簡易檢索 / 詳目顯示

研究生: 賴彥誠
Yan-cheng Lai
論文名稱: 應用資料加權平均技術之低電壓連續時間三角積分調變器晶片設計
A Low-Voltage Continuous-Time Sigma-Delta Modulator Chip Design with DWA Technology
指導教授: 黃進芳
Jhin-fang Huang
劉榮宜
Ron-yi Liu
口試委員: 徐敬文
Ching-wen Hsue
張勝良
Sheng-lyang Jang
陳國龍
Kuo-lung Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 114
中文關鍵詞: 資料加權平均三角積分調變器連續時間
外文關鍵詞: data weighted averaging, sigma-delta modulator, continuous-time
相關次數: 點閱:240下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在無線應用方面,連續時間式三角積分調變器的發展逐漸受到關注,因其與離散時間三角積分調變器相比具有較低的功率消耗和較寬的輸入頻寬。三角積分調變技術已廣泛使用在寬頻及高精確度的類比/混合訊號積體電路應用中,例如類比數位資料轉換器、數位類比資料轉換器、頻率合成器和功率放大器。
    在考量低電壓設計的情況下,交換電容電路中的高阻抗開關會限制訊號的大小和取樣頻率。由於積分器頻寬的限制,很難達到寬頻具有高解析度,因此利用連續時間三角積分調變器可以解決這些問題。對於一個多位元三角積分調變器而言,整個系統的性能直接取決於回授路徑中的多位元數位類比轉換器(DAC)的線性度。為了改善數位類比轉換器的非線性特性,各種不同的動態元件匹配(DEM)技術已被提出。在此調變器中,使用了資料加權平均演算法並且對於數位類比轉換器的元件不匹配提供一階雜訊移頻的效果。另一方面,由製程變易所造成迴路係數偏移的影響,藉由使用電容調整電路來克服此問題。在數位訊號處理方面,探討降頻濾波器的設計與分析,包含了梳型濾波器和有限脈衝響應濾波器。
    本論文的研究方向為設計並實現應用於寬頻的連續時間低電壓三角積分調變器,此三角積分調變器主要包含主動式電阻電容電路、資料權重平均電路、回授DAC電路跟操作頻率在160MHz的多位元量化器來實現。應用台積電0.18微米1P6M的標準製程來實現晶片設計,在1.2伏特的供應電源下,功耗僅19.8mW。量測結果顯示在取樣頻率160MHz,超取樣比為8之下,訊號頻寬在10MHz內,其最大的訊號雜訊比與訊號雜訊失真比分別為51dB與48dB,其動態範圍為54dB。


    Recently, continuous-time (CT) ΣΔ modulators gain growing interest in wireless applications for their lower consumption and wider input bandwidth as compared with the discrete-time (DT) counterparts. Sigma-delta modulation techniques have been widely used in broadband and high accuracy analog/mixed-signal IC applications, such as analog-to-digital data converters (ADCs), digital-to-analog data converters (DACs), frequency synthesis, and power amplification.
    In the situation of low-voltage design, the signal dynamic range and sampling frequency are restricted by the high switch resistance in the switched-capacitor (SC) circuits. Due to the bandwidth limitation of the integrators, it is difficult to achieve wideband with high resolution. Hence, continuous-time ΣΔ modulator can be used to solve these problems. For a multibit ΣΔ modulator, the performance is directly related to the linearity of the internal multibit DAC in the feedback path. Various dynamic element matching (DEM) techniques have been proposed to improve the nonlinearity of the internal DAC. In the modulator, the data weighted averaging (DWA) algorithm is employed and provide first-order noise shaping of the DAC element mismatches. On the other hand, Capacitor tuning circuit is utilized to overcome loop coefficient shifts due to process variations. In digital signal processing, the design and analysis of the decimation filter is discussed including the comb filter and the finite impulse response (FIR) filter.
    In this thesis, we design and implement a low voltage, continuous-time sigma delta modulator for broadband application. The modulator mainly contains active-RC integrator, DWA circuit, feedback DAC circuit, and 4-bits quantizer operation at 160MHz. The modulator dissipates 19.8 mW at 1.2 V supply voltage and is fabricated in the TSMC 0.18 um 1P6M CMOS technology. Measurement results show the modulator achieves 51 dB SNR, a peak 48 dB SNDR and 54dB dynamic range over a 10 MHz band at an over-sampling ratio of 8.

    Acknowledgements I Abstract (in Chinese) III Abstract (in English) V Table of Contents VII List of Figures IX List of Tables XI Chapter 1 Introduction 1.1 Motivation 1 1.2 Organization 3 Chapter 2 Fundamentals of Sigma-Delta Modulators 2.1 Introduction 4 2.2 Analog-to-Digital Converters 4 2.3 Quantization 5 2.4 Oversampling 8 2.5 Noise-Shaping ΔΣ Modulator 9 2.6 Multi-Bit ΔΣ Modulator 11 2.7 Dynamic Element Matching 11 2.8 Continuous-Time and Discrete-Time Loop Filter 12 2.9 Performance Metrics 13 2.10 Paper Survey 15 2.11 Summary 17 Chapter 3 Design of Continuous-Time Sigma-Delta Modulators 3.1 Introduction 18 3.2 System Architecture 18 3.3 DT-to-CT conversion of Sigma-Delta Modulator 19 3.3.1 Modified Z-Transform 23 3.3.2 Excess Loop Delay in Continuous-Time ΣΔ modulator 27 3.4 Analysis of Non-Ideal Effects 28 3.4.1 Integrator Nonlinearity 29 3.4.2 Finite Op Amp Gain 30 3.4.3 Jitter Effects in CT ΣΔ modulator 32 3.4.4 Time-Constant Error 34 3.5 Summary 36 Chapter 4 Circuit Implementation 4.1 Resistor-Capacitor Integrators 38 4.2 Comparator 42 4.3 Four-bit Quantizer 44 4.4 Feedback DACs 45 4.5 DWA circuit 47 4.6 Clock Generator 48 4.7 Time Constant Tuning 49 4.8 Floorplain and layout 50 4.9 Simulation Results 51 4.10 Summary 53 Chapter 5 Decimation Filter Design 5.1 Introduction 54 5.2 Digital Filter Design 54 5.2.1 Comb Filter 55 5.2.2 FIR Filter 57 5.3 Decimation Filter Architecture and Design 60 5.3.1 Single-Stage Decimation Filter 60 5.3.2 Multistage Decimation Filter 62 5.4 Simulation Results 72 5.5 Summary 73 Chapter 6 Test Setup and Experimental Result 6.1 Test Setup 76 6.2 Experimental Results 77 6.3 Performance Comparison 82 6.4 Summary 84 Chapter 7 Conclusions 7.1 Conclusions 85 7.2 Future Work 85 Bibliography 87 Appendix 92

    [1] D. A. Sobel, “A 25 Ms/s Nyquist-Rate Sigma-Delta Modulator for a Wideband CDMA Receiver,” Ph.D. Thesis, University of California at Berkeley, 2000.
    [2] B. J. Farahani, “Adaptive Digital Calibration Techniques for High Speed, High Resolution Sigma Delta ADCs for Broadband Wireless Applications,” Master Thesis, Oregon State University, 2005.
    [3] B. Javid, “Low-Power Delta-Sigma A/D Design for Broadband Applications,” Master Thesis, Toronto University, 2006.
    [4] F. Medeiro, A. Perez-Verdu, and A. Rodriguez-Vazquez, Top-Down Design of High-Performance Sigma-Delta Modulators, Kluwer Academic Publishers, 1999.
    [5] G. I. Bourdopoulos, A. Pnevmatikakis, V. Anastassopoulos, and T. L. Deliyannis, Delta-Sigma Modulators, Imperial College Press, 2003.
    [6] B. C. Nordick, “Dynamic element matching techniques for delta-sigma ADCs with large internal quantizers,” Master Thesis, Brigham Young University, 2004
    [7] Z. Li, “Design of a 14-bit continuous-time delta-sigma A/D modulator with 2.5MHz signal bandwidth,” Ph.D. Thesis, Oregon State University, 2006.
    [8] M. Ortmanns and F. Gerfers, Continuous-Time Sigma-Delta A/D Conversion, New York: Springer, 2006.
    [9] A. Marques, V. Peluso, M. S. Steyaert, and W. M. Sansen, “Optimal Parameters for ΔΣ Modulator Topologies,” IEEE Trans. Circuits Syst. II, vol. 45, No. 9, pp. 1232-1241, Sept. 1998.
    [10] L. J. Breems, R. Rutten, and G. Wetzker, “A cascaded continuous-time ΣΔ modulator with 67-dB dynamic range in 10-MHz bandwidth,” IEEE J. Solid-State Circuits, vol. 39, pp. 2152-2160, Dec. 2004.
    [11] S. D. Kulchycki, R. Trofin, K. Vleugels, and B. A. Wooley, “A 77-dB dynamic range, 7.5-MHz hybrid continuous-time/discrete-time cascaded ΣΔ modulator,” IEEE J. Solid-State Circuits, vol. 43, pp. 796-804, Apr. 2008.
    [12] M. Anderson and L. Sundstrom, “Design and Measurement of a CT ΔΣ ADC with switched-capacitor switched-resistor feedback,” IEEE J. Solid-State Circuits, vol. 44, pp. 473-483, Feb. 2009.
    [13] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation, IEEE Press, 1996.
    [14] F. M. Gardner, “A Transformation for Digital Simulation of Analog Filters,” IEEE Trans. Communication., pp. 676-680, July. 1986.
    [15] J. A. Cherry, and W. M. Snelgrove, Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits, NY: Kluwer, 2000.
    [16] H. Aboushady, “Design for Reuse of Current-Mode Continuous-Time Sigma Delta Analog-to- Digital Converters,” PhD thesis, University of Paris, France, Jan. 2002.
    [17] F. Gerfers, M. Ortmanns, and Y. Manoli, “A Design Strategy for Low-Voltage Low-Power continuous-time Sigma-Delta A/D converters,” Des. Autom. Test Conf., pp. 361–368, 2001.
    [18] M. S. Kappes, “A 2.2-mW CMOS Bandpass Continuous-Time Multi-bit ΔΣ ADC with 68 dB of Dynamic Range and 1-MHz Bandpass for Wireless Applications,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1098-2003, Jul. 2003.
    [19] V. Peluso, A. Marquez, M. Steyaert, and W. Sansen, “Optimal Parameters for Single Loop ΣΔ Modulator,” IEEE International Sym. on Circuit and Systems, pp. 57-60, June 1997.
    [20] F. Munoz, “A 4.7 mW 89.5 dB DR CT Complex DS ADC with Built-in LPF,” IEEE ISSCC Dig. Tech. Papers, pp. 500-501, Feb. 2005.
    [21] G. Mitteregger and C. Ebner. S. Mechnig, T. Blon, C. Holuigue, and E. Romani, “A 20-mW 640-MHz CMOS continuous-time ΣΔ ADC with 20-MHz signal bandwidth, 80-dB dynamic range and 12-bit ENOB,” IEEE J. Solid-State Circuits, vol. 41, pp. 2641-2649, Dec. 2006.
    [22] R. Castello, F. Montecchi, F. Rezzi, and A. Baschirotto, “Low-voltage analog filters,” IEEE Trans. Circuits Syst. I, vol. 42, pp. 827-840, Nov. 1995.
    [23] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E. Lee, “Low-voltage analog circuit design based on biased inverting opamp configuration,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 176-184, Mar. 2000.
    [24] J. Chen, S. Kurachi, S. Shen, H. Liu, T. Yoshimasu, and Y. Suh, “A low-kickback-noise latched comparator for high-speed flash analog-to-digital converters,” in Proc. IEEE ISCIT, vol. 1, pp. 250-253, Oct. 2005.
    [25] F. Chen, T. Kuendiger, S. Erfani, and M. Ahmadi, “Design of a wideband low-power continuous-time ΣΔ modulator in 90 nm CMOS technology,” Analog Integr. Circ. Sig. Process., vol. 54, pp. 187-199, Feb. 2008.
    [26] L. Lamarre, M. Louerat, and A. Kaiser, “A simple 3.8mW, 300MHz, 4-bit flash analog-to-digital converter,” Proc. of the SPIE, vol. 5837, pp. 825-832, 2005.
    [27] B. Razavi, Principles of Data Conversion System Design, New York: IEEE Press, 1995.
    [28] Z. Li and T. S. Fiez, “A 14-bit continuous-time delta-sigma A/D modulator with 2.5 MHz signal bandwidth,” IEEE J. Solid-State Circuits, vol. 42, pp. 1873-1883, Sep. 2007.
    [29] M. S. Kappes, “A 2.2-mW CMOS bandpass continuous-time multibit Δ-Σ ADC with 68 dB of dynamic range and 1-MHz bandwidth for wireless applications,” IEEE J. Solid-State Circuits, vol. 38, pp. 1098-1104, Jul. 2003.
    [30] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, pp. 1959-1969, Dec. 1998.
    [31] T.-H. Kuo, K.-D. Chen, and H.-R. Yeng, “A wideband CMOS sigma-delta modulator with incremental data weighted averaging,” IEEE J. Solid-State Circuits, vol. 37, pp. 11-17, Jan. 2002.
    [32] K.-D. Chen and T.-H. Kuo, “An improved technique for reducing baseband tones in sigma-delta modulators employing data weighted averaging algorithm without adding dither,” IEEE Trans. Circuits Syst. II, vol. 46, pp. 63-68, Jan. 1999.
    [33] K.-D. Chen, “Automatic Coefficients Synthesis and Circuit Implementation Techniques of High-Order Sigma-Delta Modulators,” Ph.D. Thesis, National Cheng Kung University, 2000.
    [34] R. J. Baker, CMOS Circuit Design, Layout, and Simulation, 2nd edition, Willey-Interscience, 2005.
    [35] S. Yan and E. Sanchez-Sinencio, “A continuous-time ΣΔ modulator with 88-dB dynamic range and 1.1-MHz signal bandwidth,” IEEE J. Solid-State Circuits, vol. 39, pp. 75-86, Jan. 2004.
    [36] N. Vendra and K. Chaluvadi, “Decimation filter for the VACS platform,” Master Thesis, The Royal Institute of Technology, Stockholm, Sweden, 2006.
    [37] S. Park, Principles of Sigma Delta Modulation for Analog-to-Digital Converters, Motorola Inc., 1992.
    [38] R. R. Anantha, “A programmable CMOS decimator for sigma-delta analog-to-digital converter and charge pump circuits,” Master Thesis, Bachelor of Technology, Jawaharlal Nehru Technological University, India, May 2005.
    [39] K.-Y. Khoo, Z. Yu, and A. N. Willson, Jr., “Efficient high-speed CIC decimation filter,” in Proc. 11th Annual IEEE Int. ASIC Conf., pp. 251-254, Sept. 1998.
    [40] D. Jarman, “A brief introduction to sigma delta conversion,” Intersil Application Note AN9504, May 1995.
    [41] H. Ohlsson, “Studies on design and implementation of low-complexity digital filters,” Ph.D. Thesis, Linkopings University, 2005.
    [42] F. Mok, A. G. Constantinides and P. Y. K. Cheung, “A flexible decimation filter architecture for sigma-delta converters,” IEEE Colloquium on Oversampling Techniques and Sigma-Delta Modulation, pp. 5/1-5/6, Mar. 1994.
    [43] P. M. Smith and C. K. Campbell, “The design of SAW linear phase filters using the Remez exchange algorithm,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. UFFC-33, pp. 318-323, May 1986.
    [44] F. W. Isen, DSP for MATLAB and LabVIEW III : Digital Filter Design, Morgan and Claypool Publishers, 2009.
    [45] S. S. Abeysekera, X. Yao, “A single stage decimator architecture for sigma-delta demodulators using laguerre filters,” in Proc. IEEE ISCAS, vol. 2, pp. 789-792, May 2001.
    [46] B. P. Brandt, “Oversampled analog-to-digital conversion,” Ph.D. Thesis, Stanford University, 1991.
    [47] O. Gustafsson and H. Ohlsson, “A low power decimation filter architecture for high-speed single-bit sigma-delta modulation” in Proc. IEEE ISCAS, vol. 2, pp. 1453-1456, May 2005.
    [48] T. K. Shahana, R. J. Babita, K. P. Jacob, and S. Sasi, “Decimation filter design toolbox for multi-standard wireless transceivers using MATLAB,”
    [49] Zheng Chen, “VLSI implementation of a high-speed delta-sigma analog to digital converter,” Master Thesis, Ohio University, 1997.
    [50] Y. M. Hasan, L. J. Karam, M. Falkinburg, A. Helwig, and M. Ronning, “Canonic signed digit FIR filter design,” in Asilomar Conference on Signals, Systems and Computers, pp. 1653-1656, Oct. 2000.
    [51] W. J. Oh and Y. H. Lee, “A design and implementation of programmable multiplierless FIR filters with powers-of-two coefficients,” in Proc. IEEE ISCAS, vol. 1, pp. 88-91, May 1993.
    [52] M. Burns and G. W. Roberts, An Introduction to Mixed-Signal IC Test and Measurement, Oxford University Press, 2001.
    [53] B. Brannon and R. Reeder, “Understanding high speed ADC testing and evaluation,” Analog Device, Inc., Jan. 2006.
    [54] CIC Training Course, Analog Measurement, CIC, July 2008.
    [55] Analog Device, “AD8138 low distortion differential ADC driver data sheet Rev. F,” Application Note AN-835, Analog Device, Inc., 2006.
    [56] F. Gerfers, M. Ortmanns, and Y. Manoli, “A 1.5-V 12-bit power-efficient continuous-time third-order ΣΔ modulator,” IEEE J. Solid-State Circuits, vol. 38, pp. 1343-1352, Aug. 2003.
    [57] S. Yan and E. S.-Sinencio, “A continuous-time ΣΔ modulator with 88-dB dynamic range and 1.1-MHz signal Bandwidth," IEEE J. Solid-State Circuits, vol. 39, pp. 75-86, Jan. 2004.
    [58] S. Paton, A. D. Giandomenico, L. Hernandez, A. Wiesbauer, T. Potscher, and M. Clara, “A 70-mW 300-MHz CMOS continuous-time ΣΔ ADC with 15-MHz bandwidth and 11 bits of resolution,” IEEE J. Solid-State Circuits, vol. 39, pp. 1056-1063, July 2004.
    [59] L. Dorrer, F. Kuttner, P. Greco, P. Torta, and T. Hartig, “A 3-mW 74-dB SNR 2-MHz continuous-time delta-sigma ADC with a tracking ADC quantizer in 0.13-um CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 2416-2427, Dec. 2005.
    [60] J. Arias, P. Kiss, V. Prodanov, V. Boccuzzi, M. Banu, D. Bisbal, J. S. Pablo, L. Quintanilla, and J. Barbolla, “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol. 41, pp. 339-351, Feb. 2006.
    [61] T. Song, Z. Cao, and S. Yan, “A 2.7-mW 2-MHz continuous-time ΣΔ modulator with a hybrid active-passive loop filter,” IEEE J. Solid-State Circuits, vol. 43, pp. 330-341, Feb. 2008.
    [62] A. Hart and S. P. Voinigescu, “A 1 GHz bandwidth low-pass ΔΣ ADC with 20-50 GHz adjustable sampling rate,” IEEE J. Solid-State Circuits, vol. 44, pp. 1401-1414, May 2009.

    無法下載圖示 全文公開日期 2015/01/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE