簡易檢索 / 詳目顯示

研究生: 李崇煜
Chung-Yu Li
論文名稱: 流變-小角X光散射技術於海藻酸/F127複合水凝膠非線性黏彈行為之研究
Studies on Nonlinear Viscoelasticity and Scattering Technique with Rheo-SAXS of Alginate/F127 Composite Hydrogels
指導教授: 洪伯達
Po-Da Hong
口試委員: 黃仲仁
Jung-Ren Huang
蔡協致
Hsieh-Chih Tsai
周哲民
Che-Min Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 61
中文關鍵詞: 非線性流變學小角X光散射流變-小角X光散射海藻酸水凝膠F127
外文關鍵詞: nonlinear rheology, SAXS, Rheo-SAXS, alginate hydrogel, F127
相關次數: 點閱:273下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何做出合適的仿生水凝膠支架,一直是組織工程上的重要議題。從過往的研究中我們發現徒然地增加水凝膠支架孔徑是不切實際的,雖然較大的孔徑有利於細胞生長,卻難以支撐凝膠本身的結構而容易崩塌,另一方面,細胞生長的環境需具有緩和的特性,以適應細胞在作用時對外的受力行為。因此,我們嘗試以仿生支架中的黏彈性與結構上的匹配,藉由海藻酸水凝膠的彈性網目作為支架及F127水凝膠的微胞堆積作為填充物,試圖建立一可調理性質的自適應複合水凝膠之方法論。

    在本文中,我們首先以小角X光散射確立海藻酸水凝膠的交聯區大小及分布模型與鈣鹽濃度的相關性及F127水凝膠的各向同性微胞堆積模型。接著在非線性流變學中,此兩種凝膠在高應變作用下,表現出相反的應變硬化與應變軟化行為,且皆可以由結構面上做解析,而Lissajous-Bowditch curve也有助於判斷水凝膠在外力作用下的緩和能力,我們也在海藻酸水凝膠中發現生物性高分子擁有的負值正向力的現象。

    最後在結合小角X光散射與流變學實驗的結果得知,海藻酸/F127複合水凝膠的確在剪切力場下會發生自適應的行為。


    How to make a suitable biomimetic hydrogel scaffold has always been an essential issue in tissue engineering. In previous studies, we found that it is impractical to increase the pore size of the hydrogel scaffold in vain. Although a larger pore size is conducive to cell growth, it is difficult to support the structure of the gel itself and is easy to collapse instead. On the other hand, the environment for cell growth needs to have the characteristics of relaxation to adapt to the external force of the cell when it is processing. Therefore, we tried to match the viscoelasticity and structure of the biomimetic scaffold through the elastic network of the alginate hydrogel as the scaffold and the micelles packing of the F127 hydrogel as the filler. We attempt to establish a methodology of property tunable self-adapting composite hydrogel.

    In this article, we first established the correlation between the size and distribution model of the cross-linking zone of alginate hydrogel and the calcium ion concentration and the isotropic micelles packing model of F127 hydrogel by small-angle X-ray scattering. Then in nonlinear rheology, the two gels exhibit opposite strain-stiffening and strain-softening behaviors under high strain. Both can be analyzed in the view of structure. The Lissajous-Bowditch curve also helps to determine the relaxation ability of hydrogel under the external force, and we also found the phenomenon of negative normal stress possessed by biopolymer in alginate hydrogel.

    Finally, combining the results of in-situ Rheo-SAXS experiments, it is known that the alginate/F127 composite hydrogels possess adaptive behavior under the shear field.

    Chapter 1 Introduction 1 1.1 Tissue Engineering 1 1.2 Biomimetic ECM Scaffold 2 1.2.1 Biomimetic ECM Scaffold-Functionality 2 1.2.2 Biomimetic ECM Scaffold-Viscoelasticity 3 1.2.3 Biomimetic ECM Scaffold-Structure 3 1.3 Literature review of Alginate and F127 4 1.4 The Purpose of This Thesis 6 Chapter 2 Experimental 7 2.1 Materials 7 2.2 Preparation Method 7 2.2.1 Preparation of Alginate Hydrogels 7 2.2.2 Preparation of F127/Alginate Hydrogels 8 2.3 Rheological Measurement 8 2.3.1 Small Amplitude Oscillatory Shear (SAOS) 9 2.3.2 Large Amplitude Oscillatory Shear (LAOS) 12 2.3.2.1 Fourier Transform Rheology (FT-Rheology) 12 2.3.2.2 Lissajous-Bowditch Curves 13 2.4 Small Angle X-ray Scattering (SAXS) 15 Chapter 3 Results and Discussion 16 3.1 Structure of Alginate Hydrogel 16 3.2 Rheological Behavior of Alginate Hydrogel 21 3.2.1 Time Trace Test of Gelation Process 21 3.2.2 Strain Sweep Test of Various [Ca^(2+)] Alginate Hydrogels 24 3.2.3 Nonlinear Behavior of Alginate Hydrogel 28 3.3 Micelle Packing and Rheological Properties of F127 Hydrogels 34 3.4 Negative Normal Stress 36 3.5 In-situ Rheo-SAXS 41 Chapter 4 Conclusions 47 Reference 48

    1. O. Chaudhuri, L. Gu, D. Klumpers, M. Darnell, S. A. Bencherif, J. C. Weaver, N. Huebsch, H. P. Lee, E. Lippens, G. N. Duda and D. J. Mooney, Nat Mater 15 (3), 326-334 (2016).
    2. S. C. Owen and M. S. Shoichet, Journal of biomedical materials research Part A 94 (4), 1321-1331 (2010).
    3. P. A. Janmey, M. E. McCormick, S. Rammensee, J. L. Leight, P. C. Georges and F. C. MacKintosh, Nat Mater 6 (1), 48-51 (2007).
    4. K. Flegeau, R. Pace, H. Gautier, G. Rethore, J. Guicheux, C. Le Visage and P. Weiss, Adv Colloid Interface Sci 247, 589-609 (2017).
    5. R. Langer and J. P. Vacanti, Science (New York, NY) 260 (5110), 920-926 (1993).
    6. N. Huebsch and D. J. Mooney, Nature 462 (7272), 426-432 (2009).
    7. R. Y. Tam, T. Fuehrmann, N. Mitrousis and M. S. Shoichet, Neuropsychopharmacology 39 (1), 169-188 (2014).
    8. A. Sivashanmugam, R. Arun Kumar, M. Vishnu Priya, S. V. Nair and R. Jayakumar, European Polymer Journal 72, 543-565 (2015).
    9. S.-M. Lien, L.-Y. Ko and T.-J. Huang, Acta biomaterialia 5 (2), 670-679 (2009).
    10. I. Braccini and S. Pérez, Biomacromolecules 2 (4), 1089-1096 (2001).
    11. K. Y. Lee and D. J. Mooney, Prog Polym Sci 37 (1), 106-126 (2012).
    12. M. Bohorquez, C. Koch, T. Trygstad and N. Pandit, Journal of colloid and interface science 216 (1), 34-40 (1999).
    13. G. Dumortier, J. L. Grossiord, F. Agnely and J. C. Chaumeil, Pharm Res 23 (12), 2709-2728 (2006).
    14. S. P. Quah, D. Nykypanchuk and S. R. Bhatia, J Biomed Mater Res B Appl Biomater 108 (3), 834-844 (2020).
    15. B. Shriky, A. Kelly, M. Isreb, M. Babenko, N. Mahmoudi, S. Rogers, O. Shebanova, T. Snow and T. Gough, J Colloid Interface Sci 565, 119-130 (2020).
    16. S. P. Quah, A. J. Smith, A. N. Preston, S. T. Laughlin and S. R. Bhatia, Polymer 135, 171-177 (2018).
    17. C. Carotenuto and M. Minale, Journal of Non-Newtonian Fluid Mechanics 198, 39-47 (2013).
    18. T. G. Mezger, The rheology handbook: for users of rotational and oscillatory rheometers. (Vincentz Network GmbH & Co KG, 2006).
    19. R. H. Ewoldt and G. H. McKinley, Rheologica Acta 49 (2), 213-219 (2010).
    20. K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt and G. H. McKinley, Progress in Polymer Science 36 (12), 1697-1753 (2011).
    21. M. Wilhelm, Macromolecular materials and engineering 287 (2), 83-105 (2002).
    22. M. Wilhelm, P. Reinheimer and M. Ortseifer, Rheologica Acta 38 (4), 349-356 (1999).
    23. S. A. Rogers, Journal of rheology 56 (5), 1129-1151 (2012).
    24. S. A. Rogers and M. P. Lettinga, Journal of rheology 56 (1), 1-25 (2012).
    25. R. H. Ewoldt, A. E. Hosoi and G. H. McKinley, Journal of Rheology 52 (6), 1427-1458 (2008).
    26. K. S. Cho, K. Hyun, K. H. Ahn and S. J. Lee, Journal of rheology 49 (3), 747-758 (2005).
    27. B. T. Stokke, K. I. Draget, O. Smidsrød, Y. Yuguchi, H. Urakawa and K. Kajiwara, Macromolecules 33 (5), 1853-1863 (2000).
    28. Y. Yuguchi, H. Urakawa, K. Kajiwara, K. Draget and B. Stokke, Journal of Molecular Structure 554 (1), 21-34 (2000).
    29. K. I. Draget, B. T. Stokke, Y. Yuguchi, H. Urakawa and K. Kajiwara, Biomacromolecules 4 (6), 1661-1668 (2003).
    30. B. Stokke, K. Drager, Y. Yuguchi, H. Urakawa and K. Kajiwara, presented at the Macromolecular Symposia, 1997 (unpublished).
    31. T. Baumberger and O. Ronsin, J Chem Phys 130 (6), 061102 (2009).
    32. N. Kasai, M. Kakudo and Kasai-Kakudo... X-ray Diffraction by Macromolecules. (Springer, 2005).
    33. S. M. Hashemnejad and S. Kundu, Soft Matter 15 (39), 7852-7862 (2019).
    34. Y. Yuguchi, A. Hasegawa, A. M. Padol, K. I. Draget and B. T. Stokke, Carbohydr Polym 152, 532-540 (2016).
    35. J. John, D. Ray, V. K. Aswal, A. P. Deshpande and S. Varughese, Soft Matter 15 (34), 6852-6866 (2019).
    36. J. Zhang, C. R. Daubert and E. Allen Foegeding, Journal of Food Engineering 80 (1), 157-165 (2007).
    37. S. M. Hashemnejad and S. Kundu, Journal of Polymer Science Part B: Polymer Physics 54 (17), 1767-1775 (2016).
    38. J. Jiang, C. Burger, C. Li, J. Li, M. Y. Lin, R. H. Colby, M. H. Rafailovich and J. C. Sokolov, Macromolecules 40 (11), 4016-4022 (2007).
    39. T. A. LaFollette and L. M. Walker, Polymers 3 (1), 281-298 (2011).
    40. D. C. Pozzo and L. M. Walker, Macromolecules 40 (16), 5801-5811 (2007).
    41. H. Kang, Q. Wen, P. A. Janmey, J. X. Tang, E. Conti and F. C. MacKintosh, The Journal of Physical Chemistry B 113 (12), 3799-3805 (2009).
    42. M. Vahabi, B. E. Vos, H. C. G. de Cagny, D. Bonn, G. H. Koenderink and F. C. MacKintosh, Phys Rev E 97 (3-1), 032418 (2018).
    43. P. D. Hong, J. H. Chen and H. L. Wu, Journal of applied polymer science 69 (12), 2477-2486 (1998).
    44. .
    45. M. Abrami, I. D'Agostino, G. Milcovich, S. Fiorentino, R. Farra, F. Asaro, R. Lapasin, G. Grassi and M. Grassi, Soft Matter 10 (5), 729-737 (2014).

    QR CODE