簡易檢索 / 詳目顯示

研究生: 曾華偉
Hua-Wei Tseng
論文名稱: 使用單次二位元輔助之十位元漸進式類比數位轉換器
2b/cycle-Assisted 10-bit SAR ADCs
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳亮仁
Liang-Jen Chen
陳伯奇
Poki Chen
曾偉信
Wei-Hsin Tseng
范振麟
Jen-Lin Fan
鍾勇輝
Yung-Hui Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 140
中文關鍵詞: 類比數位轉換器漸進式演算法單次二位元
外文關鍵詞: ADC, SAR, 2b/cycle
相關次數: 點閱:257下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文實現一個使用單次二位元輔助之十位元漸進式類比數位轉換器(SAR ADC)。藉由使用單次二位元輔助之架構來減少轉換週期,進而提升類比數位轉換器的操作速度。動態邏輯電路(MdREG)減少了比較器輸出至數位類比轉換器(DAC)切換開關的延遲時間,可以減少所需的轉換時間。使用多個參考電位之電容式數位類比轉換器避免使用極小的單位電容,也減少了數位類比轉換器的整體電容值。抵補電壓之校正能有效地避免類比數位轉換器的線性度下降。
我們實現了兩個漸進式類比數位轉換器,它們是基於單次兩位元至單次一位元的架構。在180奈米製程下,實現的十位元、每秒一億次取樣之連續漸進式類比數位轉換器,其晶片面積為0.07平方毫米。在1.9伏特的操作電壓以及一億赫茲的取樣頻率下,類比數位轉換器消耗7.4毫瓦。而量測到的靜態效能,峰值微分非線性誤差(DNL)與峰值積分非線性誤差(INL)分別為-0.56/+0.67 LSB與-0.75/+0.79 LSB。量測到的奈奎斯特動態效能,訊噪失真比(SNDR)與無雜散動態範圍(SFDR)分別為52.2分貝與75.2分貝。另一個則是在40奈米製程下所實現的十位元、每秒五億次取樣類比數位轉換器。在0.9伏特的操作電壓以及五億赫茲的取樣頻率下,此類比數位轉換器消耗1.84毫瓦。模擬結果之下的奈奎斯特動態效能,訊噪失真比(SNDR)與無雜散動態範圍(SFDR)分別為59.6分貝與76分貝。


This thesis presents 2b/cycle-assisted 10-bit successive approximation register (SAR) analog-to-digital converters (ADCs). By applying 2b/cycle-assisted architecture, it reduces the number of conversion cycles and thus speeds up the ADC operation. The proposed dynamic register (MdREG) circuit cuts down the delay from the comparator output to the DAC switches. It also helps the ADC operate at higher sampling rates. Dual-reference C-DACs are proposed to avoid using a tiny unit capacitance. It also reduces the total capacitance of the digital-to-analog converter (DAC). The offset calibration scheme is proposed to effectively alleviate the degradation of the ADC linearity.
Two ADCs were implemented based on the proposed 2b-1b/cycle configuration. A 10-bit 100-MS/s SAR ADC was fabricated using a 180 nm CMOS technology. This ADC occupies an active area of 0.07 mm2. Operating at 100-MS/s, the ADC consumes 7.4 mW from a 1.9 V supply. The peak DNL and INL are -0.56/+0.67 LSB and -0.75/+0.79 LSB respectively. The measured Nyquist SNDR and SFDR are 52.2 dB and 75.2 dB respectively. Another 10-bit 500-MS/s ADC was implemented in 40nm CMOS. Operating at 500-MS/s, the ADC consumes 1.84 mW from a 0.9 V supply. The simulated Nyquist SNDR and SFDR are 59.6 dB and 76 dB respectively.

論 文 摘 要 i Abstract ii 誌 謝 iii Contents iv List of Figures vii List of Table xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Thesis 2 Chapter 2 Background Survey 3 2.1 Contemporary High Speed ADCs 3 2.2 Brief Summary 5 Chapter 3 2b/cycle SAR ADCs 6 3.1 Conventional Architecture 7 3.2 2b/cycle SAR ADC Architecture 8 3.3 Considerations of Multi-bit/cycle SAR ADC 11 3.3.1 Offset Deviation 11 3.3.2 Gain Error 13 3.3.3 Kickback Noise 14 3.3.4 Speed Bottleneck 15 Chapter 4 Design of A 10 bit 100MS/s SAR ADC in 180nm CMOS Process 17 4.1 ADC Architecture 17 4.2 Circuit Level Design 24 4.2.1 Sample and Hold Circuit 24 4.2.2 Comparator 28 4.2.3 Digital-to-Analog Converter 41 4.2.4 SAR Controller 52 4.2.5 Output Encoder 60 4.3 Layout Considerations 63 4.4 Simulation Results 66 4.5 Measurement Results 68 4.5.1 Measurement Setup 69 4.5.2 Dynamic Performance 71 4.5.3 Static Performance 79 4.6 Summary 81 Chapter 5 Design of A 10-bit 500-MS/s SAR ADC in 40nm CMOS Process 85 5.1 ADC Architecture 85 5.2 Circuit Level Design 90 5.2.1 Sample and Hold Circuit 90 5.2.2 Comparator 93 5.2.3 Digital to Analog Converter 98 5.2.4 SAR Controller 103 5.2.5 Output Encoder 109 5.3 Simulation Results 112 5.4 Summary 115 Chapter 6 Conclusions and Future Works 118 6.1 Conclusion 118 6.2 Future Works 121 Reference 122

[1] L. Kull, et al., "A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS," ISSCC, pp. 468-469, Feb. 2013.
[2] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu and S.-J. Chang, “A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS,” Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2010, pp. 243-244
[3] Verbruggen, B., et al. “A 70 dB SNDR 200 MS/s 2.3 mW dynamic pipelined SAR ADC in 28nm digital CMOS” VLSI Circuits (VLSIC), 2014 Symposium, June 2014
[4] B.-R.-S. Sung et al., “A 6 bit 2 GS/s flash-assisted time-interleaved (FATI) SAR ADC with background offset calibration,” in Proc. IEEE Asian Solid-State Circuits Conf., 2013, pp. 281–284.
[5] H. Wei, C. Chan, U. Chio, et al., “A 0.024mm2 8b 400MS/s SAR ADC with 2b/Cycle and Resistive DAC in 65nm CMOS,” ISSCC Dig. Tech. Paper, pp. 188–189, Feb., 2011
[6] Z. Cao, et al., “A 32 mW 1.25 GS/s 6b 2b/step SAR ADC in 0.13um CMOS,” ISSCC Dig. Tech. Papers, pp. 542-543, Feb. 2008.
[7] J. Zhong et al., Multi-Merged-Switched Redundant Capcitive DACs for2b/cycle SAR ADC, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 7-10, 2011.
[8] H.-K. Hong, W. Kim, H.-W. Kang, S.-J. Park, M. Choi, H.-J. Park, and S.-T. Ryu, “A decision-error-tolerant 45 nm CMOS 7 b 1 GS/s Nonbinary 2 b/cycle SAR ADC,” IEEE J. Solid-State Circuits, vol. 50, no. 2, pp. 543–555, Aug. 2015.
[9] H.-K. Hong, H.-W. Kang, B. Sung, C.-H. Lee, M. Choi, H.-J. Park, and S.-T. Ryu, “An 8.6 ENOB 900 MS/s time-interleaved 2 b/cycle SAR ADC with a 1 b/cycle reconfiguration for resolution enhancement,” in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2013, pp. 470–471
[10] H.-K. Hong, H.-W. Kang, D.-S. Jo, D.-S. Lee, Y.-S. You, Y.-H. Lee, H.-J. Park, and S.-T. Ryu, “A 2.6 b/cycle-architecture-based 10 b 1.7 GS/s 15.4 mW 4 × time-interleaved SAR ADC with multistep hardware retirement technique,” in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2015, pp. 470–471.
[11] C. C. Liu, et al., “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
[12] T. Ogawa, H. Kobayashi, et. al., “SAR ADC Algorithm with Redundancy and Digital Error Correction”, IEICE Trans. Fundamentals, vol.E93-A, no.2, (Feb. 2010).
[13] C.-C. Liu et al., “A 10 b 100 MS/s 1.13 mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386–387.
[14] Zhu Zhangming, Xiao Yu, Song Xiaoli. Vcm-based monotonic capacitor switching scheme for SAR ADC. IET Electron Lett, 2013, 49(5): 327
[15] S.-W. M. Chen, and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13mm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680.
[16] F. Kuttner, “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-mm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2002, pp. 176–177.
[17] Y.-S. Hu, C.-H. Shih, H.-T. Tai, H.-W. Chen, H.-S. Chen , “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s subranging SAR ADC in 40-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2014, pp. 81–84
[18] B.P. Ginsburg, and A.P. Chandrakasan, “500-MS/s 5-bit ADC in 65nm CMOS with split capacitor array,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739–747, Apr. 2007
[19] B. S. Park, et al., “A 10b 100MS/s 25.2mW 0.18µm CMOS ADC with various circuit sharing techniques," in Intl. SoC Design Conf.
[20] N. Le Dortz et al., “A 1.62 GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70dBFS,”in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2014, vol. 1, pp. 386–388.
[21] B. Razavi, “Design considerations for interleaved ADCs,” IEEE J. Solid-State Circuits, vol.48, no.8, pp.1806–1817, Aug.2013
[22] P.M.Figueiredo and J.C.Vital ”Kickback noise reduction for CMOS latched comparators, ”IEEE Trans, Circuits Syst.II, Exp. Briefs, vol.53, no.7, pp 541-545, July-2006
[23] Hyeok-Ki Hong, et Al., “A 7b 1GSPS 7.2mW Nonbinary 2b/cycle SAR ADC with Register-to-DAC Direct Control”, in IEEE CICC, pp. 1-4, Sept. 2012.
[24] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148–1158, Jul. 2004
[25] Y. Chung, M. Wu, H. Li, “A 24μW 12b 1MS/s 68.3dB SNDR SAR ADC with two-step decision DAC switching,” IEEE Custom Integr. Circuits Conf. Sept. 2013
[26] W.Hualing, M.Qiaoand Z.Hao, “A novel 10bit 90MS/s 2b/cycle SAR ADC,” in Advanced Technologies for Communications (ATC), pp.521–524, Oct. 2013.
[27] B. Malki, T. Yamamoto, B. Verbruggen, P. Wambacq, and J. Craninckx, “A 70dB DR 10b 0-to-80MS/s Current-Integrating SAR ADC with Adaptive Dynamic Range,” IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 470-471.
[28] Y. Zhu, C.-H. Chan, S.-W. Sin, U. Seng-Pan, and R. Martins, “A 34fJ 10b 500MS/s partial-interleaving pipelined SAR ADC,” in IEEE symp. VLSI Circuits Dig. Tech. Papers, 2012, pp. 90–91
[29] J.-H. Tsai et al., “A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS with digital error correction and correlated-reversed switching,” IEEE J. Solid-State Circuits, vol. 50, no. 6, pp. 1382–1398, Jun. 2015.
[30] R. Vitek, E. Gordon, S. Maerkovich, and A. Beidas, “A 0.015mm2 63fJ/conversion-step 10-bit 220MS/s SAR ADC with 1.5b/step redundancy and digital metastability correction,” in Proc. IEEE Custom Integrated Circuits Conference, 2012, pp. 1–4
[31] G. Y. Huang, S. J. Chang, Y. Z. Lin, C. C. Liu and C. P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm,” in Proc. IEEE A-SSCC, pp. 289-292, 2013.

QR CODE