Self-powered triboelectric sensor setup 53 CHAPTER 4 SELF-POWERED MOLECULAR IMPRINTED POLYMERS-BASED TRIBOELECTRIC SENSOR FOR NONINVASIVE MONITORING LACTATE LEVELS IN HUMAN SWEAT 56 4.1 Motivation and Conceptual Design 56 4.2 Results and Discussion 59 4.2.1 Characterization of MIP electrode 59 4.2.2 Electrochemical performance of MIP lactate sensor 62 4.2.3 Triboelectrification of pristine electrode and MIP modified electrode 64 4.2.4 Self-powered molecular imprinted polymers-based triboelectric sensor (MIP-TES) for lactate detection 67 4.2.5 Practical application of self-powered MIP-TES for lactate monitoring in artificial sweat 70 4.3 Summary 73 CHAPTER 5 SELF-HEALABLE GLUCOSE RESPONSIVE HYDROGEL BASED TRIBOELECTRIC SENSORS FOR HUMAN PERSPIRATION MONITORING (GRH-TES) 74 5.1 Motivation and Conceptual Design 74 5.2 Results and Discussion 77 5.2.1 Synthesis of glucose responsive hydrogel (GRH) 77 5.2.2 Characterization of glucose responsive hydrogel (GRH) 78 5.2.3 Optimization of GRH 80 5.2.4 Glucose responsive hydrogel for H2O2 detection 81 5.2.5 Glucose responsive hydrogel based triboelectric sensors (GRH-TES) 84 5.2.6 Sensing performance of GRH-TES for glucose monitoring in artificial sweat 88 5.2.7 Self-healing property and bending stability of self-powered GRH-TES 90 5.2.8 Practical application of GRH-TES for glucose monitoring in human perspiration 91 5.3 Summary 94 CHAPTER 6 CONCLUSION AND FUTURE PROSPECTS 95 6.1 General Conclusion 95 6.2 Future Prospects 97 REFERENCES 100 APPENDIX 112

    [1] J. Kim, A. S. Campbell, B. E. de Avila, J. Wang, Wearable biosensors for healthcare monitoring, Nat Biotechnol, 2019, 37, 389-406.
    [2] E. Katz, A. F. Bückmann, I. Willner, Self-Powered Enzyme-Based Biosensors, Journal of the American Chemical Society, 2001, 123, 10752-10753.
    [3] M. Grattieri, S. D. Minteer, Self-Powered Biosensors, ACS Sensors, 2018, 3, 44-53.
    [4] H. Zafar, A. Channa, V. Jeoti, G. M. Stojanovic, Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring, Sensors (Basel), 2022, 22, 638.
    [5] C. M. Tilmaciu, M. C. Morris, Carbon nanotube biosensors, Front Chem, 2015, 3, 59.
    [6] D. A. Sakharov, M. U. Shkurnikov, M. Y. Vagin, E. I. Yashina, A. A. Karyakin, A. G. Tonevitsky, Relationship between lactate concentrations in active muscle sweat and whole blood, Bull Exp Biol Med, 2010, 150, 83-5.
    [7] T.-T. Luo, Z.-H. Sun, C.-X. Li, J.-L. Feng, Z.-X. Xiao, W.-D. Li, Monitor for lactate in perspiration, The Journal of Physiological Sciences, 2021, 71, 26.
    [8] Y. Seki, D. Nakashima, Y. Shiraishi, T. Ryuzaki, H. Ikura, K. Miura, M. Suzuki, T. Watanabe, T. Nagura, M. Matsumato, M. Nakamura, K. Sato, K. Fukuda, Y. Katsumata, A novel device for detecting anaerobic threshold using sweat lactate during exercise, Sci Rep, 2021, 11, 4929.
    [9] G. Rattu, N. Khansili, V. K. Maurya, P. M. Krishna, Lactate detection sensors for food, clinical and biological applications: a review, Environmental Chemistry Letters, 2021, 19, 1135-1152.
    [10] F. Alam, S. RoyChoudhury, A. H. Jalal, Y. Umasankar, S. Forouzanfar, N. Akter, S. Bhansali, N. Pala, Lactate biosensing: The emerging point-of-care and personal health monitoring, Biosens Bioelectron, 2018, 117, 818-829.
    [11] P. J. Derbyshire, H. Barr, F. Davis, S. P. Higson, Lactate in human sweat: a critical review of research to the present day, J Physiol Sci, 2012, 62, 429-40.
    [12] X. Chen, G. Wu, Z. Cai, M. Oyama, X. Chen, Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid, Microchimica Acta, 2014, 181, 689-705.
    [13] D. Bruen, C. Delaney, L. Florea, D. Diamond, Glucose Sensing for Diabetes Monitoring: Recent Developments, Sensors (Basel, Switzerland), 2017, 17, 1866.
    [14] H. Lee, Y. Hong, S. Baik, T. Hyeon, D.-H. Kim, Enzyme-Based Glucose Sensor: From Invasive to Wearable Device, Advanced Healthcare Materials, 2018, 7, 1701150.
    [15] M. Elsherif, M. U. Hassan, A. K. Yetisen, H. Butt, Glucose Sensing with Phenylboronic Acid Functionalized Hydrogel-Based Optical Diffusers, ACS Nano, 2018, 12, 2283-2291.
    [16] A. K. Yetisen, N. Jiang, A. Fallahi, Y. Montelongo, G. U. Ruiz‐Esparza, A. Tamayol, Y. S. Zhang, I. Mahmood, S. A. Yang, K. S. Kim, Glucose‐sensitive hydrogel optical fibers functionalized with phenylboronic acid, Advanced Materials, 2017, 29, 1606380.
    [17] Z. L. Wang, A. C. Wang, On the origin of contact-electrification, Materials Today, 2019, 30, 34-51.
    [18] G. Khandelwal, N. P. Maria Joseph Raj, S. J. Kim, Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators, Advanced Energy Materials, 2021, 11, 2101170.
    [19] Z. Wang, Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution, Advanced Energy Materials, 2020, 10, 2000137.
    [20] C. Wu, A. Wang, W. Ding, H. Guo, Z. Wang, Triboelectric Nanogenerator: A Foundation of the Energy for the New Era, Advanced Energy Materials, 2018, 9, 1802906.
    [21] Q. Zhou, J. Pan, S. Deng, F. Xia, T. Kim, Triboelectric Nanogenerator-Based Sensor Systems for Chemical or Biological Detection, Advanced materials, 2021, e2008276.
    [22] H. He, H. Zeng, Y. Fu, W. Han, Y. Dai, L. Xing, Y. Zhang, X. Xue, A self-powered electronic-skin for real-time perspiration analysis and application in motion state monitoring, Journal of Materials Chemistry C, 2018, 6, 9624-9630.
    [23] T. Zhao, Y. Fu, C. Sun, X. Zhao, C. Jiao, A. Du, Q. Wang, Y. Mao, B. Liu, Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators, Biosens Bioelectron, 2022, 205, 114115.
    [24] R. Yu, C. Pan, G. Zhu, Z. Wang, Enhanced Performance of a ZnO Nanowire-Based Self-Powered Glucose Sensor by Piezotronic Effect, Advanced Functional Materials, 2013, 23, 5868-5874.
    [25] D. W. Kim, J. H. Lee, J. K. Kim, U. Jeong, Material aspects of triboelectric energy generation and sensors, NPG Asia Materials, 2020, 12, 6.
    [26] Z.-H. Lin, G. Zhu, Y. Zhou, Y. Yang, P. Bai, Z. Wang, A Self-Powered Triboelectric Nanosensor for Mercury Ion Detection, Angewandte Chemie (International ed. in English), 2013, 52, 5169-5173.
    [27] Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z. L. Wang, β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation, Energy & Environmental Science, 2015, 8, 887-896.
    [28] Y. Saylan, S. Akgönüllü, H. Yavuz, S. Ünal, A. Denizli, Molecularly Imprinted Polymer Based Sensors for Medical Applications, Sensors, 2019, 19, 1279.
    [29] J. J. BelBruno, Molecularly Imprinted Polymers, Chemical Reviews, 2019, 119, 94-119.
    [30] J. Wackerlig, P. A. Lieberzeit, Molecularly imprinted polymer nanoparticles in chemical sensing – Synthesis, characterisation and application, Sensors and Actuators B: Chemical, 2015, 207, 144-157.
    [31] S. Ramanavicius, U. Samukaite-Bubniene, V. Ratautaite, M. Bechelany, A. Ramanavicius, Electrochemical molecularly imprinted polymer based sensors for pharmaceutical and biomedical applications (review), Journal of Pharmaceutical and Biomedical Analysis, 2022, 215, 114739.
    [32] A. A. Hasseb, N. d. T. Abdel Ghani, O. R. Shehab, R. M. El Nashar, Application of molecularly imprinted polymers for electrochemical detection of some important biomedical markers and pathogens, Current Opinion in Electrochemistry, 2022, 31, 100848.
    [33] N. V. Zaryanov, V. N. Nikitina, E. V. Karpova, E. E. Karyakina, A. A. Karyakin, Nonenzymatic Sensor for Lactate Detection in Human Sweat, Anal Chem, 2017, 89, 11198-11202.
    [34] F. Zou, Y. Kong, B. Cui, Fluoride-free electropolymerization of 3-aminophenylboronic acid in room temperature ionic liquids without exogenous protons, Journal of Molecular Liquids, 2020, 317, 114141.
    [35] V. N. Nikitina, N. V. Zaryanov, I. R. Kochetkov, E. E. Karyakina, A. K. Yatsimirsky, A. A. Karyakin, Molecular imprinting of boronate functionalized polyaniline for enzyme-free selective detection of saccharides and hydroxy acids, Sensors and Actuators B: Chemical, 2017, 246, 428-433.
    [36] Q. Zhang, D. Jiang, C. Xu, Y. Ge, X. Liu, Q. Wei, L. Huang, X. Ren, C. Wang, Y. Wang, Wearable electrochemical biosensor based on molecularly imprinted Ag nanowires for noninvasive monitoring lactate in human sweat, Sensors and Actuators B: Chemical, 2020, 320, 128325.
    [37] D. Buenger, F. Topuz, J. Groll, Hydrogels in sensing applications, Progress in Polymer Science, 2012, 37, 1678-1719.
    [38] X. Liu, H. Yu, L. Wang, Z. Huang, F. Haq, L. Teng, M. Jin, B. Ding, Recent Advances on Designs and Applications of Hydrogel Adhesives, Advanced Materials Interfaces, 2022, 9, 2101038.
    [39] A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arndt, H.-J. P. Adler, Review on Hydrogel-based pH Sensors and Microsensors, Sensors, 2008, 8, 561-581.
    [40] N. R. Richbourg, N. A. Peppas, The swollen polymer network hypothesis: Quantitative models of hydrogel swelling, stiffness, and solute transport, Progress in Polymer Science, 2020, 105, 101243.
    [41] M. Dautta, M. Alshetaiwi, J. Escobar, P. Tseng, Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators, Biosensors and Bioelectronics, 2020, 151, 112004.
    [42] A. K. Locke, A. K. Means, P. Dong, T. J. Nichols, G. L. Coté, M. A. Grunlan, A Layer-by-Layer Approach To Retain a Fluorescent Glucose Sensing Assay within the Cavity of a Hydrogel Membrane, ACS Applied Bio Materials, 2018, 1, 1319-1327.
    [43] J. Song, Y. Zhang, S. Y. Chan, Z. Du, Y. Yan, T. Wang, P. Li, W. Huang, Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management, npj Flexible Electronics, 2021, 5, 26.
    [44] G. Kim, K. Yoon, K. Kim, Glucose-responsive poly(vinyl alcohol)/β-cyclodextrin hydrogel with glucose oxidase immobilization, Journal of Materials Science, 2019, 54,
    [45] A. J. Bard, Electrochemical methods : fundamentals and applications / Allen J. Bard, Larry R. Faulkner, Wiley, New York, 1980.
    [46] K. Wijeratne, Conducting Polymer Electrodes for Thermogalvanic Cells, 2018.
    [47] J. Colomer-Farrarons, P. Miribel, A. Rodríguez-Villarreal, J. Samitier, Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices, 2011, 373-400.
    [48] P. Joshi, D. S. Sutrave, A Brief Study of Cyclic Voltammetry and Electrochemical Analysis, International Journal of ChemTech Research, 2018, 11, 77-88.
    [49] F. R. Simões, M. G. Xavier, 6 - Electrochemical Sensors, in: A.L. Da Róz, M. Ferreira, F. de Lima Leite, O.N. Oliveira (Eds.), Nanoscience and its Applications, William Andrew Publishing2017, 155-178.
    [50] H. S. Magar, R. Y. A. Hassan, A. Mulchandani, Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications, Sensors, 2021, 21, 6578.
    [51] J. G. Webster, The measurement, instrumentation, and sensors handbook, CRC Press published in cooperation with IEEE Press, Boca Raton, Fla., 1999.
    [52] Low Level Measurements Handbook, Keithly Instruments Incorporated2004.
    [53] A. S. Ali, Application of Nanomaterials in Environmental Improvement, 2020.
    [54] N. M. Pirozzi, J. Kuipers, B. N. G. Giepmans, Chapter 5 - Sample preparation for energy dispersive X-ray imaging of biological tissues, in: T. Müller-Reichert, P. Verkade (Eds.), Methods in Cell Biology, Academic Press2021, 89-114.
    [55] N. M. Pirozzi, J. P. Hoogenboom, B. N. Giepmans, ColorEM: analytical electron microscopy for element-guided identification and imaging of the building blocks of life, Histochemistry and cell biology, 2018, 150, 509-520.
    [56] M. A. Mohamed, J. Jaafar, A. F. Ismail, M. H. D. Othman, M. A. Rahman, Chapter 1 - Fourier Transform Infrared (FTIR) Spectroscopy, in: N. Hilal, A.F. Ismail, T. Matsuura, D. Oatley-Radcliffe (Eds.), Membrane Characterization, Elsevier2017, 3-29.
    [57] W.-S. Hung, S.-Y. Ho, Y.-H. Chiao, C.-C. Chan, W.-Y. Woon, M.-J. Yin, C.-Y. Chang, Y. M. Lee, Q.-F. An, Electrical Tunable PVDF/Graphene Membrane for Controlled Molecule Separation, Chemistry of Materials, 2020, 32, 5750-5758.
    [58] L. J. Currano, F. C. Sage, M. Hagedon, L. Hamilton, J. Patrone, K. Gerasopoulos, Wearable Sensor System for Detection of Lactate in Sweat, Scientific Reports, 2018, 8, 15890.
    [59] Z. Sun, W. Yang, P. Chen, Y. Zhang, X. Wang, Y. Hu, Effects of PDMS Base/Agent Ratios and Texture Sizes on the Electrical Performance of Triboelectric Nanogenerators, Advanced Materials Interfaces, 2022, 9, 2102139.
    [60] N. Sheikh, O. Sheikh, Forecasting of Biosensor Technologies for Emerging Point of Care and Medical IoT Applications Using Bibliometrics and Patent Analysis, 2016.
    [61] M. Bariya, H. Y. Y. Nyein, A. Javey, Wearable sweat sensors, Nature Electronics, 2018, 1, 160-171.
    [62] S. Cai, C. Xu, D. Jiang, M. Yuan, Q. Zhang, Z. Li, Y. Wang, Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics, Nano Energy, 2022, 93, 106904.
    [63] X. Wei, M. Zhu, J. Li, L. Liu, J. Yu, Z. Li, B. Ding, Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface, Nano Energy, 2021, 85, 106031.
    [64] C.-H. Chen, P.-W. Lee, Y.-H. Tsao, Z.-H. Lin, Utilization of self-powered electrochemical systems: Metallic nanoparticle synthesis and lactate detection, Nano Energy, 2017, 42, 241-248.
    [65] W. Jia, A. J. Bandodkar, G. Valdés-Ramírez, J. R. Windmiller, Z. Yang, J. Ramírez, G. Chan, J. Wang, Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration, Analytical Chemistry, 2013, 85, 6553-6560.
    [66] R. Rimachi, F. B. De Carvahlo, C. Orellano-Jimenez, F. Cotton, J. L. Vincent, D. De Backer, Lactate/Pyruvate Ratio as a Marker of Tissue Hypoxia in Circulatory and Septic Shock, Anaesthesia and Intensive Care, 2012, 40, 427-432.
    [67] F. Iscra, A. Gullo, G. Biolo, Bench-to-bedside review: lactate and the lung, Crit Care, 2002, 6, 327-329.
    [68] D. De Backer, J. Creteur, H. Zhang, M. Norrenberg, J.-L. Vincent, Lactate production by the lungs in acute lung injury, American journal of respiratory and critical care medicine, 1997, 156, 1099-1104.
    [69] A. Herrera-Chacón, X. Cetó, M. del Valle, Molecularly imprinted polymers - towards electrochemical sensors and electronic tongues, Analytical and Bioanalytical Chemistry, 2021, 413, 6117-6140.
    [70] M. E. Payne, A. Zamarayeva, V. I. Pister, N. A. D. Yamamoto, A. C. Arias, Printed, Flexible Lactate Sensors: Design Considerations Before Performing On-Body Measurements, Scientific Reports, 2019, 9, 13720.
    [71] K. Nagamine, T. Mano, A. Nomura, Y. Ichimura, R. Izawa, H. Furusawa, H. Matsui, D. Kumaki, S. Tokito, Noninvasive Sweat-Lactate Biosensor Emplsoying a Hydrogel-Based Touch Pad, Scientific Reports, 2019, 9, 10102.
    [72] Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi, W. Xu, J. Deng, L. Zhu, X. Wang, C. Hu, L. Zhu, X. Sun, Z. L. Wang, Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors, Science Advances, 2016, 2, e1600097.
    [73] W. Deng, Y. Zhou, X. Zhao, S. Zhang, Y. Zou, J. Xu, M. H. Yeh, H. Guo, J. Chen, Ternary Electrification Layered Architecture for High-Performance Triboelectric Nanogenerators, ACS Nano, 2020, 14, 9050-9058.
    [74] H. Guo, M. H. Yeh, Y. C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z. L. Wang, All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics, ACS Nano, 2016, 10, 10580-10588.
    [75] H. Guo, M. H. Yeh, Y. Zi, Z. Wen, J. Chen, G. Liu, C. Hu, Z. L. Wang, Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems, ACS Nano, 2017, 11, 4475-4482.
    [76] M.-H. Yeh, H. Guo, L. Lin, Z. Wen, Z. Li, C. Hu, Z. L. Wang, Rolling Friction Enhanced Free-Standing Triboelectric Nanogenerators and their Applications in Self-Powered Electrochemical Recovery Systems, Advanced Functional Materials, 2016, 26, 1054-1062.
    [77] Q. Tang, M.-H. Yeh, G. Liu, S. Li, J. Chen, Y. Bai, L. Feng, M. Lai, K.-C. Ho, H. Guo, C. Hu, Whirligig-inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices, Nano Energy, 2018, 47, 74-80.
    [78] Z. Wen, J. Chen, M.-H. Yeh, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu, Z. Lin Wang, Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer, Nano Energy, 2015, 16, 38-43.
    [79] M.-H. Yeh, L. Lin, P.-K. Yang, Z. L. Wang, Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System, ACS Nano, 2015, 9, 4757-4765.
    [80] H. Guo, Z. Wen, Y. Zi, M.-H. Yeh, J. Wang, L. Zhu, C. Hu, Z. L. Wang, A Water-Proof Triboelectric-Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments, Advanced Energy Materials, 2016, 6, 1501593.
    [81] Y. Zi, H. Guo, Z. Wen, M. H. Yeh, C. Hu, Z. L. Wang, Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator, ACS Nano, 2016, 10, 4797-805.
    [82] H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh, G. Liu, Q. Tang, B. Chen, D. Liu, S. Qi, C. Wu, C. Hu, J. Wang, Z. L. Wang, A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids, Science Robotics, 2018, 3, eaat2516.
    [83] Z. Wen, H. Guo, Y. Zi, M. H. Yeh, X. Wang, J. Deng, J. Wang, S. Li, C. Hu, L. Zhu, Z. L. Wang, Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator, ACS Nano, 2016, 10, 6526-6534.
    [84] Z. H. Lin, G. Zhu, Y. S. Zhou, Y. Yang, P. Bai, J. Chen, Z. L. Wang, A self‐powered triboelectric nanosensor for mercury ion detection, Angewandte Chemie, 2013, 125, 5169-5173.
    [85] Z.-H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z. L. Wang, Enhanced Triboelectric Nanogenerators and Triboelectric Nanosensor Using Chemically Modified TiO2 Nanomaterials, ACS Nano, 2013, 7, 4554-4560.
    [86] F. Wen, T. He, H. Liu, H. Y. Chen, T. Zhang, C. Lee, Advances in chemical sensing technology for enabling the next-generation self-sustainable integrated wearable system in the IoT era, Nano Energy, 2020, 78, 105155.
    [87] T. Huang, S. Yang, P. He, J. Sun, S. Zhang, D. Li, Y. Meng, J. Zhou, H. Tang, J. Liang, G. Ding, X. Xie, Phase-Separation-Induced PVDF/Graphene Coating on Fabrics toward Flexible Piezoelectric Sensors, ACS Applied Materials & Interfaces, 2018, 10, 30732-30740.
    [88] F. Scholz, Voltammetric techniques of analysis: the essentials, ChemTexts, 2015, 1, 17.
    [89] E. Shoji, M. S. Freund, Potentiometric Sensors Based on the Inductive Effect on the pKa of Poly(aniline):  A Nonenzymatic Glucose Sensor, Journal of the American Chemical Society, 2001, 123, 3383-3384.
    [90] E. Shoji, M. S. Freund, Potentiometric Saccharide Detection Based on the pKa Changes of Poly(aniline boronic acid), Journal of the American Chemical Society, 2002, 124, 12486-12493.
    [91] S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou, Y. Hu, Z. L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy & Environmental Science, 2013, 6, 3576-3583.
    [92] W. Harmon, D. Bamgboje, H. Guo, T. Hu, Z. L. Wang, Self-driven power management system for triboelectric nanogenerators, Nano Energy, 2020, 71, 104642.
    [93] Y.-P. Pao, C.-C. Yu, Y.-Z. Lin, S. Chatterjee, S. Saha, N. Tiwari, Y.-T. Huang, C.-C. Wu, D. Choi, Z.-H. Lin, Carbohydrate-protein interactions studied by solid-liquid contact electrification and its use for label-free bacterial detection, Nano Energy, 2021, 85, 106008.
    [94] C. Huang, G. Chen, A. Nashalian, J. Chen, Advances in self-powered chemical sensing via a triboelectric nanogenerator, Nanoscale, 2021, 13, 2065-2081.
    [95] Y. Song, D. Mukasa, H. Zhang, W. Gao, Self-Powered Wearable Biosensors, Accounts of Materials Research, 2021, 2, 184-197.
    [96] J. Min, J. R. Sempionatto, H. Teymourian, J. Wang, W. Gao, Wearable electrochemical biosensors in North America, Biosensors and Bioelectronics, 2021, 172, 112750.
    [97] Y. Zhang, N. Li, Y. Xiang, D. Wang, P. Zhang, Y. Wang, S. Lu, R. Xu, J. Zhao, A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene, Carbon, 2020, 156, 506-513.
    [98] R. J. Galindo, G. Aleppo, D. C. Klonoff, E. K. Spanakis, S. Agarwal, P. Vellanki, D. E. Olson, G. E. Umpierrez, G. M. Davis, F. J. Pasquel, Implementation of Continuous Glucose Monitoring in the Hospital: Emergent Considerations for Remote Glucose Monitoring During the COVID-19 Pandemic, Journal of Diabetes Science and Technology, 2020, 14, 822-832.
    [99] H. Lee, Y. J. Hong, S. Baik, T. Hyeon, D. H. Kim, Enzyme‐based glucose sensor: from invasive to wearable device, Advanced healthcare materials, 2018, 7, 1701150.
    [100] J. B. Welsh, P. Gao, M. Derdzinski, S. Puhr, T. K. Johnson, T. C. Walker, C. Graham, Accuracy, utilization, and effectiveness comparisons of different continuous glucose monitoring systems, Diabetes Technology & Therapeutics, 2019, 21, 128-132.
    [101] J. R. Sempionatto, J.-M. Moon, J. Wang, Touch-Based Fingertip Blood-Free Reliable Glucose Monitoring: Personalized Data Processing for Predicting Blood Glucose Concentrations, ACS Sensors, 2021, 6, 1875-1883.
    [102] J. Moyer, D. Wilson, I. Finkelshtein, B. Wong, R. Potts, Correlation between sweat glucose and blood glucose in subjects with diabetes, Diabetes technology & therapeutics, 2012, 14, 398-402.
    [103] J. Kim, A. S. Campbell, J. Wang, Wearable non-invasive epidermal glucose sensors: A review, Talanta, 2018, 177, 163-170.
    [104] E. V. Karpova, E. V. Shcherbacheva, A. A. Galushin, D. V. Vokhmyanina, E. E. Karyakina, A. A. Karyakin, Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor, Analytical Chemistry, 2019, 91, 3778-3783.
    [105] S. Emaminejad, W. Gao, E. Wu, Z. A. Davies, H. Y. Y. Nyein, S. Challa, S. P. Ryan, H. M. Fahad, K. Chen, Z. Shahpar, Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform, Proceedings of the National Academy of sciences, 2017, 114, 4625-4630.
    [106] Z. L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors, ACS nano, 2013, 7, 9533-9557.
    [107] H. Ryu, H. J. Yoon, S. W. Kim, Hybrid energy harvesters: toward sustainable energy harvesting, Advanced Materials, 2019, 31, 1802898.
    [108] Z. Qitao, J. Pan, S. Deng, F. Xia, T. Kim, Triboelectric Nanogenerator‐Based Sensor Systems for Chemical or Biological Detection, Advanced Materials, 2021, 33,
    [109] X. Jing, H. Li, H.-Y. Mi, P.-Y. Feng, X. Tao, Y. Liu, C. Liu, C. Shen, Enhancing the Performance of a Stretchable and Transparent Triboelectric Nanogenerator by Optimizing the Hydrogel Ionic Electrode Property, ACS Applied Materials & Interfaces, 2020, 12, 23474-23483.
    [110] Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang, Q. Fu, S. Wang, S. Nie, Stretchable Triboelectric Self‐Powered Sweat Sensor Fabricated from Self‐Healing Nanocellulose Hydrogels, Advanced Functional Materials, 2022, 2201846.
    [111] W. Xu, L. Huang, M. C. Wong, L. Chen, G. Bai, J. Hao, Environmentally Friendly Hydrogel‐Based Triboelectric Nanogenerators for Versatile Energy Harvesting and Self‐Powered Sensors, Advanced Energy Materials, 2016, 7, 1601529.
    [112] S. Ma, S. Wang, Q. Li, Y. Leng, L. Wang, G.-H. Hu, A Novel Method for Preparing Poly(vinyl alcohol) Hydrogels: Preparation, Characterization, and Application, Industrial & Engineering Chemistry Research, 2017, 56, 7971-7976.
    [113] S. Thiebaud, J. Aburto, I. Alric, E. Borredon, D. Bikiaris, J. Prinos, C. Panayiotou, Properties of fatty‐acid esters of starch and their blends with LDPE, Journal of Applied Polymer Science, 1997, 65, 705-721.
    [114] S. Tang, P. Zou, H. Xiong, H. Tang, Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films, Carbohydrate polymers, 2008, 72, 521-526.
    [115] A. V. Parameswar, K. R. Fitch, D. S. Bull, V. R. Duke, A. P. Goodwin, Polyacrylamide Hydrogels Produce Hydrogen Peroxide from Osmotic Swelling in Aqueous Media, Biomacromolecules, 2018, 19, 3421-3426.
    [116] S. Gupta, T. J. Webster, A. Sinha, Evolution of PVA gels prepared without crosslinking agents as a cell adhesive surface, Journal of Materials Science: Materials in Medicine, 2011, 22, 1763-1772.
    [117] W. Ma, P. Zhang, B. Zhao, S. Wang, J. Zhong, Z. Cao, C. Liu, F. Gong, H. Matsuyama, Swelling Resistance and Mechanical Performance of Physical Crosslink‐Based Poly(Vinyl Alcohol) Hydrogel Film with Various Molecular Weight, Journal of Polymer Science Part B: Polymer Physics, 2019, 57, 1673-1683.
    [118] G. J. Kim, K. J. Yoon, K. O. Kim, Glucose-responsive poly(vinyl alcohol)/β-cyclodextrin hydrogel with glucose oxidase immobilization, Journal of Materials Science, 2019, 54, 12806-12817.
    [119] T. J. Madera-Santana, Y. Freile-Pelegrín, J. A. Azamar-Barrios, Physicochemical and morphological properties of plasticized poly(vinyl alcohol)–agar biodegradable films, International Journal of Biological Macromolecules, 2014, 69, 176-184.
    [120] M. Schwartz, H. Guterman, J. Kost, Electrical properties of glucose‐sensitive hydrogels: Swelling and conductivity relationships, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998, 41, 65-70.
    [121] Z. Lei, P. wu, A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities, Nature Communications, 2018, 9, 1134.
    [122] B. D. Paulsen, C. D. Frisbie, Dependence of Conductivity on Charge Density and Electrochemical Potential in Polymer Semiconductors Gated with Ionic Liquids, The Journal of Physical Chemistry C, 2012, 116, 3132-3141.
    [123] F. Torres, O. Troncoso Heros, G. De-la-Torre, Hydrogel-based triboelectric nanogenerators: Properties, performance, and applications, International Journal of Energy Research, 2021, 5603-5624.
    [124] S. Kripotou, S. Tegopoulos, A. Kyritsis, L. Oliver-Cervelló, A. Vallés-Lluch, G. Gallego Ferrer, Hyaluronic Acid -Gelatin hydrogels as bioelectrets: charge transport and dielectric polarization effects, IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 27, 1387-1394.
    [125] M. P. Kim, C. W. Ahn, Y. Lee, K. Kim, J. Park, H. Ko, Interfacial polarization-induced high-k polymer dielectric film for high-performance triboelectric devices, Nano Energy, 2021, 82, 105697.
    [126] X. Xuan, H. S. Yoon, J. Y. Park, A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate, Biosensors and Bioelectronics, 2018, 109, 75-82.
    [127] S.-N. Li, Z.-R. Yu, B.-F. Guo, K.-Y. Guo, Y. Li, L.-X. Gong, L. Zhao, J. Bae, L.-C. Tang, Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2TX MXene hydrogels for wide-temperature strain sensing, Nano Energy, 2021, 90, 106502.
    [128] H. Zhang, H. Xia, Y. Zhao, Poly(vinyl alcohol) Hydrogel Can Autonomously Self-Heal, ACS Macro Letters, 2012, 1, 1233-1236.
    [129] V. Katseli, A. Economou, C. Kokkinos, Smartphone-Addressable 3D-Printed Electrochemical Ring for Nonenzymatic Self-Monitoring of Glucose in Human Sweat, Analytical Chemistry, 2021, 93, 3331-3336.
    [130] P. Li, G.-H. Lee, S. Y. Kim, S. Y. Kwon, H.-R. Kim, S. Park, From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices, ACS Nano, 2021, 15, 1960-2004.
    [131] M. A. Alsheikh, S. Lin, D. Niyato, H.-P. Tan, Machine learning in wireless sensor networks: Algorithms, strategies, and applications, IEEE Communications Surveys & Tutorials, 2014, 16, 1996-2018.
    [132] P. Jiao, Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators, Nano Energy, 2021, 88, 106227.
    [133] Y. Zhou, M. Shen, X. Cui, Y. Shao, L. Li, Y. Zhang, Triboelectric nanogenerator based self-powered sensor for artificial intelligence, Nano Energy, 2021, 84, 105887.
    [134] S.-Y. Cho, Y. Lee, S. Lee, H. Kang, J. Kim, J. Choi, J. Ryu, H. Joo, H.-T. Jung, J. Kim, Finding Hidden Signals in Chemical Sensors Using Deep Learning, Analytical Chemistry, 2020, 92, 6529-6537.
    [135] X. Jin, C. Liu, T. Xu, L. Su, X. Zhang, Artificial intelligence biosensors: Challenges and prospects, Biosensors and Bioelectronics, 2020, 165, 112412.
    [136] I. Rodríguez-Rodríguez, J. V. Rodríguez, I. Chatzigiannakis, M. Á. Z. Izquierdo, On the possibility of predicting glycaemia ‘on the fly’ with constrained IoT devices in type 1 diabetes mellitus patients, Sensors (Switzerland), 2019, 19, 4538.
    [137] Y. Zhang, T. Tao, Skin‐Friendly Electronics for Acquiring Human Physiological Signatures, Advanced Materials, 2019, 31, 1905767.

    無法下載圖示 全文公開日期 2027/08/08 (校內網路)
    全文公開日期 2027/08/08 (校外網路)
    全文公開日期 2027/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE