簡易檢索 / 詳目顯示

研究生: Livy Laysandra
Livy Laysandra
論文名稱: 可自我交聯之彈性自修復高分子開發暨其應用
The Design of Self-Crosslinkable Elastic Self-Healing Polymers and Their Application
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 邱昱誠
Yu-Cheng Chiu
張家耀
Jia-Yaw Chang
陳良益
Liang-Yih Chen
江偉宏
Wei-Hung Chiang
康敦彥
Dun-Yen Kang
李文亞
Wen Ya Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 164
中文關鍵詞: 自修復可自交聯分子擴散氫鍵薄膜
外文關鍵詞: self-healing, self-cross-linkable, molecular diffusion, H-bonds, thin film
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開發具有強大機械性質的自修復可交聯聚合物在許多應用都是一值熱門的話題,特別為達到長期及安全的服務過程可不犧牲實際應用的預期性能。然而,重大的挑戰就是如何達到機械性質與自修復效率的良好平衡,所以開發出一個快速和簡單的方法可很容宜控制機械性質與自修復性質是一個重大的需求。這裡我們提出兩種可控制機械性質與自修復性質聚合物材料的合成方法包括自由基聚合的兩親性共聚物(AP)聚((丙烯酸正丁酯)-co-[N-(羥甲基)丙烯醯胺])( PBA0.8-co-PNMA0.2) 和自由基改質的順式 1,4-聚異戊二烯 (rm-PI)。
    BA柔軟的特性可增強分子網路共聚物內鏈的流動性,以協助自修復的機制,而NMA的其動態氫鍵可產生自修復和自交聯能力。此外,AP的適用性在三個不同的應用領域皆已得到進一步證實,包括發光二極體(LED)、氣體分離和抗菌複合材料。對於第一個應用,將AP 與硼摻雜石墨烯量子點 (BGQD) 結合,可製備出發紅光的奈米複合薄膜以作為白光 LED (WLED) 發射層的應用。值得注意的是,PBA0.8-co-PNMA0.2中側鏈的存在可與BGQDs的官能基產生協同效應,增強奈米複合薄膜的發光穩定性及物理性能和機械性能。在第二個應用裡,利用AP當氣體分離膜卓越地分離CO2/N2。NMA鏈段上的-OH和-NH官能基可透過氫鍵與CO2相互作用,讓AP可作為氣體分離膜對CO2/N2有優異的選擇性,其性能接近商用的PEBAX-1657膜(22.92對20.09)。重要的是,不像PEBAX-1657膜,AP獨特的自修復性質可讓在真空抽水機的高吸力下破裂的膜啟動自我修復,因此AP的高透氣性和CO2/N2的選擇性還能被維持既使已透過好幾次的分離過程。對於第三個應用,將AP與兩種商用陽離子抗菌劑(即二甲基十八烷基(3-三甲氧基甲矽烷基丙基)氯化銨(DTSACL)和葡萄糖酸氯己定(CHG))結合,製備出新型多功能聚合物複合膜((AP/b%CHG)-接枝-a%DTSACL)作為抗菌劑。具有加強熱穩定性、疏水性、機械強度和自修復能力的複合膜,可對革蘭氏陰性菌(大腸桿菌)和革蘭氏陽性菌(金黃色葡萄球菌)表出長期優異的抗菌活性(100%),還有防污功能。
    而另,由於利用具剛性特性N-乙烯基咔唑(NVC)當p型半導體材料和具軟特性2-[[(丁基氨基)羰基]氧基]丙烯酸乙酯(BACO)當自修復材料,rm-PI表出強大的自修復性能和綜合機械性質。透過合適NVC和BACO網路組成比例,自由基改質的PI獲得優秀機械性能(拉伸應力為2.91 MPa,最大應變為1086 %,韌性為25.27 MJ m-3)、缺口不敏感、快速恢復能力且連續25次循環測試後仍保持在初始耗散能量的96%。動態氫鍵網絡和聚合物鏈的物理擴散的協同作用讓已透過致命切割後有高自主修復效率高達>90%。我們預計這些研究成果可促進可行的方法發展多功能改質順式PI,作為潛力的未來p型半導體層於有機場效電晶體(OFET)裝置。
    我們的研究深入探討了可自修復材料的簡易開發方法,並對其機械性能進行了良好的折衷,使其可適用於廣泛的應用,包括 LED 設備、氣體分離膜、抗菌劑以及其他電子元件和裝置。


    The development of self-healing cross-linkable polymers with robust mechanical properties have been being the hot topics for a lot of applications, especially for long-term and safe service processes without sacrificing the intended application performances. However, the main challenge in such process is always how to achieve a good trade-off between the mechanical properties and self-healing efficiency. In this regards, developing a facile and simple route which allows ease of controllability between the mechanical and self-healing properties is highly demanded. Here we propose two methods in fabricating polymeric materials with controllable mechanical and self-healing properties, including free-radical polymerization of amphiphilic copolymer (AP) poly((n-butyl acrylate)-co-[N-(hydroxymethyl)acrylamide]) (PBA0.8-co-PNMA0.2) and radically modified cis 1,4-polyisoprene (rm-PI).
    The former mainly utilizes n-butyl acrylate (BA) and N-(hydroxymethyl)acrylamide (NMA) segments during the fabrication of these amphiphilic copolymers to offer easy tuning of mechanical and self-healing properties. BA with its soft characteristic, bestows enhancement chain mobility within the molecular network copolymers to assist the self-healing mechanism. Meanwhile, NMA was chosen due to the dynamic hydrogen bonds that can generate self-healing and self-crosslinker capabilities. Moreover, the applicability of AP is further demonstrated in three different application fields, including light-emitting diode (LED), gas separation, and antimicrobial composites. For the first application, the AP is incorporated with boron-doped graphene quantum dots (BGQDs) to fabricate red-emitting nanocomposite films as emissive layer for white LED (WLED) applications. It is worthy to note that the presence of side chains in PBA0.8-co-PNMA0.2 can initiate synergistic effects with the functional groups of BGQDs to enhance the luminescence stability, as well as physical and mechanical properties of the nanocomposite film. In the second application, the AP is employed as gas separation membrane for CO2/N2 separation with remarkable performance. The presence of –OH and –NH functional groups on the NMA segment can also interact with CO2 via hydrogen bonding, enabling the AP to be used as gas separation membrane with superior selectivity for CO2/N2 which is close to the commercially available PEBAX-1657 membrane (22.92 vs. 20.09). Importantly, unlike PEBAX-1657 membrane, the unique self-healing properties of AP can initiate self-auto membrane repair upon fracture by the high suction force of vacuum pump, thus the high gas permeability and CO2/N2 selectivity of AP can be maintained even after numerous separation processes. For the third application, the AP is combined with two types of commercial cationic antimicrobial agents (i.e. dimethyl octadecyl (3-trimethoxysilylpropyl) ammonium chloride (DTSACL) and chlorhexidine gluconate (CHG)) to fabricate a novel multifunctional modified polymer film ((AP/b%CHG)-grafted-a%DTSACL) as antimicrobial agents. The resulting copolymer/antimicrobial compound film with enhanced thermal stability, hydrophobicity, mechanical strength and self-healing capabilities enables long-term superior antibacterial activity (100 %) against Gram-negative (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus), and antifouling function.
    On the other hand, the rm-PI exhibit robust self-healing and comprehensive mechanical performances by utilizing rigid-characteristic of N-vinyl carbazole (NVC) as p-type semiconducting material and soft-characteristic 2-[[(Butylamino)carbonyl]oxy]ethyl acrylate (BACO) as autonomous self-healable material. Through appropriate ratio content of NVC and BACO network components, the radically modified PI achieved splendid mechanical properties (tensile stress of 2.91 MPa, a maximum strain of 1086 %, and toughness of 25.27 MJ m-3), notch-insensitive, and excellent fast recoverability that remained at 96% of initial dissipated energy after continuous 25 times cycle test. The synergism between the dynamic H-bonding networks and the physical diffusion of polymer chains contributed to a high autonomic self-healing efficiency of >90% after undergoing a deadly cut. These outcomes are expected to promote a viable approach for developing multi-feature modified cis-PI that could serve as a promising modern p-type semiconducting layer for organic field effect transistor (OFET) device applications.
    Our work provides insight into the facile and simple development of self-healable materials with good compromisation over their mechanical properties usable for broad applications, including LED devices, gas separation membranes, antimicrobial agents and other electronic devices.

    Abstract i 摘要 iii Acknowledgement v Publications vii Table of Contents ix List of Figures xii List of Tables xxii Chapter 1 – Introduction 1 Chapter 2 – Research Methodology 16 2.1. Summary Experimental Planning for Each Topic in the Form of Flow Chart. 16 2.2. Chemicals and Materials 18 2.3. Characterizations 19 2.4. Experimental Procedures for Chapter III. 22 2.4.1. Synthesis of amphiphilic copolymer 22 2.4.2. Synthesis of Boron-doped-Graphene Quantum Dots (BGQDs) 23 2.4.3. Preparation of the x% (w/w)@BGQDs/AP nanocomposite film 23 2.4.4. Fabrication of WLEDs 24 2.5. Experimental Procedures for Chapter IV. 24 2.5.1. Synthesis of the APNMA and APMAA 24 2.5.2. Fabrication of the APn membranes 25 2.5.3. Mechanical tests for the APn membranes 28 2.5.4. Conventional and vacuum-assisted self-healing 28 2.5.5. Gas permeation test 29 2.6. Experimental Procedures for Chapter V 30 2.6.1. Preparation of modified polymer (AP/b%CHG-grafted-a%DTSACL) in the bulk form 30 2.6.2. Preparation of (AP/b%CHG)-grafted-a%DTSACL in film form 31 2.6.3. Antimicrobial activity of (AP/b%CHG)-grafted-a%DTSACL against E. coli and S. aureus 31 2.6.4. Antifungal assessment 33 2.7. Experimental Procedure for Chapter VI 33 2.7.1. Synthesis of rm-PI 33 Chapter 3 – Optimizing the Use of Amphiphilic Copolymers as Protective Matrix for Boron-doped Graphene Quantum Dots: One Step Advance for WLED Application 36 3.1. Research Background 36 3.2. Results and Discussion 38 3.2.1. Characterization of BGQDs 40 3.2.2. Mutually synergistic effect of BGQDs/AP to the physical, mechanical, self-healing, and self-recoverability properties of nanocomposites. 43 3.2.3. x% (w/w)@BGQDs/AP nanocomposite film for LED Devices 51 Chapter 4 – Vacuum-Assisted Self-Healing Amphiphilic Copolymer Membranes for Gas Separation 55 4.1. Research Background 55 4.2. Results and Discussion 61 4.2.1. Characterization of APn 61 4.2.2. Adjustable physical and mechanical properties of APn based on thermal cross-linkable study 63 4.2.3. Conventional self-healing and self-recoverability properties 66 4.2.4. Vacuum-assisted self-healing 71 4.2.5. Membrane gas separation 73 Chapter 5 – Elastic and Self-Healing Copolymer Coatings with Antimicrobial Function. 80 5.1. Research Background 80 5.2. Results and Discussion 83 5.2.1. Optimized mechanical, self-recovery, and self-healing properties of the (AP/b%CHG)-grafted-a%DTSACL based on the synergistic effects of hydrogen bond interactions 86 5.2.2. Self-healing ability of transparent AP and modified polymers in micro-thick films 97 5.2.3. Effect of DTSACL and CHG on the hydrophobic properties of the modified polymer films 99 5.2.4. Antimicrobial evaluations 101 Chapter 6 – Radically Modified PI Toward a Multifunctional Rubber Moiety with Stretchable, Self-Healable, and Recyclable Properties 106 6.1. Research Background 106 6.2. Results and Discussion 109 6.2.1. Design and characterization of rm-PI 109 6.2.2. The proportion of NVC-segment in rm-PI/mx-mmol% 118 6.2.3. Molecular events during the damage-repair cycle 119 6.2.4. Self-healing performances of PI/m1_n2 in nano-scale thickness 126 6.2.5. Recyclability of PI/m1_n2 128 Chapter 7 – Conclusions and Future Works 130 7.1. Representative Conclusion for Chapter 3 130 7.2. Representative Conclusion for Chapter 4 130 7.3. Representative Conclusion for Chapter 5 131 7.4. Representative Conclusion for Chapter 6 132 7.5. Summary Conclusions 132 7.6. Future works 133 References 136

    1. Prager, S.; Tirrell, M., The Healing Process at Polymer–Polymer Interfaces. J. Chem. Phys. 1981, 75 (10), 5194-5198.
    2. Kim, S.-M.; Jeon, H.; Shin, S.-H.; Park, S.-A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J., Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv. Mater. 2018, 30 (1), 1705145.
    3. Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q., Polymer Engineering Based on Reversible Covalent Chemistry: A Promising Innovative Pathway towards New Materials and New Functionalities. Prog. Polym. Sci. 2018, 80, 39-93.
    4. Dahlke, J.; Zechel, S.; Hager, M. D.; Schubert, U. S., How to Design a Self-Healing Polymer: General Concepts of Dynamic Covalent Bonds and Their Application for Intrinsic Healable Materials. Adv. Mater. Interfaces 2018, 5 (17), 1800051.
    5. Herbst, F.; Dohler, D.; Michael, P.; Binder, W. H., Self-Healing Polymers via Supramolecular Forces. Macromol. Rapid Commun. 2013, 34 (3), 203-220.
    6. Yang, Y.; Urban, M. W., Self-Healing of Polymers via Supramolecular Chemistry. Adv. Mater. Interfaces 2018, 5 (17), 1800384.
    7. Voyutskii, S. S.; Vakula, V. L., The Role of Diffusion Phenomena in Polymer-to-Polymer Adhesion. J. Appl. Polym. Sci. 1963, 7 (2), 475-491.
    8. Yang, Y.; Urban, M. W., Self-Healing Polymeric Materials. Chem. Soc. Rev. 2013, 42 (17), 7446-7467.
    9. de Gennes, P. G., Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 1971, 55 (2), 572-579.
    10. Yesilyurt, V.; Webber, M. J.; Appel, E. A.; Godwin, C.; Langer, R.; Anderson, D. G., Injectable Self-Healing Glucose-Responsive Hydrogels with pH-Regulated Mechanical Properties. Adv. Mater. 2016, 28 (1), 86-91.
    11. Shan, S.; Mai, D.; Lin, Y.; Zhang, A., Self-Healing, Reprocessable, and Degradable Bio-Based Epoxy Elastomer Bearing Aromatic Disulfide Bonds and Its Application in Strain Sensors. ACS Appl. Polym. Mater. 2021, 3 (10), 5115-5124.
    12. Cao, X.; Zhang, P.; Guo, N.; Tong, Y.; Xu, Q.; Zhou, D.; Feng, Z., Self-Healing Solid Polymer Electrolyte Based on Imine Bonds for High Safety and Stable Lithium Metal Batteries. RSC Adv. 2021, 11 (5), 2985-2994.
    13. Lai, J.-C.; Jia, X.-Y.; Wang, D.-P.; Deng, Y.-B.; Zheng, P.; Li, C.-H.; Zuo, J.-L.; Bao, Z., Thermodynamically Stable Whilst Kinetically Labile Coordination Bonds Lead to Strong and Tough Self-Healing Polymers. Nat. Commun. 2019, 10 (1), 1164.
    14. Yang, S.; Du, X.; Deng, S.; Qiu, J.; Du, Z.; Cheng, X.; Wang, H., Recyclable and Self-Healing Polyurethane Composites Based on Diels-Alder Reaction for Efficient Solar-to-Thermal Energy Storage. Chem. Eng. J. 2020, 398, 125654.
    15. Ye, X.; Li, X.; Shen, Y.; Chang, G.; Yang, J.; Gu, Z., Self-Healing pH-Sensitive Cytosine- and Guanosine-Modified Hyaluronic Acid Hydrogels via Hydrogen Bonding. Polymer 2017, 108, 348-360.
    16. Yang, H.; Lu, H.; Miao, Y.; Cong, Y.; Ke, Y.; Wang, J.; Yang, H.; Fu, J., Non-swelling, Super-Tough, Self-Healing, and Multi-Responsive Hydrogels based on Micellar Crosslinking For Smart Switch and Shape Memory. Chem. Eng. J. 2022, 450.
    17. Guo, Y.; An, X.; Qian, X., Mechanochromic Self-Healing Materials with Good Stretchability, Shape Memory Behavior, Cyclability, and Reversibility Based on Multiple Hydrogen Bonds. ACS Appl. Mater. Interfaces 2023, 15 (15), 19362-19373.
    18. Song, Y.; Li, J.; Song, G.; Zhang, L.; Liu, Z.; Jing, X.; Luo, F.; Zhang, Y.; Zhang, Y.; Li, X., Self-Healing Polyurethane Elastomers with High Mechanical Properties Based on Synergistically Thermo-Reversible and Quadruple Hydrogen Bonds. ACS Appl. Polym. Mater. 2023, 5 (2), 1302-1311.
    19. Nakahata, M.; Takashima, Y.; Harada, A., Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host–Guest Interaction. Macromol. Rapid. Commun. 2016, 37 (1), 86-92.
    20. Jiang, H.; Duan, L.; Ren, X.; Gao, G., Hydrophobic Association Hydrogels with Excellent Mechanical and Self-Healing Properties. Eur. Polym. J. 2019, 112, 660-669.
    21. Tuncaboylu, D. C.; Sari, M.; Oppermann, W.; Okay, O., Tough and Self-Healing Hydrogels Formed via Hydrophobic Interactions. Macromolecules 2011, 44 (12), 4997-5005.
    22. Owusu‐Nkwantabisah, S.; Gillmor, J. R.; Switalski, S. C.; Slater, G. L., An Autonomous Self‐Healing Hydrogel Based on Surfactant‐Free Hydrophobic Association. J. Appl. Polym. Sci. 2017, 134 (19), 44800.
    23. Yang, J.; Yi, L.; Fang, X.; Song, Y.; Zhao, L.; Wu, J.; Wu, H., Self-Healing and Recyclable Biomass Aerogel Formed By Electrostatic Interaction. Chem. Eng. J. 2019, 371, 213-221.
    24. Pu, W.; Jiang, F.; Chen, P.; Wei, B., A POSS Based Hydrogel with Mechanical Robustness, Cohesiveness and a Rapid Self-Healing Ability by Electrostatic Interaction. Soft. Matter. 2017, 13 (34), 5645-5648.
    25. Xu, C.; Cao, L.; Huang, X.; Chen, Y.; Lin, B.; Fu, L., Self-Healing Natural Rubber with Tailorable Mechanical Properties Based on Ionic Supramolecular Hybrid Network. ACS Appl. Mater. Interfaces 2017, 9 (34), 29363-29373.
    26. Mei, J.-F.; Jia, X.-Y.; Lai, J.-C.; Sun, Y.; Li, C.-H.; Wu, J.-H.; Cao, Y.; You, X.-Z.; Bao, Z., A Highly Stretchable and Autonomous Self Healing Polymer Based on Combination of Pt···Pt and π–π Interactions. Macromol. Rapid Commun. 2016, 37 (20), 1667-1675.
    27. Lin, Y.; Li, G., An Intermolecular Quadruple Hydrogen-Bonding Strategy to Fabricate Self-Healing and Highly Deformable Polyurethane Hydrogels. J. Mater. Chem. B 2014, 2 (39), 6878-6885.
    28. Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W., A Mechanically Strong, Highly Stable, Thermoplastic, and Self-Healable Supramolecular Polymer Hydrogel. Adv. Mater. 2015, 27 (23), 3566-71.
    29. Liu, Y.; Chen, T.; Jin, Z.; Li, M.; Zhang, D.; Duan, L.; Zhao, Z.; Wang, C., Tough, Stable and Self-Healing Luminescent Perovskite-Polymer Matrix Applicable to All Harsh Aquatic Environments. Nat. Commun. 2022, 13 (1), 1338.
    30. Song, Y.; Liu, Y.; Qi, T.; Li, G. L., Towards Dynamic but Supertough Healable Polymers through Biomimetic Hierarchical Hydrogen-Bonding Interactions. Angew. Chem. Int. Ed. Engl. 2018, 57 (42), 13838-13842.
    31. Baral, S.; Liu, C.; Mao, X.; Coates, G. W.; Chen, P., Tuning Single-Polymer Growth via Hydrogen Bonding in Conformational Entanglements. ACS Cent. Sci. 2022, 8 (8), 1116-1124.
    32. Deng, Y.; Zhang, Q.; Qu, D.-H., Emerging Hydrogen-Bond Design for High-Performance Dynamic Polymeric Materials. ACS Mater. Lett. 2023, 5 (2), 480-490.
    33. Tobias, D. J.; Sneddon, S. F.; III, C. L. B., Stability of a Model β-Sheet in Water. J. Mol. Biol. 1992, 227, 1244-1252.
    34. Ikura, R.; Park, J.; Osaki, M.; Yamaguchi, H.; Harada, A.; Takashima, Y., Design of Self-Healing and Self-Restoring Materials Utilizing Reversible and Movable Crosslinks. NPG Asia Mater. 2022, 14 (1), 10.
    35. Zhang, L.; Liu, Z.; Wu, X.; Guan, Q.; Chen, S.; Sun, L.; Guo, Y.; Wang, S.; Song, J.; Jeffries, E. M.; He, C.; Qing, F.-L.; Bao, X.; You, Z., A Highly Efficient Self-Healing Elastomer with Unprecedented Mechanical Properties. Adv. Mater. 2019, 31 (23), 1901402.
    36. Fan, L.; Wang, Y.; Li, L.; Zhou, J., Carbon Quantum Dots Activated Metal Organic Frameworks for Selective Detection of Cu(Ⅱ) and Fe(Ⅲ). Colloids Surf. A: Physicochem. Eng. Asp. 2020, 588, 124378.
    37. Preethi, M.; Viswanathan, C.; Ponpandian, N., Fluorescence Quenching Mechanism of P-doped Carbon Quantum Dots as Fluorescent Sensor for Cu2+ Ions. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 653, 129942.
    38. Sun, S.; Sun, Y.; Yang, F.; Che, S.; Zhang, X.; Zhang, G.; Li, Y., Electrochemical Synthesis of Ni Doped Carbon Quantum Dots for Simultaneous Fluorometric Determination of Fe3+ and Cu2+ Ion Facilely. Green Chem. Eng. 2023, 4 (1), 115-122.
    39. Lai, S.; Jin, Y.; Shi, L.; Zhou, R.; Li, Y., Fluorescence Sensing Mechanisms of Versatile Graphene Quantum Dots toward Commonly Encountered Heavy Metal Ions. ACS Sens. 2023, 8 (10), 3812-3823.
    40. Xu, J.; Yang, J.; Wang, Z.; Li, P.; Lan, J.; Yu, R.; Li, J.; Li, L.; Liu, W.; Chen, J.; Feng, S.; Chen, L., Quantitative Mixed-Valence State Identification of Metal Ions Based on Fluorescence Response of Graphene Quantum Dots. Mater. Des. 2023, 236.
    41. Wongrerkdee, S.; Pimpang, P., Fluorescence Quenching Probe Based on Graphene Quantum Dots for Detection of Copper Ion in Water. Integr. Ferroelectr. 2021, 222 (1), 56-68.
    42. Wang, F.; Gu, Z.; Lei, W.; Wang, W.; Xia, X.; Hao, Q., Graphene Quantum Dots as a Fluorescent Sensing Platform for Highly Efficient Detection of Copper(II) Ions. Sens. Actuators B Chem. 2014, 190, 516-522.
    43. Im, M. J.; Kim, J. I.; Hyeong, S. K.; Moon, B. J.; Bae, S., From Pristine to Heteroatom-Doped Graphene Quantum Dots: An Essential Review and Prospects for Future Research. Small 2023, 19 (47), e2304497.
    44. Mukherjee, S.; Sarkar, K.; Biswas, S., A Fluorophore Anchored MOF for Fast and Sensitive Sensing of Cu(II) and 3-Nitrotyrosine in a Physiological Medium. Dalton Trans. 2023, 52 (17), 5597-5605.
    45. Li, C.; Sun, X.; Meng, X.; Wang, D.; Zheng, C., A Water Stable and Highly Fluorescent Zn(II) Based Metal-Organic Framework for Fast Detection of Hg(2+), Cr(VI), and Antibiotics. Dalton Trans. 2023, 52 (22), 7611-7619.
    46. Ji, C.; Zhang, J.; Fan, R.; Sun, T.; Yang, Y., Tetranuclear Cluster-Based Eu(III)-Metal-Organic Framework: Ratiometric Platform Design and Ultrasensitive Phenylglyoxylic Acid Detection. ACS Appl. Mater. Interfaces 2023, 15 (44), 51796–51805.
    47. Jin, Y.; Dong, X. Y.; Zhang, C.; Li, S.; Zang, S. Q.; Mak, T. C. W., Predesigned Cluster-Based Spacers for Versatile Luminescent Metallacages. J. Am. Chem. Soc. 2023, 145 (25), 13514-13519.
    48. Jia, T.; Guan, Z. J.; Zhang, C.; Zhu, X. Z.; Chen, Y. X.; Zhang, Q.; Yang, Y.; Sun, D., Eight-Electron Superatomic Cu(31) Nanocluster with Chiral Kernel and NIR-II Emission. J. Am. Chem. Soc. 2023, 145 (18), 10355-10363.
    49. Sebastian, A.; Aarya; Kavya, P.; Sen Mojumdar, S., Role of a Mild Reducing Agent in Designing a Copper Nanocluster-Based Tunable Dual-Metal Sensor for the Selective and Sensitive Detection of Ag+ and Fe2+. Chem. Phys. 2023, 6, 100249.
    50. Burattini, S.; Greenland, B. W.; Merino, D. H.; Weng, W.; Seppala, J.; Colquhoun, H. M.; Hayes, W.; Mackay, M. E.; Hamley, I. W.; Rowan, S. J., A Healable Supramolecular Polymer Blend Based on Aromatic π-π Stacking and Hydrogen-Bonding Interactions. J. Am. Chem. Soc. 2010, 132, 12051-12058.
    51. Zuo, Y.; Zhang, Y.; Yang, T.; Gou, Z.; Lin, W., Polysiloxane-Based Two-Photon Fluorescent Elastomers with Superior Mechanical and Self-Healing Properties and Their Application in Bioimaging. New J. Chem. 2018, 42 (17), 14281-14289.
    52. Xu, C.; Nie, J.; Wu, W.; Fu, L.; Lin, B., Design of Self-Healable Supramolecular Hybrid Network Based on Carboxylated Styrene Butadiene Rubber and Nano-Chitosan. Carbohydr. Polym. 2019, 205, 410-419.
    53. Sattar, M. A.; Gangadharan, S.; Patnaik, A., Design of Dual Hybrid Network Natural Rubber−SiO2 Elastomers with Tailored Mechanical and Self-Healing Properties. ACS Omega 2019, 4 (6), 10939-10949.
    54. Liu, J.; Liu, J.; Wang, S.; Huang, J.; Wu, S.; Tang, Z.; Guo, B.; Zhang, L., An Advanced Elastomer with an Unprecedented Combination of Excellent Mechanical Properties and High Self-Healing Capability. J. Mater. Chem. A 2017, 5 (48), 25660-25671.
    55. Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J.-C.; Liu, L.; Li, C.-H.; Yan, X.; Liu, C.; Tok, J. B.-H.; Jia, X.; Bao, Z., An Elastic Autonomous Self-Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. Adv. Mater. 2018, 30, 1801435.
    56. Wu, X.; Wang, J.; Huang, J.; Yang, S., Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Appl. Mater. Interfaces 2019, 11 (7), 7387-7396.
    57. Hou, J.-B.; Zhang, X.-Q.; Wu, D.; Feng, J.-F.; Ke, D.; Li, B.-J.; Zhang, S., Tough Self-Healing Elastomers Based on the Host−Guest Interaction of Polycyclodextrin. ACS Appl. Mater. Interfaces 2019, 11 (12), 12105-12113.
    58. Tang, M.; Zheng, P.; Wang, K.; Qin, Y.; Jiang, Y.; Cheng, Y.; Li, Z.; Wu, L., Autonomous Self-Healing, Self-Adhesive, Highly Conductive Composites Based on a Silver-Filled Polyborosiloxane/Polydimethylsiloxane Double-Network Elastomer. J. Mater. Chem. A 2019, 7 (48), 27278-27288.
    59. Lv, C.; Zhao, K.; Zheng, J., A Highly Stretchable Self-Healing Poly(dimethylsiloxane) Elastomer with Reprocessability and Degradability. Macromol. Rapid Commun. 2018, 39 (8), 1700686.
    60. Lee, S.-H.; Shin, S.-R.; Lee, D.-S., Self-Healing of Cross-Linked PU via Dual-Dynamic Covalent Bonds of a Schiff Base from Cystine and Vanillin. Mater. Des. 2019, 172, 107774.
    61. Dai, X.; Du, Y.; Wang, Y.; Liu, Y.; Xu, N.; Li, Y.; Shan, D.; Xu, B. B.; Kong, J., Stretchable Self-Healing Polymeric Networks with Recyclability and Dual Responsiveness. ACS Appl. Polym. Mater. 2020, 2 (3), 1065-1072.
    62. Rekondo, A.; Martin, R.; Ruiz de Luzuriaga, A.; Cabañero, G.; Grande, H. J.; Odriozola, I., Catalyst-Free Room-Temperature Self-Healing Elastomers Based on Aromatic Disulfide Metathesis. Mater. Horiz. 2014, 1 (2), 237-240.
    63. Xu, W. M.; Rong, M. Z.; Zhang, M. Q., Sunlight Driven Self-Healing, Reshaping and Recycling of a Robust, Transparent and Yellowing-Resistant Polymer. J. Mater. Chem. A 2016, 4 (27), 10683-10690.
    64. Yang, Y.; Lu, X.; Wang, W., A Tough Polyurethane Elastomer with Self-Healing Ability. Mater. Des. 2017, 127, 30-36.
    65. Jian, X.; Hu, Y.; Zhou, W.; Xiao, L., Self‐Healing Polyurethane Based on Disulfide Bond and Hydrogen Bond. Polym. Adv. Technol. 2017, 29 (1), 463-469.
    66. Li, T.; Xie, Z.; Xu, J.; Weng, Y.; Guo, B.-H., Design of a Self-Healing Cross-Linked Polyurea with Dynamic Cross-Links Based on Disulfide Bonds and Hydrogen Bonding. Eur. Polym. J. 2018, 107, 249-257.
    67. Cheng, B.; Lu, X.; Zhou, J.; Qin, R.; Yang, Y., Dual Cross-Linked Self-Healing and Recyclable Epoxidized Natural Rubber Based on Multiple Reversible Effects. ACS Sustain. Chem. Eng. 2019, 7 (4), 4443-4455.
    68. Yao, W.; Chen, X.; Tian, Q.; Luo, C.; Zhang, X.; Peng, H.; Wu, W., Directly Printing of Upconversion Fluorescence-Responsive Elastomers for Self-Healable Optical Application. Chem. Eng. J. 2020, 384, 123375.
    69. Ha, Y.-m.; Kim, Y.-O.; Ahn, S.; Lee, S.-k.; Lee, J.-s.; Park, M.; Chung, J. W.; Jung, Y. C., Robust and Stretchable Self-Healing Polyurethane Based on Polycarbonate Diol with Different Soft-Segment Molecular Weight for Flexible Devices. Eur. Polym. J. 2019, 118, 36-44.
    70. Peng, Y.; Yang, Y.; Wu, Q.; Wang, S.; Huang, G.; Wu, J., Strong and Tough Self-Healing Elastomers Enabled by Dual Reversible Networks Formed by Ionic Interactions and Dynamic Covalent Bonds. Polymer 2018, 157, 172-179.
    71. Chen, Y.; Tang, Z.; Liu, Y.; Wu, S.; Guo, B., Mechanically Robust, Self-Healable, and Reprocessable Elastomers Enabled By Dynamic Dual Cross-Links. Macromolecules 2019, 52 (10), 3805-3812.
    72. Pignanelli, J.; Billet, B.; Straeten, M.; Prado, M.; Schlingman, K.; Ahamed, M. J.; Rondeau-Gagne, S., Imine and Metal-Ligand Dynamic Bonds in Soft Polymers for Autonomous Self-Healing Capacitive-Based Pressure Sensors. Soft Matter. 2019, 15 (38), 7654-7662.
    73. Lin, C.; Sheng, D.; Liu, X.; Xu, S.; Ji, F.; Dong, L.; Zhou, Y.; Yang, Y., Coordination Bonds and Diels–Alder Bonds Dual Crosslinked Polymer Networks of Self‐healing Polyurethane. J. Polym. Sci. A Polym. Chem. 2019, 57 (22), 2228-2234.
    74. Li, Y.-h.; Guo, W.-j.; Li, W.-j.; Liu, X.; Zhu, H.; Zhang, J.-p.; Liu, X.-j.; Wei, L.-h.; Sun, A.-i., Tuning Hard Phase Towards Synergistic Improvement of Toughness and Self-Healing Ability of Poly(Urethane Urea) by Dual Chain Extenders and Coordinative Bonds. Chem. Eng. J. 2020, 393, 124583.
    75. Laysandra, L.; Chuang, C.-H.; Kobayashi, S.; Au-Duong, A.-N.; Cheng, Y.-H.; Li, Y.-T.; Mburu, M. M.; Isono, T.; Satoh, T.; Chiu, Y.-C., Design of Self-Cross-Linkable Poly(n-butyl acrylate)-co-poly[N-(hydroxymethyl)acrylamide] Amphiphilic Copolymers toward Elastic and Self-Healing Properties. ACS Appl. Polym. Mater. 2020, 2 (12), 5432-5443.
    76. Laysandra, L.; Fan, Y. J.; Adena, C.; Lee, Y.-T.; Au-Duong, A.-N.; Chen, L.-Y.; Chiu, Y.-C., Improving the Lifetime of CsPbBr3 Perovskite in Water Using Self-Healing and Transparent Elastic Polymer Matrix. Front. Chem. 2020, 8, 766.
    77. Laysandra, L.; Kurniawan, D.; Wang, C.-L.; Chiang, W.-H.; Chiu, Y.-C., Synergistic Effect in a Graphene Quantum Dot-Enabled Luminescent Skinlike Copolymer for Long-Term pH Detection. ACS Appl. Mater. Interfaces 2021, 13 (50), 60413-60424.
    78. Du, X.; Jin, L.; Deng, S.; Zhou, M.; Du, Z.; Cheng, X.; Wang, H., Recyclable, Self-Healing, and Flame-Retardant Solid-Solid Phase Change Materials Based on Thermally Reversible Cross-Links for Sustainable Thermal Energy Storage. ACS Appl. Mater. Interfaces 2021, 13 (36), 42991-43001.
    79. Yuan, W.-Q.; Liu, G.-L.; Huang, C.; Li, Y.-D.; Zeng, J.-B., Highly Stretchable, Recyclable, and Fast Room Temperature Self-Healable Biobased Elastomers Using Polycondensation. Macromolecules 2020, 53, 9847–9858.
    80. Cao, L.; Fan, J.; Huang, J.; Chen, Y., A Robust and Stretchable Cross-linked Rubber Network with Recyclable and Self-Healable Capabilities Based On Dynamic Covalent Bonds. J. Mater. Chem. A 2019, 7, 4922-4933.
    81. Liu, J.; Li, X.; Yang, X.; Zhang, X., Recent Advances in Self‐Healable Intelligent Materials Enabled by Supramolecular Crosslinking Design. Adv. Intell. Syst 2021, 3 (5), 2000183.
    82. Laysandra, L.; Getachew, G.; Chang, J.-R.; Chang, J.-Y.; Chiu, Y.-C., “Grafting from” Enabled Stretchable and Highly Fluorescent Carbon Quantum Dot–Polyisoprene Elastomers. ACS Appl. Polym. Mater. 2023, 5 (3), 1725-1736.
    83. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.-Y.; White, D. J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A., Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9 (7), 676-682.
    84. Kan, M.-Y.; Shin, J. H.; Yang, C.-T.; Chang, C.-K.; Lee, L.-W.; Chen, B.-H.; Lu, K.-L.; Lee, J. S.; Lin, L.-C.; Kang, D.-Y., Activation-Controlled Structure Deformation of Pillared-Bilayer Metal–Organic Framework Membranes for Gas Separations. Chem. Mater. 2019, 31 (18), 7666-7677.
    85. Chiou, D. S.; Yu, H. J.; Hung, T. H.; Lyu, Q.; Chang, C. K.; Lee, J. S.; Lin, L. C.; Kang, D. Y., Highly CO2 Selective Metal–Organic Framework Membranes with Favorable Coulombic Effect. Adv. Funct. Mater. 2020, 31 (4), 2006924.
    86. Kan, M.-Y.; Lyu, Q.; Chu, Y.-H.; Hsu, C.-C.; Lu, K.-L.; Lin, L.-C.; Kang, D.-Y., Suppressing Defect Formation in Metal–Organic Framework Membranes via Plasma-Assisted Synthesis for Gas Separations. ACS Appl. Mater. Interfaces 2021, 13 (35), 41904-41915.
    87. Madkour, A. E.; Tew, G. N., Towards Self‐Sterilizing Medical Devices: Controlling Infection. Polym. Int. 2007, 57 (1), 6-10.
    88. Balakumaran, M. D.; Ramachandran, R.; Jagadeeswari, S.; Kalaichelvan, P. T., In Vitro Biological Properties and Characterization of Nanosilver Coated Cotton Fabrics – An Application for Antimicrobial Textile Finishing. Int. Biodeterior. Biodegradation 2016, 107, 48-55.
    89. Au-Duong, A. N.; Lee, C.-K., Iodine-Loaded Metal Organic Framework as Growth-Triggered Antimicrobial Agent. Mater. Sci. Eng. C 2017, 76, 477-482.
    90. Hsu, C.-C.; Laysandra, L.; Chiu, Y.-C.; Liu, W.-R., Pivotal Role of Boron-Doped Graphene Quantum Dots in Stretchable and Self-Healable Red Emission Nanocomposite Film: One Step Advance for White Light Emitting Diodes Application. Chem. Eng. J. 2023, 473, 145469.
    91. Yang, J.; Zhang, Z.; Yan, Y.; Liu, S.; Li, Z.; Wang, Y.; Li, H., Highly Stretchable and Fast Self-Healing Luminescent Materials. ACS Appl. Mater. Interfaces 2020, 12 (11), 13239-13247.
    92. Pan, A.; Zhou, Y.; Zhao, C.; Shi, C.; Wu, Y.; Zhang, Y.; Liu, Y.; He, L., Luminescent and Ultrastable Perovskite-Acrylate Based Elastomers with Excellent Stretchability and Self-Healing Capability for Flexible Backlight Display. Chem. Eng. J. 2022, 433.
    93. Luo, C.; Xia, W.; Ren, Z.; Shen, D.; Li, Q.; Zheng, Z.; Li, J.; Ma, W.; Chen, Y., Highly Luminescent and Ultra‐Stable Perovskite Films with Excellent Self‐Healing Ability for Flexible Lighting and Wide Color Gamut Displays. Adv. Func. Mater. 2022, 32 (27).
    94. Pramanik, A.; Biswas, S.; Tiwary, C. S.; Kumbhakar, P.; Sarkar, R.; Kumbhakar, P., Forster Resonance Energy Transfer Assisted White Light Generation and Luminescence Tuning in a Colloidal Graphene Quantum Dot-Dye System. J. Colloid. Interface Sci. 2020, 565, 326-336.
    95. Bairi, P.; Roy, B.; Chakraborty, P.; Nandi, A. K., Co-assembled White-Light-Emitting Hydrogel of Melamine. ACS Appl. Mater. Interfaces 2013, 5 (12), 5478-85.
    96. Zhu, Q.; Zhang, L.; Van Vliet, K.; Miserez, A.; Holten-Andersen, N., White Light-Emitting Multistimuli-Responsive Hydrogels with Lanthanides and Carbon Dots. ACS Appl. Mater. Interfaces 2018, 10 (12), 10409-10418.
    97. Zhang, Q.; Wang, C.-F.; Ling, L.-T.; Chen, S., Fluorescent Nanomaterial-Derived White Light-Emitting Diodes: what's Going On. J. Mater. Chem. C 2014, 2 (22), 4358-4373.
    98. Gupta, S. K.; Sudarshan, K.; Kadam, R. M., Optical Nanomaterials with Focus On Rare Earth Doped Oxide: A Review. Mater. Today Commun. 2021, 27.
    99. Kurniawan, D.; Anjali, B. A.; Setiawan, O.; Ostrikov, K. K.; Chung, Y. G.; Chiang, W. H., Microplasma Band Structure Engineering in Graphene Quantum Dots for Sensitive and Wide-Range pH Sensing. ACS Appl. Mater. Interfaces 2022, 14 (1), 1670-1683.
    100. Kurniawan, D.; Sharma, N.; Rahardja, M. R.; Cheng, Y. Y.; Chen, Y. T.; Wu, G. X.; Yeh, Y. Y.; Yeh, P. C.; Ostrikov, K. K.; Chiang, W. H., Plasma Nanoengineering of Bioresource-Derived Graphene Quantum Dots as Ultrasensitive Environmental Nanoprobes. ACS Appl. Mater. Interfaces 2022, 14 (46), 52289-52300.
    101. Kurniawan, D.; Weng, R.-J.; Chen, Y.-Y.; Rahardja, M. R.; Nanaricka, Z. C.; Chiang, W.-H., Recent Advances in the Graphene Quantum Dot-Based Biological and Environmental Sensors. Sens. Actuators Rep. 2022, 4.
    102. Sohal, N.; Maity, B.; Basu, S., Recent Advances in Heteroatom-Doped Graphene Quantum Dots for Sensing Applications. RSC Adv. 2021, 11 (41), 25586-25615.
    103. Yan, J.; Pan, G.; Lin, W.; Tang, Z.; Zhang, J.; Li, J.; Li, W.; Lin, X.; Luo, H.; Yi, G., Multi-Responsive Graphene Quantum Dots Hybrid Self-Healing Structural Color Hydrogel for Information Encoding and Encryption. Chem. Eng. J. 2023, 451, 138922.
    104. Li, Y.; Jin, Y.; Zeng, W.; Zhou, R.; Shang, X.; Shi, L.; Bai, L.; Lai, C., Mechanically Robust and Fast Room-Temperature Self-Healing Waterborne Polyurethane Constructed by Coordination Bond and Hydrogen Bond with Antibacterial and Photoluminescence Functions. Prog. Org. Coat. 2023, 174, 107256.
    105. Zhai, L.; Narkar, A.; Ahn, K., Self-Healing Polymers with Nanomaterials and Nanostructures. Nano Today 2020, 30, 100826.
    106. Thakur, V. K.; Kessler, M. R., Self-Healing Polymer Nanocomposite Materials: A Review. Polymer 2015, 69, 369-383.
    107. Döhler, D.; Kang, J.; Cooper, C. B.; Tok, J. B.-H.; Rupp, H.; Binder, W. H.; Bao, Z., Tuning the Self-Healing Response of Poly(dimethylsiloxane)-Based Elastomers. ACS Appl. Polym. Mater. 2020, 2 (9), 4127-4139.
    108. Lugger, S. J. D.; Houben, S. J. A.; Foelen, Y.; Debije, M. G.; Schenning, A. P. H. J.; Mulder, D. J., Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chem. Rev. 2022, 122 (5), 4946-4975.
    109. Shuai, L.; Guo, Z. H.; Zhang, P.; Wan, J.; Pu, X.; Wang, Z. L., Stretchable, Self-Healing, Conductive Hydrogel Fibers for Strain Sensing and Triboelectric Energy-Harvesting Smart Textiles. Nano Energy 2020, 78, 105389.
    110. Zhao, M.; Tang, Z.; Zhang, X.; Li, Z.; Xiao, H.; Zhang, M.; Liu, K.; Ni, Y.; Huang, L.; Chen, L.; Wu, H., A Self-Healing, Stretchable, and Conductive Poly(N-vinylpyrrolidone)/Gallic Acid Composite Hydrogel Formed via Hydrogen Bonding for Wearable Electronic Sensors. Compos. Sci. Technol. 2020, 198, 108294.
    111. Kang, J.; Son, D.; Wang, G. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B.-H.; Bao, Z., Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv. Mater. 2018, 30 (13), 1706846.
    112. Yang, R.; Yao, Y.; Duan, Z.; Yuan, Z.; Tai, H.; Jiang, Y.; Zheng, Y.; Wang, D., Constructing Electrically and Mechanically Self-Healing Elastomers by Hydrogen Bonded Intermolecular Network. Langmuir 2020, 36 (12), 3029-3037.
    113. Chen, J.; Peng, Q.; Thundat, T.; Zeng, H., Stretchable, Injectable, and Self-Healing Conductive Hydrogel Enabled by Multiple Hydrogen Bonding toward Wearable Electronics. Chem. Mater. 2019, 31 (12), 4553-4563.
    114. Mai, W.; Yu, Q.; Han, C.; Kang, F.; Li, B., Self‐Healing Materials for Energy‐Storage Devices. Adv. Funct. Mater. 2020, 30 (24), 1909912.
    115. Faghihnejad, A.; Feldman, K. E.; Yu, J.; Tirrell, M. V.; Israelachvili, J. N.; Hawker, C. J.; Kramer, E. J.; Zeng, H., Adhesion and Surface Interactions of a Self‐Healing Polymer with Multiple Hydrogen‐Bonding Groups. Adv. Funct. Mater. 2014, 24 (16), 2322-2333.
    116. Yang, J.; Zhou, X.; Yang, J.; Chen, J.; Sun, Z.; Cheng, Y.; Yang, L.; Wang, H.; Zhang, G.; Fu, J.; Jiang, W., A Microscale Regulation Strategy for Strong, Tough, and Efficiently Self-Healing Energetic Adhesives. Chem. Eng. J. 2023, 451, 138810.
    117. Li, B.; Xu, F.; Guan, T.; Li, Y.; Sun, J., Self-Adhesive Self-Healing Thermochromic Ionogels for Smart Windows with Excellent Environmental and Mechanical Stability, Solar Modulation, and Antifogging Capabilities. Adv. Mater. 2023, 35 (20), 2211456.
    118. Kim, J.; Kim, J. W.; Keum, K.; Lee, H.; Jung, G.; Park, M.; Lee, Y. H.; Kim, S.; Ha, J. S., A Multi-Responsive Self-Healing and Air-Stable Ionogel for a Vertically Integrated Device Comprised of Flexible Supercapacitor and Strain Sensor. Chem. Eng. J. 2023, 457, 141278.
    119. Hou, Z.; Li, P.; Guo, J.; Wang, J.; Hu, J.; Yang, L., The Effect of Molecular Weight onThermal Properties and Degradation Behavior of Copolymers Based on TMC and DTC. Polym. Degrad. Stab. 2020, 175, 109128.
    120. Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; Wu, M., Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots with Superior Optical Properties. Nat. Commun. 2014, 5, 5357.
    121. Zhao, L.; Levendorf, M.; Goncher, S.; Schiros, T.; Palova, L.; Zabet-Khosousi, A.; Rim, K. T.; Gutierrez, C.; Nordlund, D.; Jaye, C.; Hybertsen, M.; Reichman, D.; Flynn, G. W.; Park, J.; Pasupathy, A. N., Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene. Nano Lett. 2013, 13 (10), 4659-4665.
    122. Islam, M. R.; Liu, K.; Wang, Z.; Qu, S.; Zhao, C.; Wang, X.; Wang, Z., Impact of Defect and Doping on the Structural and Electronic Properties of Monolayer Boron Phosphide. Chem. Phys. 2021, 542, 111054.
    123. Juang, R.-S.; Hsieh, C.-T.; Kao, C.-P.; Gandomi, Y. A.; Fu, C.-C.; Liu, S.-H.; Gu, S., Highly Fluorescent Green and Red Emissions from Boron-Doped Graphene Quantum Dots under Blue Light Illumination. Carbon 2021, 176, 61-70.
    124. Li, H. S.; Qi, Y. X.; Gong, J. H.; Wang, M.; Li, M. S., High-Pressure Synthesis and Characterization of Thermal-Stable Boron-Doped Diamond Single Crystals. Int. J. Refract. Hard Met. 2009, 27 (3), 564-570.
    125. Leu, Y.-A.; Yeh, M.-H.; Lin, L.-Y.; Li, T.-J.; Chang, L.-Y.; Shen, S.-Y.; Li, Y.-S.; Chen, G.-L.; Chiang, W.-H.; Lin, J.-J.; Ho, K.-C., Thermally Stable Boron-Doped Multiwalled Carbon Nanotubes as a Pt-free Counter Electrode for Dye-Sensitized Solar Cells. ACS Sustainable Chem. Eng. 2016, 5 (1), 537-546.
    126. Yan, Y.; Hou, Y.; Yu, Z.; Tu, L.; Qin, S.; Lan, D.; Chen, S.; Sun, J.; Wang, S., B-Doped Graphene Quantum Dots Implanted into Bimetallic Organic Framework as a Highly Active and Robust Cathodic Catalyst in the Microbial Fuel Cell. Chemosphere 2022, 286 (Pt 3), 131908.
    127. Ji, L.; Chen, L.; Wu, P.; Gervasio, D. F.; Cai, C., Highly Selective Fluorescence Determination of the Hematin Level in Human Erythrocytes with No Need for Separation from Bulk Hemoglobin. Anal. Chem. 2016, 88 (7), 3935-3944.
    128. Díaz, M. J.; Ruiz-Montoya, M.; Palma, A.; de-Paz, M. V., Thermogravimetry Applicability in Compost and Composting Research: A Review. Appl. Sci. 2021, 11 (4), 1692.
    129. Xu, L.; Huang, Z.; Deng, Z.; Du, Z.; Sun, T. L.; Guo, Z. H.; Yue, K., A Transparent, Highly Stretchable, Solvent-Resistant, Recyclable Multifunctional Ionogel with Underwater Self-Healing and Adhesion for Reliable Strain Sensors. Adv. Mater. 2021, 33 (51), 2105306.
    130. Su, E.; Yurtsever, M.; Okay, O., A Self-Healing and Highly Stretchable Polyelectrolyte Hydrogel via Cooperative Hydrogen Bonding as a Superabsorbent Polymer. Macromolecules 2019, 52 (9), 3257-3267.
    131. Wang, X.-F.; Wang, G.-G.; Li, J.-B.; Liu, Z.; Chen, Y.-X.; Liu, L.-F.; Han, J.-C., Direct White Emissive Cl-Doped Graphene Quantum Dots-Based Flexible Film as a Single Luminophore for Remote Tunable UV-WLEDs. Chem. Eng. J. 2019, 361, 773-782.
    132. Wang, X.-F.; Wang, G.-G.; Li, J.-B.; Liu, Z.; Zhao, W.-F.; Han, J.-C., Towards High-Powered Remote WLED Based on Flexible White-Luminescent Polymer Composite Films Containing S, N Co-Doped Graphene Quantum Dots. Chem. Eng. J. 2018, 336, 406-415.
    133. Chen, Y.-X.; Lu, D.; Wang, G.-G.; Huangfu, J.; Wu, Q.-B.; Wang, X.-F.; Liu, L.-F.; Ye, D.-M.; Yan, B.; Han, J., Highly Efficient Orange Emissive Graphene Quantum Dots Prepared by Acid-Free Method for White LEDs. ACS Sustainable Chemistry & Engineering 2020, 8 (17), 6657-6666.
    134. Yin, L.; Zhang, D.; Li, W.; Hu, Y.; Wang, L.; Zhang, J., White Light Emitting Diodes Based on Green Graphene Quantum Dots and Red Graphene Quantum Dots. Mol. Cryst. Liq. 2022, 733 (1), 46-51.
    135. Yin, L.; Zhou, J.; Li, W.; Zhang, J.; Wang, L., Yellow Fluorescent Graphene Quantum Dots as a Phosphor for White Tunable Light-Emitting Diodes. RSC Adv. 2019, 9 (16), 9301-9307.
    136. Dai, W.; Lei, Y.; Xu, M.; Zhao, P.; Zhang, Z.; Zhou, J., Rare-Earth Free Self-Activated Graphene Quantum Dots and Copper-Cysteamine Phosphors for Enhanced White Light-Emitting-Diodes under Single Excitation. Sci. Rep. 2017, 7 (1), 1-11.
    137. Dey, T.; Ghorai, A.; Das, S.; Ray, S. K., CsPbI3/N-GQDs Dual Layer Phosphor-Converted White-LEDs with Ultrahigh Luminous Efficiency and Color Rendering Index. Nanotechnology 2022, 34 (6), 065201.
    138. Gu, B.; Liu, Z.; Chen, D.; Gao, B.; Yang, Y.; Guo, Q.; Wang, G., Solid-state fluorescent nitrogen doped graphene quantum dots with yellow emission for white light-emitting diodes. Synthetic Metals 2021, 277, 116787.
    139. Hong, Y.-W.; Laysandra, L.; Chiu, Y.-C.; Kang, D.-Y., Vacuum-Assisted Self-Healing Amphiphilic Copolymer Membranes for Gas Separation. ACS Appl. Mater. Interfaces 2023, 15 (28), 34075-34086.
    140. Hayakawa, E.; Himeno, S., Synthesis of All-Silica ZSM-58 Zeolite Membranes for Separation of CO2/CH4 and CO2/N2 Gas Mixtures. Microporous Mesoporous Mater. 2020, 291, 109695.
    141. Chuah, C. Y.; Lee, J.; Bao, Y.; Song, J.; Bae, T.-H., High-Performance Porous Carbon-Zeolite Mixed-Matrix Membranes for CO2/N2 Separation. J. Membr. Sci. 2021, 622, 119031.
    142. Mohammadzadeh, M.; Pakdel, S.; Azamat, J.; Erfan-Niya, H.; Khataee, A., Theoretical Study of CO2/N2 Gas Mixture Separation through a High-Silica PWN-type Zeolite Membrane. Ind. Eng. Chem. Res. 2022, 61 (16), 5593-5599.
    143. Nobandegani, M. S.; Yu, L.; Hedlund, J., Zeolite Membrane Process for Industrial CO2/CH4 Separation. Chem. Eng. J. 2022, 446, 137223.
    144. Xu, N.; Meng, D.; Tang, X.; Kong, X.; Kong, L.; Zhang, Y.; Qiu, H.; Wang, M.; Zhang, Y., Fast Synthesis of Thin All-Silica DDR Zeolite Membranes with Inorganic Base as Mineralizing Agent for CO2-CH4 Separation. Sep. Purif. Technol. 2020, 253, 117505.
    145. Zhou, J.; Gao, F.; Sun, K.; Jin, X.; Zhang, Y.; Liu, B.; Zhou, R., Green Synthesis of Highly CO2-Selective CHA Zeolite Membranes in All-Silica and Fluoride-Free Solution for CO2/CH4 Separations. Energy Fuels 2020, 34 (9), 11307-11314.
    146. Chang, C.-K.; Yu, H. J.; Jang, H.; Hung, T.-H.; Chang, C.-K.; Kim, J.; Lee, J. S.; Kang, D.-Y., Conformational-Change-Induced Selectivity Enhancement of CAU-10-PDC Membrane for H2/CH4 and CO2/CH4 Separation. J. Membr. Sci. Lett. 2021, 1 (1), 100005.
    147. Babu, D. J.; He, G.; Hao, J.; Vahdat, M. T.; Schouwink, P. A.; Mensi, M.; Agrawal, K. V., Restricting Lattice Flexibility in Polycrystalline Metal-Organic Framework Membranes for Carbon Capture. Adv. Mater. 2019, 31 (28), 1900855.
    148. Fan, W.; Ying, Y.; Peh, S. B.; Yuan, H.; Yang, Z.; Yuan, Y. D.; Shi, D.; Yu, X.; Kang, C.; Zhao, D., Multivariate Polycrystalline Metal-Organic Framework Membranes for CO2/CH4 Separation. J. Am. Chem. Soc. 2021, 143 (42), 17716-17723.
    149. Wu, T.; Shu, C.; Liu, S.; Xu, B.; Zhong, S.; Zhou, R., Separation Performance of Si-CHA Zeolite Membrane for a Binary H2/CH4 Mixture and Ternary and Quaternary Mixtures Containing Impurities. Energy Fuels 2020, 34 (9), 11650-11659.
    150. Zhou, T.; Shi, M.; Chen, L.; Gong, C.; Zhang, P.; Xie, J.; Wang, X.; Gu, X., Fluorine-Free Synthesis of All-Silica STT Zeolite Membranes for H2/CH4 Separation. Chem. Eng. J. 2022, 433, 133567.
    151. Yang, K.; Ban, Y.; Guo, A.; Zhao, M.; Zhou, Y.; Cao, N.; Yang, W., In-Situ Interfacial Assembly of Ultra-H2-Permeable Metal-Organic Framework Membranes for H2/CO2 Separation. J. Membr. Sci. 2020, 611, 118419.
    152. Ghalei, B.; Wakimoto, K.; Wu, C. Y.; Isfahani, A. P.; Yamamoto, T.; Sakurai, K.; Higuchi, M.; Chang, B. K.; Kitagawa, S.; Sivaniah, E., Rational Tuning of Zirconium Metal-Organic Framework Membranes for Hydrogen Purification. Angew. Chem. Int. Ed. 2019, 58 (52), 19034-19040.
    153. Su, P.; Tang, H.; Jia, M.; Lin, Y.; Li, W., Vapor Linker Exchange of Partially Amorphous Metal–Organic Framework Membranes for Ultra‐Selective Gas Separation. AIChE J. 2022, 68 (5), e17576.
    154. Cao, Z.; Anjikar, N. D.; Yang, S., Small-Pore Zeolite Membranes: A Review of Gas Separation Applications and Membrane Preparation. Separations 2022, 9 (2), 47.
    155. Kang, D.-Y.; Lee, J. S., Challenges in Developing MOF-Based Membranes for Gas Separation. Langmuir 2023, 39 (8), 2871-2880.
    156. Kosinov, N.; Gascon, J.; Kapteijn, F.; Hensen, E. J. M., Recent Developments in Zeolite Membranes for Gas Separation. J. Membr. Sci. 2016, 499, 65-79.
    157. Kang, D.-Y.; Lee, J. S.; Lin, L.-C., X-ray Diffraction and Molecular Simulations in the Study of Metal-Organic Frameworks for Membrane Gas Separation. Langmuir 2022, 38 (31), 9441-9453.
    158. Valappil, R. S. K.; Ghasem, N.; Al-Marzouqi, M., Current and Future Trends in Polymer Membrane-Based Gas Separation Technology: A Comprehensive Review. J. Ind. Eng. Chem. 2021, 98, 103-129.
    159. Rezakazemi, M.; Sadrzadeh, M.; Matsuura, T., Thermally Stable Polymers for Advanced High-Performance Gas Separation Membranes. Prog. Energy Combust. Sci. 2018, 66, 1-41.
    160. Han, Y.; Ho, W. S. W., Polymeric Membranes for CO2 Separation and Capture. J. Membr. Sci. 2021, 628, 119244.
    161. Han, Y.; Ho, W. S. W., Recent Advances in Polymeric Membranes for CO2 Capture. Chin. J. Chem. Eng. 2018, 26 (11), 2238-2254.
    162. Norahim, N.; Yaisanga, P.; Faungnawakij, K.; Charinpanitkul, T.; Klaysom, C., Recent Membrane Developments for CO2 Separation and Capture. Chem. Eng. Technol. 2018, 41 (2), 211-223.
    163. Peinemann, K. V.; Abetz, V.; Simon, P. F., Asymmetric Superstructure Formed in a Block Copolymer via Phase Separation. Nat. Mater. 2007, 6 (12), 992-6.
    164. Liang, C. Z.; Chung, T.-S.; Lai, J.-Y., A Review of Polymeric Composite Membranes For Gas Separation and Energy Production. Prog. Polym. Sci. 2019, 97, 101141.
    165. De Sitter, K.; Andersson, A.; D’Haen, J.; Leysen, R.; Mullens, S.; Maurer, F. H. J.; Vankelecom, I. F. J., Silica Filled Poly(4-methyl-2-pentyne) Nanocomposite Membranes: Similarities and Differences with Poly(1-Trimethylsilyl-1-Propyne)–Silica Systems. J. Membr. Sci. 2008, 321 (2), 284-292.
    166. Nagai, K.; Masuda, T.; Nakagawa, T.; Freeman, B. D.; Pinnau, I., Poly [1-(trimethylsilyl)-1-propyne] and Related Polymers: Synthesis, Properties and Functions. Prog. Polym. Sci. 2001, 26, 721-798.
    167. Shantarovich, V. P.; Kevdina, I. B.; Yampolskii, Y. P.; Alentiev, A. Y., Positron Annihilation Lifetime Study of High and Low Free Volume Glassy Polymers  Effects of Free Volume Sizes on the Permeability and Permselectivity. Macromolecules 2000, 33, 7453-7466.
    168. Morisato, A.; Pinnau, I., Synthesis and Gas Permeation Properties of Poly(4-methyl-2-pentyne). J. Membr. Sci. 1996, 121, 243-250.
    169. Ge, L.; Mondal, A. N.; Liu, X.; Wu, B.; Yu, D.; Li, Q.; Miao, J.; Ge, Q.; Xu, T., Advanced Charged Porous Membranes with Ultrahigh Selectivity and Permeability for Acid Recovery. J. Membr. Sci. 2017, 536, 11-18.
    170. Radjabian, M.; Abetz, V., Advanced Porous Polymer Membranes From Self-Assembling Block Copolymers. Prog. Polym. Sci. 2020, 102, 101219.
    171. Shiohara, A.; Prieto-Simon, B.; Voelcker, N. H., Porous Polymeric Membranes: Fabrication Techniques and Biomedical Applications. J. Mater. Chem. B 2021, 9 (9), 2129-2154.
    172. Dobre, T.; Pârvulescu, O. C.; Sanchez-Marcano, J.; Stoica, A.; Stroescu, M.; Iavorschi, G., Characterization of Gas Permeation Through Stretched Polyisoprene Membranes. Sep. Purif. Technol. 2011, 82, 202-209.
    173. Budd, P. M.; McKeown, N. B., Highly Permeable Polymers for Gas Separation Membranes. Polym. Chem. 2010, 1 (1), 63-68.
    174. Alentiev, A. Y.; Yampolskii, Y. R.; Shantarovich, V. R.; Nemser, S. M.; Plate, N. A., High Transport Parameters and Free Volume of Perfluorodioxole Copolymers. J. Membr. Sci. 1997, 126, 123-132.
    175. Yu, B.; Cong, H.; Li, Z.; Tang, J.; Zhao, X. S., Pebax‐1657 Nanocomposite Membranes Incorporated with Nanoparticles/Colloids/Carbon Nanotubes for CO2/N2 and CO2/H2 Separation. J. Appl. Polym. Sci. 2013, 130 (4), 2867-2876.
    176. Murali, R. S.; Ismail, A. F.; Rahman, M. A.; Sridhar, S., Mixed Matrix Membranes of Pebax-1657 Loaded with 4A Zeolite for Gaseous Separations. Sep. Purif. Technol. 2014, 129, 1-8.
    177. Farashi, Z.; Azizi, S.; Arzhandi, M. R.-D.; Noroozi, Z.; Azizi, N., Improving CO2/CH4 Separation Efficiency of Pebax-1657 Membrane by Adding Al2O3 Nanoparticles in Its Matrix. J. Nat. Gas Sci. Eng. 2019, 72, 103019.
    178. Jomekian, A.; Behbahani, R. M.; Mohammadi, T.; Kargari, A., CO2/CH4 Separation by High Performance Co-Casted ZIF-8/Pebax 1657/PES Mixed Matrix Membrane. J. Nat. Gas Sci. Eng. 2016, 31, 562-574.
    179. Ren, J.; Xuan, H.; Ge, L., Double Network Self-Healing Chitosan/Dialdehyde Starch-Polyvinyl Alcohol Film for Gas Separation. Appl. Surf. Sci. 2019, 469, 213-219.
    180. Wen, N.; Song, T.; Ji, Z.; Jiang, D.; Wu, Z.; Wang, Y.; Guo, Z., Recent Advancements in Self-Healing Materials: Mechanicals, Performances and Features. React. Funct. Polym. 2021, 168, 105041.
    181. Garcia, S. J., Effect of Polymer Architecture on the Intrinsic Self-Healing Character of Polymers. Eur. Polym. J. 2014, 53, 118-125.
    182. Xie, Z.; Hu, B.-L.; Li, R.-W.; Zhang, Q., Hydrogen Bonding in Self-Healing Elastomers. ACS Omega 2021, 6 (14), 9319-9333.
    183. Cao, P. F.; Li, B.; Hong, T.; Townsend, J.; Qiang, Z.; Xing, K.; Vogiatzis, K. D.; Wang, Y.; Mays, J. W.; Sokolov, A. P.; Saito, T., Superstretchable, Self‐Healing Polymeric Elastomers with Tunable Properties. Adv. Funct. Mater. 2018, 28 (22), 1800741.
    184. Kammakakam, I.; O'Harra, K. E.; Dennis, G. P.; Jackson, E. M.; Bara, J. E., Self‐Healing Imidazolium‐Based Ionene‐Polyamide Membranes: An Experimental Study on Physical and Gas Transport Properties. Polym. Int. 2019, 68 (6), 1123-1129.
    185. Ramos-Saz, F.; Kang, C. S. M.; Forsyth, M.; Pringle, J. M., Highly Selective and Tunable CO2/N2 Separation Performance in Ammonium-Based Organic Ionic Plastic Crystal Composite Membranes with Self-Healing Properties. ACS Appl. Polym. Mater. 2022, 4 (2), 1487-1496.
    186. Pitsch, F.; Krull, F. F.; Agel, F.; Schulz, P.; Wasserscheid, P.; Melin, T.; Wessling, M., An Adaptive Self-healing Ionic Liquid Nanocomposite Membrane for Olefin-Paraffin Separations. Adv. Mater. 2012, 24 (31), 4306-10.
    187. Ren, J.; Xuan, H.; Ge, L., Double network self-healing chitosan/dialdehyde starch-polyvinyl alcohol film for gas separation. Applied Surface Science 2019, 469, 213-219.
    188. Cao, P. F.; Li, B.; Hong, T.; Townsend, J.; Qiang, Z.; Xing, K.; Vogiatzis, K. D.; Wang, Y.; Mays, J. W.; Sokolov, A. P., Superstretchable, self‐healing polymeric elastomers with tunable properties. Advanced Functional Materials 2018, 28 (22), 1800741.
    189. Kammakakam, I.; O'Harra, K. E.; Dennis, G. P.; Jackson, E. M.; Bara, J. E., Self‐healing imidazolium‐based ionene‐polyamide membranes: an experimental study on physical and gas transport properties. Polymer International 2019, 68 (6), 1123-1129.
    190. Esmizadeh, E.; Tzoganakis, C.; Mekonnen, T. H., Degradation Behavior of Polypropylene during Reprocessing and Its Biocomposites: Thermal and Oxidative Degradation Kinetics. Polymers 2020, 12 (8), 1627.
    191. Abate, L.; Blanco, I.; Cicala, G.; Mamo, A.; Recca, G.; Scamporrino, A., The Influence of Chain Rigidity on the Thermal Properties of Some Novel Random Copolyethersulfones. Polym. Degrad. Stab. 2010, 95 (5), 798-802.
    192. Elder, M. J.; Stapleton, F.; Evans, E.; Dart, J. K. G., Biofilm-Related Infections in Ophthalmology. Eye 1995, 9, 102-109.
    193. Brooks, J. D.; Flint, S. H., Biofilms in the Food Industry: Problems and Potential Solutions. Int. J. Food Sci. Technol. 2008, 43 (12), 2163-2176.
    194. Wei, T.; Yu, Q.; Chen, H., Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv. Healthcare Mater. 2019, 8 (3), 1801381.
    195. Parthipan, P.; Cheng, L.; Rajasekar, A., Glycyrrhiza Glabra Extract as an Eco-Friendly Inhibitor for Microbiologically Influenced Corrosion of API 5LX Carbon Steel in Oil Well Produced Water Environments. J. Mol. Liq. 2021, 333, 115952.
    196. Cheng, Q.; Asha, A. B.; Liu, Y.; Peng, Y. Y.; Diaz-Dussan, D.; Shi, Z.; Cui, Z.; Narain, R., Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol. ACS Appl. Mater. Interfaces 2021, 13 (7), 9006-9014.
    197. Rakhmatullayeva, D.; Ospanova, A.; Bekissanova, Z.; Jumagaziyeva, A.; Savdenbekova, B.; Seidulayeva, A.; Sailau, A., Development and Characterization of Antibacterial Coatings on Surgical Sutures Based on Sodium Carboxymethyl Cellulose/Chitosan/Chlorhexidine. Int. J. Biol. Macromol. 2023, 236, 124024.
    198. Garner, S. J.; Nobbs, A. H.; McNally, L. M.; Barbour, M. E., An Antifungal Coating for Dental Silicones Composed of Chlorhexidine Nanoparticles. J. Dent. 2015, 43 (3), 362-372.
    199. Wang, X.; Fan, H.; Zhang, F.; Zhao, S.; Liu, Y.; Xu, Y.; Wu, R.; Li, D.; Yang, Y.; Liao, L.; Zhu, H.; Wang, X., Antibacterial Properties of Bilayer Biomimetic Nano-ZnO for Dental Implants. ACS Biomater. Sci. Eng. 2020, 6 (4), 1880-1886.
    200. Zhang, W.; Ding, W.; Li, Y.-X.; Tam, C.; Bougouffa, S.; Wang, R.; Pei, B.; Chiang, H.; Leung, P.; Lu, Y.; Sun, J.; Fu, H.; Bajic, V. B.; Liu, H.; Webster, N. S.; Qian, P.-Y., Marine Biofilms Constitute a Bank of Hidden Microbial Diversity and Functional Potential. Nat. Commun. 2019, 10 (1), 517.
    201. Nurioglu, A. G.; Esteves, A. C. C.; de With, G., Non-Toxic, Non-Biocide-Release Antifouling Coatings Based on Molecular Structure Design for Marine Applications. J. Mater. Chem. B 2015, 3 (32), 6547-6570.
    202. Ye, Z.; Li, S.; Zhao, S.; Deng, L.; Zhang, J.; Dong, A., Textile Coatings Configured by Double-Nanoparticles to Optimally Couple Superhydrophobic and Antibacterial Properties. Chem. Eng. J. 2021, 420, 127680.
    203. Qiu, Q.; Chen, S.; Li, Y.; Yang, Y.; Zhang, H.; Quan, Z.; Qin, X.; Wang, R.; Yu, J., Functional Nanofibers Embedded into Textiles for Durable Antibacterial Properties. Chem. Eng. J. 2020, 384, 123241.
    204. Wang, X.; Wang, Y.; Bi, S.; Wang, Y.; Chen, X.; Qiu, L.; Sun, J., Optically Transparent Antibacterial Films Capable of Healing Multiple Scratches. Adv. Funct. Mater. 2014, 24 (3), 403-411.
    205. Dias, L. F. G.; Stamboroski, S.; Noeske, M.; Salz, D.; Rischka, K.; Pereira, R.; Mainardi, M. D. C.; Cardoso, M. H.; Wiesing, M.; Bronze-Uhle, E. S.; Esteves Lins, R. B.; Lisboa-Filho, P. N., New Details of Assembling Bioactive Films from Dispersions of Amphiphilic Molecules on Titania Surfaces. RSC Adv. 2020, 10 (65), 39854-39869.
    206. Meng, J.; Zhang, X.; Ni, L.; Tang, Z.; Zhang, Y.; Zhang, Y.; Zhang, W., Antibacterial Cellulose Membrane via One-Step Covalent Immobilization of Ammonium/Amine Groups. Desalination 2015, 359, 156-166.
    207. Sun, P.-F.; Kim, T.-S.; Kim, H.-S.; Ham, S.-Y.; Jang, Y.; Park, Y.-G.; Tang, C. Y.; Park, H.-D., Improved Anti-Biofouling Performance of Pressure Retarded Osmosis (PRO) by Dosing with Chlorhexidine Gluconate. Desalination 2020, 481, 114376.
    208. Sarkar, S.; Bhattacharjee, C., Removal of Micro-Pollutant Using an Indigenous Photo Membrane Reactor. J. Environ. Chem. Eng. 2020, 8 (2), 103673.
    209. Kapralos, V.; Rukke, H. V.; Orstavik, D.; Koutroulis, A.; Camilleri, J.; Sunde, P. T., Antimicrobial and Physicochemical Characterization of Endodontic Sealers after Exposure to Chlorhexidine Digluconate. Dent. Mater. 2021, 37 (2), 249-263.
    210. Dubovoy, V.; Desai, P.; Hao, Z.; Cheng, C.-y.; Verma, G.; Wojtas, L.; Brinzari, T. V.; Boyd, J. M.; Ma, S.; Asefa, T.; Pan, L., Synthesis, Characterization, and Antimicrobial Investigation of a Novel Chlorhexidine Cyclamate Complex. Cryst. Growth Des. 2020, 20 (8), 4991-4999.
    211. Thajai, N.; Jantanasakulwong, K.; Rachtanapun, P.; Jantrawut, P.; Kiattipornpithak, K.; Kanthiya, T.; Punyodom, W., Effect of Chlorhexidine Gluconate on Mechanical and Anti-Microbial Properties of Thermoplastic Cassava Starch. Carbohydr. Polym. 2022, 275, 118690.
    212. Ding, X.; Yang, C.; Lim, T. P.; Hsu, L. Y.; Engler, A. C.; Hedrick, J. L.; Yang, Y.-Y., Antibacterial and Antifouling Catheter Coatings Using Surface Grafted PEG-b-Cationic Polycarbonate Diblock Copolymers. Biomater. 2012, 33 (28), 6593-6603.
    213. Park, J.; Kim, J.; Singha, K.; Han, D. K.; Park, H.; Kim, W. J., Nitric Oxide Integrated Polyethylenimine-Based Tri-Block Copolymer for Efficient Antibacterial Activity. Biomater. 2013, 34 (34), 8766-8775.
    214. Yuan, W.; Wei, J.; Lu, H.; Fan, L.; Du, J., Water-Dispersible and Biodegradable Polymer Micelles with Good Antibacterial Efficacy. Chem. Commun. 2012, 48 (54), 6857-6859.
    215. Zhao, Z.; Ni, H.; Han, Z.; Jiang, T.; Xu, Y.; Lu, X.; Ye, P., Effect of Surface Compositional Heterogeneities and Microphase Segregation of Fluorinated Amphiphilic Copolymers on Antifouling Performance. ACS Appl. Mater. Interfaces 2013, 5 (16), 7808-7818.
    216. Feng, H.; Wang, W.; Wang, T.; Zhang, L.; Li, W.; Hou, J.; Chen, S., Preparation of Dynamic Polyurethane Networks with UV-Triggered Photothermal Self-Healing Properties Based on Hydrogen and Ion Bonds for Antibacterial Applications. J. Mater. Sci. Technol. 2023, 133, 89-101.
    217. Lin, X.; Xie, Q.; Ma, C.; Zhang, G., Self-Healing, Highly Elastic and Amphiphilic Silicone-Based Polyurethane for Antifouling Coatings. J. Mater. Chem. B 2021, 9 (5), 1384-1394.
    218. Yang, J.; Chen, Y.; Zhao, L.; Feng, Z.; Peng, K.; Wei, A.; Wang, Y.; Tong, Z.; Cheng, B., Preparation of a Chitosan/Carboxymethyl Chitosan/AgNPs Polyelectrolyte Composite Physical Hydrogel with Self-Healing Ability, Antibacterial Properties, and Good Biosafety Simultaneously, and Its Application as a Wound Dressing. Compos. B. Eng. 2020, 197, 108139.
    219. Li, H.; Li, Y.; Wang, Y.; Liu, L.; Dong, H.; Zhang, C.; Satoh, T., Physically Crosslinked PAA/Lys-BPEA Hydrogel with Rapid Self-Healing and Long-Term Antibacterial Activities. Polymer 2023, 265, 125598.
    220. Wang, Y.; Wang, Z.; Wu, K.; Wu, J.; Meng, G.; Liu, Z.; Guo, X., Synthesis of Cellulose-Based Double-Network Hydrogels Demonstrating High Strength, Self-Healing, and Antibacterial Properties. Carbohydr. Polym. 2017, 168, 112-120.
    221. Chen, M.; Tian, J.; Liu, Y.; Cao, H.; Li, R.; Wang, J.; Wu, J.; Zhang, Q., Dynamic Covalent Constructed Self-Healing Hydrogel for Sequential Delivery of Antibacterial Agent and Growth Factor in Wound Healing. Chem. Eng. J. 2019, 373, 413-424.
    222. Bastarrachea, L. J.; Goddard, J. M., Self-Healing Antimicrobial Polymer Coating with Efficacy in the Presence of Organic Matter. Appl. Surf. Sci. 2016, 378, 479-488.
    223. Du, J.; Li, Y.; Wang, J.; Wang, C.; Liu, D.; Wang, G.; Liu, S., Mechanically Robust, Self-Healing, Polymer Blends and Polymer/Small Molecule Blend Materials with High Antibacterial Activity. ACS Appl. Mater. Interfaces 2020, 12 (24), 26966-26972.
    224. Zeng, P.; Zhang, G.; Rao, A.; Bowles, W.; Wiedmann, T. S., Concentration Dependent Aggregation Properties of Chlorhexidine Salts. Int. J. Pharm. 2009, 367 (1-2), 73-78.
    225. Nowicki, J. B.; Sem, D. S., An In Vitro Spectroscopic Analysis to Determine the Chemical Composition of the Precipitate Formed by Mixing Sodium Hypochlorite and Chlorhexidine. J. Endod. 2011, 37 (7), 983-988.
    226. Onnainty, R.; Longhi, M. R.; Granero, G. E., Complex Formation of Chlorhexidine Gluconate with Hydroxypropyl-Beta-Cyclodextrin (HPbCD) by Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR). Carbohydr. Res. 2011, 346 (8), 1037-1046.
    227. Wang, X.; Shi, L.; Zhang, J.; Cheng, J.; Wang, X., Self-Assembly Fabrication, Microstructures and Antibacterial Performance of Layer-Structured Montmorillonite Nanocomposites with Cationic Silica Nanoparticles. RSC Adv. 2017, 7 (50), 31502-31511.
    228. De Paula, G. F.; Netto, G. I.; Mattoso, L. H. C., Physical and Chemical Characterization of Poly(hexamethylene biguanide) Hydrochloride. Polymers 2011, 3 (2), 928-941.
    229. Ng, I.-S.; Ooi, C. W.; Liu, B.-L.; Peng, C.-T.; Chiu, C.-Y.; Chang, Y.-K., Antibacterial Efficacy of Chitosan- and Poly(hexamethylene biguanide)-Immobilized Nanofiber Membrane. Int. J. Biol. Macromol. 2020, 154, 844-854.
    230. Bessa, W.; Trache, D.; Derradji, M.; Bentoumia, B.; Tarchoun, A. F.; Hemmouche, L., Effect of Silane Modified Microcrystalline Cellulose on the Curing Kinetics, Thermo-Mechanical Properties and Thermal Degradation of Benzoxazine Resin. Int. J. Biol. Macromol. 2021, 180, 194-202.
    231. Gottenbos, B.; van der Mei, H. C.; Klatter, F.; Nieuwenhuis, P.; Busscher, H. J., In Vitro and In Vivo Antimicrobial Activity of Covalently Coupled Quaternary Ammonium Silane Coatings on Silicone Rubber. Biomater. 2002, 23, 1417–1423.
    232. Conzone, S. D.; Pantano, C. G., Glass Slides to DNA Microarrays. Mater. Today 2004, 7 (3), 20-26.
    233. Krishnan, S.; Klein, A.; El-Aasser, M. S.; Sudol, E. D., Influence of Chain Transfer Agent on the Cross-Linking of Poly(n-butyl methacrylate-co-N-methylol acrylamide) Latex Particles and Films. Macromolecules 2003, 36, 3511-3518.
    234. Jiang, Y.; Ji, S.; Sun, J.; Huang, J.; Li, Y.; Zou, G.; Salim, T.; Wang, C.; Li, W.; Jin, H.; Xu, J.; Wang, S.; Lei, T.; Yan, X.; Peh, W. Y. X.; Yen, S.-C.; Liu, Z.; Yu, M.; Zhao, H.; Lu, Z.; Li, G.; Gao, H.; Liu, Z.; Bao, Z.; Chen, X., A Universal Interface for Plug-and-Play Assembly of Stretchable Devices. Nature 2023, 614 (7948), 456-462.
    235. Jiang, Y.; Trotsyuk, A. A.; Niu, S.; Henn, D.; Chen, K.; Shih, C.-C.; Larson, M. R.; Mermin-Bunnell, A. M.; Mittal, S.; Lai, J.-C.; Saberi, A.; Beard, E.; Jing, S.; Zhong, D.; Steele, S. R.; Sun, K.; Jain, T.; Zhao, E.; Neimeth, C. R.; Viana, W. G.; Tang, J.; Sivaraj, D.; Padmanabhan, J.; Rodrigues, M.; Perrault, D. P.; Chattopadhyay, A.; Maan, Z. N.; Leeolou, M. C.; Bonham, C. A.; Kwon, S. H.; Kussie, H. C.; Fischer, K. S.; Gurusankar, G.; Liang, K.; Zhang, K.; Nag, R.; Snyder, M. P.; Januszyk, M.; Gurtner, G. C.; Bao, Z., Wireless, Closed-Loop, Smart Bandage with Integrated Sensors and Stimulators for Advanced Wound Care and Accelerated Healing. Nat. Biotechnol. 2023, 41 (5), 652-662.
    236. Matsuhisa, N.; Niu, S.; O'Neill, S. J. K.; Kang, J.; Ochiai, Y.; Katsumata, T.; Wu, H.-C.; Ashizawa, M.; Wang, G.-J. N.; Zhong, D.; Wang, X.; Gong, X.; Ning, R.; Gong, H.; You, I.; Zheng, Y.; Zhang, Z.; Tok, J. B.; Chen, X.; Bao, Z., High-Frequency and Intrinsically Stretchable Polymer Diodes. Nature 2021, 600 (7888), 246-252.
    237. Liu, R.; Lai, Y.; Li, S.; Wu, F.; Shao, J.; Liu, D.; Dong, X.; Wang, J.; Wang, Z. L., Ultrathin, Transparent, and Robust Self-Healing Electronic Skins for Tactile and Non-Contact Sensing. Nano Energy 2022, 95, 107056.
    238. Li, X.; Li, B.; Li, Y.; Sun, J., Nonfluorinated, Transparent, and Spontaneous Self-Healing Superhydrophobic Coatings Enabled by Supramolecular Polymers. Chem. Eng. J. 2021, 404, 126504.
    239. Li, T.; He, J., A Facile Hybrid Approach to High-Performance Broadband Antireflective Thin Films with Humidity Resistance as well as Mechanical Robustness. J. Mater. Chem. C 2016, 4 (23), 5342-5348.
    240. Chen, Y.; Worley, S. D.; Huang, T. S.; Weese, J.; Kim, J.; Wei, C. I.; Williams, J. F., Biocidal Polystyrene Beads. III. Comparison of N‐Halamine and Quat Functional Groups. J. Appl. Polym. Sci. 2004, 92 (1), 363-367.
    241. Cheng, L.; Weir, M. D.; Xu, H. H.; Antonucci, J. M.; Kraigsley, A. M.; Lin, N. J.; Lin-Gibson, S.; Zhou, X., Antibacterial Amorphous Calcium Phosphate Nanocomposites with a Quaternary Ammonium Dimethacrylate and Silver Nanoparticles. Dent. Mater. 2012, 28 (5), 561-572.
    242. Liu, Y.; Ma, K.; Li, R.; Ren, X.; Huang, T. S., Antibacterial Cotton Treated with N-Halamine and Quaternary Ammonium Salt. Cellulose 2013, 20 (6), 3123-3130.
    243. Dos Reis Gasparetto, B.; Chelala Moreira, R.; Priscilla Franca de Melo, R.; de Souza Lopes, A.; de Oliveira Rocha, L.; Maria Pastore, G.; Lemos Bicas, J.; Martinez, J.; Joy Steel, C., Effect of Supercritical CO2 Fractionation of Tahiti Lemon (Citrus latifolia Tanaka) Essential Oil on Its Antifungal Activity against Predominant Molds from Pan Bread. Food Res. Int. 2022, 162 (Pt A), 111900.
    244. Chen, M.-K.; Zhao, Y.-H.; Zhang, R.; Yang, Y.; Cao, J.; Tang, M.-Z.; Huang, G.; Xu, Y.-X., Carbonate Nanophase Guided by Terminally Functionalized Polyisoprene Leading to a Super Tough, Recyclable and Transparent Rubber. Chem. Eng. J. 2023, 452, 139130.
    245. Liu, J.; Wang, S.; Tang, Z.; Huang, J.; Guo, B.; Huang, G., Bioinspired Engineering of Two Different Types of Sacrificial Bonds into Chemically Cross-Linked cis-1,4-Polyisoprene toward a High-Performance Elastomer. Macromolecules 2016, 49 (22), 8593-8604.
    246. Hsu, Y.-C.; You, Y.-H.; Au-Duong, A.-N.; Huang, Y.-S.; Chiu, Y.-C.; Chen, L.-Y., Fabrication of Intrinsic, Elastic, Self-healing, and Luminescent CsPbBr3 Quantum Dot-Polymer Composites via Thiol–Ene Cross-Linking. ACS Appl. Polym. Mater. 2022, 4 (12), 8987-8995.
    247. Au-Duong, A.-N.; Wu, C.-C.; Li, Y.-T.; Huang, Y.-S.; Cai, H.-Y.; Jo Hai, I.; Cheng, Y.-H.; Hu, C.-C.; Lai, J.-Y.; Kuo, C.-C.; Chiu, Y.-C., Synthetic Concept of Intrinsically Elastic Luminescent Polyfluorene-Based Copolymers via RAFT Polymerization. Macromolecules 2020, 53 (10), 4030-4037.
    248. Au-Duong, A.-N.; Hsu, Y.-C.; Chen, K.-L.; Huang, Y.-S.; Lai, J.-Y.; Chiu, Y.-C., Intrinsically Elastic and Self-Healing Luminescent Polyisoprene Copolymers Formed via Covalent Bonding and Hydrogen Bonding Design. Polym. J. 2022, 54 (11), 1331-1343.
    249. Zheng, Y.; Michalek, L.; Liu, Q.; Wu, Y.; Kim, H.; Sayavong, P.; Yu, W.; Zhong, D.; Zhao, C.; Yu, Z.; Chiong, J. A.; Gong, H.; Ji, X.; Liu, D.; Zhang, S.; Prine, N.; Zhang, Z.; Wang, W.; Tok, J. B.; Gu, X.; Cui, Y.; Kang, J.; Bao, Z., Environmentally Stable and Stretchable Polymer Electronics Enabled by Surface-Tethered Nanostructured Molecular-Level Protection. Nat. Nanotechnol. 2023, 18 (10), 1175-1184.
    250. Hung, C. C.; Chiu, Y. C.; Wu, H. C.; Lu, C.; Bouilhac, C.; Otsuka, I.; Halila, S.; Borsali, R.; Tung, S. H.; Chen, W. C., Conception of Stretchable Resistive Memory Devices Based on Nanostructure‐Controlled Carbohydrate‐block‐Polyisoprene Block Copolymers. Adv. Funct. Mater. 2017, 27 (13), 1606161.
    251. Miwa, Y.; Yamada, M.; Shinke, Y.; Kutsumizu, S., Autonomous Self-Healing Polyisoprene Elastomers with High Modulus and Good Toughness Based on the Synergy of Dynamic Ionic Crosslinks and Highly Disordered Crystals. Polym. Chem. 2020, 11 (41), 6549-6558.
    252. Laysandra, L.; Njotoprajitno, A.; Prakoso, S. P.; Chiu, Y.-C., From Stretchable and Healable to Self-Healing Semiconducting Polymers: Design and Their TFT Devices. Mater. Adv. 2022, 3 (19), 7154-7184.
    253. Tang, M.; Zhang, R.; Li, S.; Zeng, J.; Luo, M.; Xu, Y. X.; Huang, G., Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angew. Chem. Int. Ed. 2018, 57 (48), 15836-15840.
    254. Park, H.; Kang, T.; Kim, H.; Kim, J. C.; Bao, Z.; Kang, J., Toughening Self-Healing Elastomer Crosslinked by Metal-Ligand Coordination Through Mixed Counter Anion Dynamics. Nat. Commun. 2023, 14 (1), 5026.
    255. Auepattana-Aumrung, K.; Crespy, D., Self-Healing and Anticorrosion Coatings based on Responsive Polymers with Metal Coordination Bonds. Chem. Eng. J. 2023, 452.
    256. Han, T.-Y.; Lin, C.-H.; Lin, Y.-S.; Yeh, C.-M.; Chen, Y.-A.; Li, H.-Y.; Xiao, Y.-T.; Chang, J.-W.; Su, A.-C.; Jeng, U. S.; Chou, H.-H., Autonomously Self-Healing and Ultrafast Highly-Stretching Recoverable Polymer Through Trans-Octahedral Metal-Ligand Coordination for Skin-Inspired Tactile Sensing. Chem. Eng. J. 2022, 438.
    257. Meng, Y.; Liu, Y.; Wan, Z.; Huan, Y.; Guo, Q.; Fan, D.; Zhou, X.; Liu, J.; Cao, Y.; Cao, X.; Gu, Z.; Qian, T.; Yan, C., A Phase Change Supramolecular Assembly with a Rapid Self-Healing Behavior via Thermally Actuated Reversible Associations. Chem. Eng. J. 2023, 453.
    258. Li, P.; Zong, H.; Li, G.; Shi, Z.; Yu, X.; Zhang, K.; Xia, P.; Yan, S.; Yin, J., Building a Poly(Amino Acid)/Chitosan-Based Self-Healing Hydrogel via Host-Guest Interaction for Cartilage Regeneration. ACS Biomater. Sci. Eng. 2023, 9 (8), 4855-4866.
    259. Sugawara, Y.; Hirose, T.; Kawauchi, S.; Yamaguchi, T., High Temperature-Responsive Autonomous Reswelling Polymer Based on Dynamic Host–Guest (De)complexation of Cyclodextrin. Macromolecules 2023, 56 (13), 4823-4834.
    260. Li, B.; Cao, P. F.; Saito, T.; Sokolov, A. P., Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem. Rev. 2023, 123 (2), 701-735.
    261. Wang, X.; Xu, J.; Zhang, Y.; Wang, T.; Wang, Q.; Li, S.; Yang, Z.; Zhang, X., A Stretchable, Mechanically Robust Polymer Exhibiting Shape-Memory-Assisted Self-Healing and Clustering-Triggered Emission. Nat. Commun. 2023, 14 (1), 4712.
    262. Kim, D. H.; Akbar, Z. A.; Malik, Y. T.; Jeon, J. W.; Jang, S. Y., Self-Healable Polymer Complex with a Giant Ionic Thermoelectric Effect. Nat. Commun. 2023, 14 (1), 3246.
    263. Si, P.; Jiang, F.; Cheng, Q. S.; Rivers, G.; Xie, H.; Kyaw, A. K. K.; Zhao, B., Triple Non-Covalent Dynamic Interactions Enabled a Tough and Rapid Room Temperature Self-Healing Elastomer for Next-Generation Soft Antennas. J. Mater. Chem. A. 2020, 8 (47), 25073-25084.
    264. Chen, J.; Li, F.; Luo, Y.; Shi, Y.; Ma, X.; Zhang, M.; Boukhvalov, D. W.; Luo, Z., A Self-Healing Elastomer Based on an Intrinsic Non-Covalent Cross-Linking Mechanism. J. Mater. Chem. A. 2019, 7 (25), 15207-15214.
    265. Horev, Y. D.; Maity, A.; Zheng, Y.; Milyutin, Y.; Khatib, M.; Yuan, M.; Suckeveriene, R. Y.; Tang, N.; Wu, W.; Haick, H., Stretchable and Highly Permeable Nanofibrous Sensors for Detecting Complex Human Body Motion. Adv. Mater. 2021, 33 (41), e2102488.
    266. Xu, J.; Wang, X.; Zhang, X.; Zhang, Y.; Yang, Z.; Li, S.; Tao, L.; Wang, Q.; Wang, T., Room-Temperature Self-Healing Supramolecular Polyurethanes Based on the Synergistic Strengthening of Biomimetic Hierarchical Hydrogen-Bonding Interactions and Coordination Bonds. Chem. Eng. J. 2023, 451.
    267. Zhou, L.; Pei, X.; Fang, K.; Zhang, R.; Fu, J., Super Tough, Ultra-Stretchable, and Fast Recoverable Double Network Hydrogels Physically Crosslinked by Triple Non-Covalent Interactions. Polymer 2020, 192.
    268. Lan, M. H.; Guan, X.; Zhu, D. Y.; Chen, Z. P.; Liu, T.; Tang, Z., Highly Elastic, Self-Healing, Recyclable Interlocking Double-Network Liquid-Free Ionic Conductive Elastomers via Facile Fabrication for Wearable Strain Sensors. ACS Appl. Mater. Interfaces 2023, 15 (15), 19447-19458.
    269. Oh, S. J.; Koenig, J. L., Solid-State NMR Studies of cis-1,4-Polyisoprene Crosslinked with Dicumyl Peroxide in the Presence of Triallyl Cyanurate. J. Polym. Sci. B: Polym. Phys. 2000, 38 (11), 1417-1423.
    270. Cheong, I. W.; Fellows, C. M.; Gilbert, R. G., Synthesis and Cross-Linking of Polyisoprene Latexes. Polymer 2004, 45 (3), 769-781.
    271. Li, L.; Hu, T.-Q.; Yin, C.-R.; Xie, L.-H.; Yang, Y.; Wang, C.; Lin, J.-Y.; Yi, M.-D.; Ye, S.-H.; Huang, W., A Photo-Stable and Electrochemically Stable poly(Dumbbell-Shaped Molecules) for Blue Electrophosphorescent Host Materials. Polym. Chem. 2015, 6 (6), 983-988.
    272. Dias, O. A. T.; Konar, S.; Graziano, A.; Leao, A. L.; Tjong, J.; Jaffer, S.; Sain, M., One-pot Fabrication of Flexible and Luminescent Nanofilm By in-situ Radical Polymerization of Vinyl Carbazole on Nanofibrillated Cellulose. Carbohydr. Polym. 2021, 262, 117934.
    273. Cooper, C. B.; Root, S. E.; Michalek, L.; Wu, S.; Lai, J.-C.; Khatib, M.; Oyakhire, S. T.; Zhao, R.; Qin, J.; Bao, Z., Autonomous Alignment and Healing in Multilayer Soft Electronics Using Immiscible Dynamic Polymers. Science 2023, 380, 935-941.
    274. Cao, Y.; Wu, H.; Allec, S. I.; Wong, B. M.; Nguyen, D. S.; Wang, C., A Highly Stretchy, Transparent Elastomer with The Capability to Automatically Self-Heal Underwater. Adv. Mater. 2018, 30 (49), e1804602.
    275. Li, M.; Liu, Z.; Hu, Y.; Li, R. a.; Cao, Y., A Hydrophobic Eutectogel with Excellent Underwater Self-Adhesion, Self-Healing, Transparency, Stretchability, Ionic Conductivity, and Fully Recyclability. Chem. Eng. J. 2023, 472.
    276. Neuser, S.; Michaud, V., Effect of Aging on the Performance of Solvent-Based Self-Healing Materials. Polym. Chem. 2013, 4 (18).
    277. Kim, C.; Ejima, H.; Yoshie, N., Non-Swellable Self-Healing Polymer with Long-Term Stability Under Seawater. RSC Adv. 2017, 7 (31), 19288-19295.
    278. Shafiq, Z.; Cui, J.; Pastor-Perez, L.; San Miguel, V.; Gropeanu, R. A.; Serrano, C.; del Campo, A., Bioinspired Underwater Bonding and Debonding on Demand. Angew. Chem. 2012, 51 (18), 4332-5.
    279. Xia, N. N.; Xiong, X. M.; Wang, J.; Rong, M. Z.; Zhang, M. Q., A Seawater Triggered Dynamic Coordinate Bond and Its Application for Underwater Self-Healing and Reclaiming of Lipophilic Polymer. Chem. Sci. 2016, 7 (4), 2736-2742.
    280. Zhang, L.; Wang, D.; Xu, L.; Zhang, A., A Supramolecular Polymer with Ultra-Stretchable, Notch-Insensitive, Rapid Self-Healing and Adhesive Properties. Polym. Chem. 2021, 12 (5), 660-669.
    281. Kang, J.; Son, D.; Wang, G. N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J. Y.; Katsumata, T.; Mun, J.; Lee, Y.; Jin, L.; Tok, J. B.; Bao, Z., Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin. Adv Mater 2018, 30 (13), e1706846.
    282. Shi, Y.; Zhang, Y.; Jia, L.; Zhang, Q.; Xu, X., Stretchable and Self-Healing Integrated All-Gel-State Supercapacitors Enabled by a Notch-Insensitive Supramolecular Hydrogel Electrolyte. ACS Appl. Mater. Interfaces 2018, 10 (42), 36028-36036.
    283. Tambouratzis, T.; Karalekas, D.; Moustakas, N., A Methodological Study for Optimizing Material Selection in Sustainable Product Design. J. Ind. Ecol. 2013, 18 (4), 508-516.
    284. Kawahara, S.; Nishioka, H.; Yamano, M.; Yamamoto, Y., Synthetic Rubber with the Tensile Strength of Natural Rubber. ACS Appl. Polym. Mater. 2022, 4 (4), 2323-2328.
    285. Zhang, J.; Huang, C.; Zhu, Y.; Huang, G.; Wu, J., Toughening Polyisoprene Rubber with Sacrificial Bonds: The Interplay Between Molecular Mobility, Energy Dissipation and Strain-Induced Crystallization. Polymer 2021, 231.
    286. Song, Y.; Wu, G.; Wang, D.; Peng, J.; Zhang, C.; Zheng, Q., Tailoring Reinforcement and Strain Softening Behaviors of Natural Rubber Vulcanizates Nanocomposites by Dopamine-Modified Silica. Compos. B: Eng. 2023, 254, 110552.
    287. Zhang, B.; Yang, X.; Lin, X.; Shang, H.; Liu, Q.; Wang, H.; Liu, S.; Xu, X.; Dong, F., High-Strength, Self-Healing, Recyclable, and Catalyst-Free Bio-Based Non-Isocyanate Polyurethane. ACS Sustain. Chem. Eng. 2023, 11 (15), 6100-6113.
    288. Wang, Y.; Ma, W.; Jian, Z.; Zhang, X.; Yang, X.; Lu, X.; Wang, Z.; Xia, H., Carbon Fiber-Reinforced Dynamic Covalent Polymer Networks Containing Acylsemicarbazide Bonds: Toward High-Performance Composites with Excellent Self-Healing and Upcycling Performance. ACS Sustain. Chem. Eng. 2023, 11 (34), 12562-12570.
    289. Wang, N.; Feng, X.; Pei, J.; Cui, Q.; Li, Y.; Liu, H.; Zhang, X., Biobased Reversible Cross-Linking Enables Self-Healing and Reprocessing of Epoxy Resins. ACS Sustain. Chem. Eng. 2022, 10 (11), 3604-3613.
    290. Xu, C.; Nie, J.; Wu, W.; Zheng, Z.; Chen, Y., Self-Healable, Recyclable, and Strengthened Epoxidized Natural Rubber/Carboxymethyl Chitosan Biobased Composites with Hydrogen Bonding Supramolecular Hybrid Networks. ACS Sustain. Chem. Eng. 2019, 7 (18), 15778-15789.
    291. Jiang, L.; Liu, Z.; Lei, Y.; Yuan, Y.; Wu, B.; Lei, J., Sustainable Thermosetting Polyurea Vitrimers Based on a Catalyst-Free Process with Reprocessability, Permanent Shape Reconfiguration and Self-Healing Performance. ACS Appl. Polym. Mater. 2019, 1 (12), 3261-3268.
    292. Fang, Y.; Du, X.; Jiang, Y.; Du, Z.; Pan, P.; Cheng, X.; Wang, H., Thermal-Driven Self-Healing and Recyclable Waterborne Polyurethane Films Based on Reversible Covalent Interaction. ACS Sustain. Chem. Eng. 2018, 6 (11), 14490-14500.
    293. Gong, C.; Guo, J.; Xu, P.; Lv, J.; Li, R.; Li, C., Recyclable, Self-Healing, and Highly Thermal Conductive Natural Rubber Nanocomposites Enabled by a Dynamic Covalent Network with Carboxylated Boron Nitride Nanosheets. ACS Sustain. Chem. Eng. 2023, 11 (24), 9087-9102.
    294. Zhang, S.; Cheng, Y. H.; Galuska, L.; Roy, A.; Lorenz, M.; Chen, B.; Luo, S.; Li, Y. T.; Hung, C. C.; Qian, Z.; St. Onge, P. B. J.; Mason, G. T.; Cowen, L.; Zhou, D.; Nazarenko, S. I.; Storey, R. F.; Schroeder, B. C.; Rondeau‐Gagné, S.; Chiu, Y. C.; Gu, X., Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites. Adv. Funct. Mater. 2020, 30 (27), 2000663.

    無法下載圖示 全文公開日期 2034/01/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE