簡易檢索 / 詳目顯示

研究生: 江茗妤
Ming-Yu Jiang
論文名稱: 小角光散射分析技術於瓊脂醣水凝膠結構之研究
Studies on Network Structure of Agarose Hydrogels by Time-Resolved Small-Angle Light Scattering Analysis
指導教授: 洪伯達
Po-Da Hong
口試委員: 陳志堅
Jyh-Chien Chen
童世煌
Shih-Huang Tung
何榮銘
Rong-Ming Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 50
中文關鍵詞: 瓊脂醣時間分辨小角光散射
外文關鍵詞: Agarose, Time-Resolved Small-Angle Light Scattering
相關次數: 點閱:312下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 時間分辨小角光散射(TRSALS)技術是解析軟物質在介觀尺度中,時間和空間複雜性的重要工具。在本篇論文中,我們利用時間分辨小角光散射實驗探討agarose凝膠的形成機理與結構特徵間之關係。

    首先,從Hv散射和時間追蹤流變實驗,我們建議agarose分子鏈在溶膠狀態應該表現出單螺旋worm-like chain 的特徵,此外,agarose凝膠的凝膠化過程可以被分劃為以下三個階段:
    (1) 漲落階段(t < tnucl);
    (2) 熟化階段(tnucl < t < taging),微纖網目在此階段形成,但其結構與性能仍不斷的在提高;
    (3) 老化階段(t > taging),真正的平衡網目不會出現,此結果與早期我們認為微纖狀網目是遠離平衡的結構是可以相互呼應的。

    接著,儘管在凝膠化過程中的Vv散射圖樣呈現出spinodal-like的圖案,但經由我們對其散射細節進行分析之後,我們發現agarose凝膠的三維網目結構形成機制並非如早期所認為的是來自於相分離失穩分解或是分形聚集機制。除此之外,藉由散射數據取得的表觀分形維度以及掃描式電子顯微鏡(SEM)的觀測結果,我們建議agarose網目結構應具有”無標度網路”的特徵。因此,我們有空間重新考慮微纖網目的形成機制,在這一點上,我們的相干結構演化模型對於這樣的凝膠化現象或過程的描述提供了一個良好的起點。


    Time-resolved small-angle light scattering (TRSALS) is an important technique to study the temporal spatial complexity of soft matter on a mesoscopic length scale. In this thesis, from the Hv scattering and time-trace rheological experiments ,we suggest that the molecules should exhibits a worm-like chain with the single helix conformation in sol state and show that the gelation process of the agarose hydrogel can be divide into three stages:
    (i) the structural fluid stage (t < tnucl)
    (ii) the ripening stage(tnucl < t < taging), the fibrillar network is formation, but the structure and properties are continued enhancement.
    (iii) the aging stage (t > taging), no true equilibrium network was observed, the result is consistent with our previous studies that the fibrillar network is a polycrystalline off- equilibrium configuration.

    On the other hand, although the Vv scattering does show a ring pattern in gelation process, our detailed analysis rejects the early opinion that the agarose gelation is induced by the spinodal decomposition or by the fractal aggregation. Moreover, we suggest that the network structure of the agarose hydrogel is characterized by a scale-free network. Thus, there is room for reconsidering the current opinion on the formation mechanism of the fibrillar networks. At this point, our coherent structure model is a good starting point in the description of the phenomenon or process.

    Abstract II Acknowledgements III Contents IV Chart Catalogues V Principal Notation VIII Chapter 1. Introduction 1 1.1 Literature Review of Agarose Hydrogels 2 1.1.1 Helical Structures of Agarose Chains 2 1.1.2 Gelation Mechanism of Agarose Hydrogel 4 1.2 General Discussion on Forming a Fibrillar Network 7 1.3 The Purpose of This Thesis 9 Chapter 2. Theoretical Background 10 2.1 Classical Approximations 11 2.2 Scattering Function 12 2.2.1 Scattering Function of Sphere Scatterer 12 2.2.2 Scattering Function of Rod Scatterer 15 2.3 Scattering Modeling of the Crystalline Fibril 18 Chapter 3. Experimental Section 22 3.1 Materials and Preparation of Agarose Hydrogels 22 3.2 Small-Angle Light Scattering (SALS) Measurement 22 3.2.1 Instrumental Setup 22 3.2.2 Calibration 23 Chapter 4. Results and Discussions 26 4.1 Hv Scattering Patterns of Agarose Hydrogels 26 4.2 Vv Scattering Patterns of Agarose Hydrogels 30 4.3 Structural Formation of Agarose Hydrogels 35 4.4 Concept of Scale-Free Network 44 Chapter 5. Conclusion 47 Reference 48

    (1) Annabi, N.; Nichol, J. W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F., “Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering,” Tissue Eng Part B Rev 2010, 16, 371–383.
    (2) Anderson, N. S.; Campbell, J. W.; Harding, M. M., “X-Ray Diffraction Studies of Polysaccharide Sulphates: Double Helix Models for κ-and ι-Carrageenans,” J. Mol. Biol. 1969.
    (3) Arnott, S.; Fulmer, A.; Scott, W. E.; Dea, I. C.; Moorhouse, R.; Rees, D. A., “The Agarose Double Helix and Its Function in Agarose Gel Structure,” J. Mol. Biol. 1974, 90, 269–284.
    (4) Djabourov, M.; Clark, A. H.; Rowlands, D. W.; Ross-Murphy, S. B., “Small-Angle X-Ray Scattering Characterization of Agarose Sols and Gels,” Macromolecules 1989, 22, 180–188.
    (5) Foord, S. A.; Atkins, E. D. Y., “New X-Ray Diffraction Results From Agarose: Extended Single Helix Structures and Implications for Gelation Mechanism,” Biopolymers 1989, 28, 1345–1365.
    (6) Guenet, J.-M.; Brulet, A.; Rochas, C., “Agarose Chain Conformation in the Sol State by Neutron Scattering,” Int. J. Bio. Macromol. 1993, 15, 131–132.
    (7) Itagaki, H.; Fukiishi, H.; Imai, T.; Watase, M., “Molecular Structure of Agarose Chains in Thermoreversible Hydrogels Revealed by Means of a Fluorescent Probe Technique,” J. Polym. Sci. B: Polym. Phys. 2005, 43, 680–688.
    (8) Serwer, P., “Agarose Gels: Properties and Use for Electrophoresis,” Electrophoresis 1983, 4, 375–382.
    (9) Guenet, J. M. Polymer-Solvent Molecular Compounds; Elsevier Science: New York, 2008.
    (10) Feke, G. T.; Prins, W., “Spinodal Phase Separation in a Macromolecular Sol → Gel Transition,” Macromolecules 1974, 7, 527–530.
    (11) Biagio, P. L. S.; Bulone, D.; Emanuele, A.; Palma-Vittorelli, M. B.; Palma, M. U., “Spontaneous Symmetry-Breaking Pathways: Time-Resolved Study of Agarose Gelation,” Food Hydrocolloid 1996, 10, 91–97.
    (12) Manno, M.; Palma, M. U., “Fractal Morphogenesis and Interacting Processes in Gelation,” Phys. Rev. Lett. 1997, 79, 4286–4289.
    (13) Coniglio, A.; Stanley, H. E.; Klein, W., “Site-Bond Correlated-Percolation Problem: A Statistical Mechanical Model of Polymer Gelation,” Phys. Rev. Lett. 1979, 42, 518–522.
    (14) Xiong, J.-Y.; Narayanan, J.; Liu, X.-Y.; Chong, T. K.; Chen, S. B.; Chung, T.-S., “Topology Evolution and Gelation Mechanism of Agarose Gel,” J. Phys. Chem. B 2005, 109, 5638–5643.
    (15) Takeshita, H.; Kanaya, T.; Nishida, K.; Kaji, K., “Spinodal Decomposition and Syneresis of PVA Gel,” Macromolecules 2001, 34, 7894–7898.
    (16) Takeshita, H.; Kanaya, T.; Nishida, K.; Kaji, K., “Gelation Process and Phase Separation of PVA Solutions As Studied by a Light Scattering Technique,” Macromolecules 1999, 32, 7815–7819.
    (17) Kanaya, T.; Takahashi, N.; Takeshita, H.; Ohkura, M.; Nishida, K.; Kaji, K., “Structure and Dynamics of Poly(Vinyl Alcohol) Gels in Mixtures of Dimethyl Sulfoxide and Water,” Polym. J. 2011, 44, 83–94.
    (18) Chou, C.-M.; Hong, P.-D., “Scattering Modeling of Nucleation Gels,” Macromolecules 2008, 41, 6540–6545.
    (19) Chou, C.-M.; Hong, P.-D., “Spatiotemporal Evolution in Morphogenesis of Thermoreversible Polymer Gels with Fibrillar Network,” Macromolecules 2010, 43, 10621–10627.
    (20) Chou, C.-M.; Hong, P.-D., “Morphogenetic Transition in Weak Gelation of Crystallizable Linear Polymers,” ACS Macro Lett. 2012, 1, 646–650.
    (21) Debye, P.; Bueche, A. M., “Scattering by an Inhomogeneous Solid,” J. Appl. Phys. 1949, 20, 518–525.
    (22) Stein, R. S.; Rhodes, M. B., “Photographic Light Scattering by Polyethylene Films,” J. Appl. Phys. 1960, 31, 1873–1884.
    (23) Clough, S.; van Aartsen, J. J.; Stein, R. S., “Scattering of Light by Two-Dimensional Spherulites,” J. Appl. Phys. 1965, 36, 3072–3085.
    (24) Meeten, G. H.; Navard, P., “Small-Angle Polarized Light Scattering from Amorphous Spheres,” J. Polym. Sci. A-2 Polym. Phys. 1984, 22, 2159–2163.
    (25) Meeten, G. H.; Navard, P., “Small-Angle Scattering of Polarized Light. I. Comparison of Theoretical Predictions for Isotropic and Anisotropic Spheres,” J. Polym. Sci. B: Polym. Phys. 1989, 27, 2023–2035.
    (26) Van de Hulst, H. C. Light Scattering by Small Particles; Dover Publications: New York, 1981.
    (27) Bates, F. S.; Wiltzius, P., “Spinodal Decomposition of a Symmetric Critical Mixture of Deuterated and protonated Polymer,” J. Chem. Phys. 1989, 91, 3258-3274
    (28) Moritani, M.; Hayashi, N.; Utsuo, A.; Kawai, H., “Light-Scattering Patterns From Collagen Films in Relation to the Texture of a Random Assembly of Anisotropic Rods in Three Dimensions,” Polym. J. 1971, 2, 74–87.
    (29) Murakami, Y.; Hayashi, N.; Hashimoto, T.; Kawai, H., “Light-Scattering Patterns from Random Assembly of Anisotropic Rod-like Structures with their Principal Optic Axes Oriented in Cylindrical Symmetry with Respect to their Own Rod Axes,” Polym. J. 1973, 4, 452–459.
    (30) Hashimoto, T.; Murakami, Y.; Hayashi, N.; Kawai, H., “Light Scattering from Polymer Films Having an Optically Anisotropic Rod-Like Texture in Relation to a Model of a Random Assembly of Disordered Rods,” Polym. J. 1974, 6, 132–150.
    (31) Chou, C.-M.; Hong, P.-D., “Light Scattering from Birefringent Sphere and Its Aggregation,” Macromolecules 2008, 41, 6147–6153.
    (32) Chou, C.-M.; Hong, P.-D., “Scattering Modeling of Nucleation Gels,” Macromolecules 2008, 41, 6540–6545.
    (33) Ferri, F.; Greco, M.; Arcovito, G.; Bassi, F.; De Spirito, M.; Paganini, E.; Rocco, M., “Growth Kinetics and Structure of Fibrin Gels,” Phys. Rev. E 2001, 63, 031401.
    (34) Ferri, F.; Greco, M.; Arcovito, G.; De Spirito, M.; Rocco, M., “Structure of Fibrin Gels Studied by Elastic Light Scattering Techniques: Dependence of Fractal Dimension, Gel Crossover Length, Fiber Diameter, and Fiber Density on Monomer Concentration,” Phys. Rev. E 2002, 66, 011913.
    (35) Raghavan, S. R., “Distinct Character of Surfactant Gels: A Smooth Progression from Micelles to Fibrillar Networks” Langmuir 2009, 25, 8382–8385.
    (36) Furukawa, H., “A Dynamic Scaling Assumption for Phase Separation” Adv. in Phys. 1985, 34, 703-750.
    (37) Barabasi, A. L., “Scale-Free Networks: a Decade and Beyond,” Science 2009, 325, 412–413.
    (38) Barabasi, A. L.; Bonabeau, E., “Scale-Free Networks,” Scientific American. August 12, 2003, pp. 50–59.
    (39) Semmrich, C.; Larsen, R. J.; Bausch, A. R., “Nonlinear Mechanics of Entangled F-Actin Solutions,” Soft Matter 2008, 4, 1675–1680.

    無法下載圖示 全文公開日期 2017/02/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE