簡易檢索 / 詳目顯示

研究生: 陳文林
Wen-lin Chen
論文名稱: 評估低溫環境對手部績效之影響
Evaluating the Hand Performance in a Cold Environment
指導教授: 紀佳芬
Chia-Fen Chi
口試委員: 李永輝
Yung-Hui Lee
王茂駿
Mao-Jiun Wang
黃雪玲
Sheue-Ling Hwang
謝光進
Kong-King shieh
林久翔
Chiuhsiang-Joe Lin
石裕川
Yuh-Chuan Shih
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 86
中文關鍵詞: 握力(MVC)肌電訊號(EMG)心理適應結構方程模型(SEM)靈巧性皮膚溫度
外文關鍵詞: maximal volitional contraction (MVC), electromyography (EMG), psychological adaptation, Structural equation modeling (SEM), dexterity, skin temperature
相關次數: 點閱:383下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著經濟結構的轉型及消費模式的改變,許多消費者對低溫食品需求量與日俱增,使得人們在低溫環境下工作的機會愈來愈多,因此,了解冷環境對人員及工作績效的影響,日益顯得重要。因此,本研究以二個實驗探討持續冷浸潤對手部握力、靈巧性,以及人員對溫度知覺感受程度的變化及影響。
    第一個實驗針對持續冷浸潤對手部握力、肌電訊號,以及主觀溫度知覺感受程度的影響進行探討。第二個實驗則探討持續冷浸潤對手部處理小物件(插銷作業)及大物件(螺絲鬆脫)的能力,以及肌電訊號與皮膚溫度的變化。
    第一個實驗結果得知,性別及冷浸潤時間的長短對MVC、肌電訊號,以及主觀溫度知覺感受有顯著影響。最後本實驗,運用結構方程模型探討冷浸潤時間對手部溫度及握力的影響,同時並探討性別、手部計測相關資料,對手部溫度及握力的影響。研究發現隨著冷浸潤時間的遞增,手部溫度持續下降,進而影響手部握力;就性別而言,男性有較大的握力施力,女性的手部溫度則下降的較男性多;而手掌長對握力則有顯著的影響。此外,由於心理的適應作用,當浸潤時間達4分鐘之前,受試者對冷暴露所引發之不舒服感受程度逐漸增加,且在第4分鐘時達到最大,之後則逐漸減緩。在復原浸潤階段,隨浸潤時間增長,前臂膚溫逐漸升高,而使肌電訊號漸次恢復,並降低冷環境所產生的不舒適感受;整體而言,復原浸潤對績效回復有顯著影響。
    第二個實驗結果顯示,隨著冷浸潤時間的遞增,手部皮膚溫度逐漸降低,進而影響手部處理小物件(插銷作業)及大物件(螺絲鬆脫)的能力;此外,在冷暴露後,手部對處理大物件(螺絲鬆脫)的能力上,就伸指肌的肌電訊號而言,則無顯著降低。在復原浸潤階段,隨浸潤時間增長,前臂膚溫逐漸升高,經過15分鐘復原浸潤後,各量測變項均回復冷浸潤前之水準;整體而言,復原浸潤對績效回復有顯著影響。最後,透過因素分析及逐步迴歸分析方法,發現手部計測資料、皮膚溫度、環境溫度及肌電訊號4變項對靈巧性作業績效的預測力約為70%。
    如同過去其他學者的結果一樣,暴露在冷環境中,確實會對人員績效產生影響;此外,由於心理的冷適應作用,受試者在一開始暴露逾於冷環境中,所引發之不舒服感受程度逐漸增加,但隨浸潤時間增加,則逐漸減緩。因此,當受試者長期暴露於冷環境中,此種冷適應現象的產生,易使人員喪失警覺,進而產生冷傷害。


    Two experiments were conducted in this study. One is to evaluate the effect of continuous cold immersion on grip force, and the corresponding muscular activity and Cold-Water-Induced Perception. Another is to evaluate the trends of skin temperature, dexterity, and associated EMG relative to conducting manual manipulation (fine or gross dexterity) during a continuous cold immersion.
    For the first experiment, the ANOVA result indicated that gender and immersion time both had a significant effect on all responses during cold immersion. The SEM proved that cold immersion had a direct impact on the hand skin temperature, and subsequently affected the MVC. Gender had a significant impact on hand skin temperature and MVC, and MVC was also affected by palm length. Due to the psychological adaptation of subjective discomfort, participants experienced greater cold induced discomfort at the beginning of the cold immersion and the discomfort gradually diminished after 4 minutes. This cold adaptation and decreased muscular performance could potentially put a person at a greater risk of cold-related injuries under cold climate conditions. During the warm water immersion, all muscular performance had a gradual recovery.
    For the second experiment, dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of flexor digitorum superficialis (FDS) remained almost unchanged during the nut-loosening task. All responses recovered to the baseline level at the end of rewarming, but the skin temperature on the forearm did not. The four factors extracted by factor analysis are termed anthropometry, skin temperature, ambient condition, and EMG. They explain about 70% of the variation of the linear models for both nut-loosening and pin-insertion dexterity. For both dexterities, the most and the least influential contributor is the factor of skin temperature and anthropometry, respectively.

    目錄 摘要I ABSTRACTIII 誌謝V 目錄VI List of FiguresIX List of TablesX Chapter 1 Introduction1 1.1 Background1 1.2 The Purposes and Framework of this study1 Chapter 2 Literature Review4 2.1 Physiological responses to cold4 2.1.1 Body heat balance4 2.1.2 Heat conservation and production5 2.1.3 Individual factors6 2.1.2.1 Body composition and subcutaneous fat6 2.1.2.2 Gender7 2.2 Psychological responses to cold7 2.3 Manual performance in cold9 2.2.1 Manual dexterity9 2.2.2 Grip force10 2.2.3 Muscle fatigue (EMG)11 Chapter 3 Experiment I14 3.1 Method14 3.1.1 Participants14 3.1.2 Apparatus and Materials15 3.1.3 Experimental design and data analysis19 3.1.4 Experiment procedure22 3.2 Result24 3.2.1 ANOVA analysis28 3.2.2 Structural Equation Model Analysis30 3.3 Discussion33 Chapter 4 Experiment II38 4.1 Method38 4.1.1 Participants39 4.1.2 Apparatus and Materials39 4.1.3 Experimental design and data analysis41 4.1.4 Experimental procedure41 4.2 Result48 4.2.1 ANOVA analysis for Nut-loosening48 4.2.1.1 Dexterity48 4.2.1.2 EMG (nRMS)49 4.2.1.3 Skin temperature52 4.2.2 ANOVA analysis for Pin-insertion54 4.2.2.1 Dexterity54 4.2.2.2 EMG (nRMS)55 4.2.2.3 Skin temperature55 4.2.4 Factor analysis and regression56 4.3 Discussion60 Chapter 5 Conclusion and future study68 References71 作者簡介84

    [1]Barcroft, H., and Edholm, O. G., 1943. Temperature and blood flow in the human forearm. The Journal of Physiology, 104, 366-376.
    [2]Bell, D.G., 1993. The influence of air temperature on the EMG/force relationship of the quadriceps. European Journal of Applied Physiology, 67:256-260
    [3]Bensel, C., 1993. The effects of various thickness of chemical protective gloves on manual dexterity. Ergonomics, 36: 687-696.
    [4]Berger, M.A.M., Krul, A.J., and Daanen, H.A.M., 2009. Task specificity of finger dexterity tests. Applied Ergonomics, 40(1): 145-147
    [5]Berger, M.A.M., Krul, A.J., and Daanen, H.A.M., 2009. Task specificity of finger dexterity tests. Applied Ergonomics, 40(1): 145-147
    [6]Bergh, U. and Ekblom, U., 1979. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiologica Scandinavica, 107(1):33-37.
    [7]Bollinger, A. and Schlumpf, M., 1976. Finger blood flow in health patients of different age and sex and in patients with primary Raynaud’s disease. Acta Chirugia Scandinavica, Supplement, 465, 42-47.
    [8]Brajkovic, D. and Ducharme, M. B., 2003. Finger dexterity, skin temperature, and blood flow during auxiliary heating in the cold. Journal Applied Physiology, 95: 758-770.
    [9]Bruck,, K., Baum, E., and Schwennicke, H. P., 1976. Cold adaptive modifications in man induced by repeated short-term cold-exposures and during a 10-day-night cold-exposure. Archives, 363, 125-133.
    [10]Burse, R. L., 1979. Sex differences in human thermoregulatory response to heat and cold stress. Human Factor, 21, 687-699.
    [11]Campbell, D.A., and Kay, S.P., 1998. What is cold intolerance? Journal of Hand Surgery, 23: 1: 3-5.
    [12]Chang, C.-H. and Shih, Y.-C., 2007. The effects of glove thickness and work load on female hand performance and fatigue during an infrequent high-intensity gripping task. Applied Ergonomics, 38, 317-324,
    [13]Chatonnet, J., and Cabanac, M., 1965. The perception of thermal comfort. International Journal of Biometerology, 9, 183-193.
    [14]Chi, Chia-Fen and Drury, D. G., 1988, Cross Validation of Measures of Handle/Human Fit. Applied Ergonomics, 19.4, 309-314.
    [15]Chiang, H.C., Chen, S.S., Yu, H.S., and Ko, Y.C., 1990. The occurrence of carpal tunnel syndrome in frozen food factory employees. Kaohsiung Journal of Medical Sciences, 6, 73-80.
    [16]Clark, R. E., 1961. The limiting hand skin temperature for ubaffected manual performance in the cold. Journal of Applied Physiology, 45(3):193-194.
    [17]Clifford, H., Paul V., and Robert S.P., 2004. Peripheral skin temperature effects on muscle oxygen levels. Journal of Thermal Biology , volume 29, 785-789.
    [18]Du bois, D. and Du bois, E. F., 1916. A formula to estimate the approximate surface area if height and weight be known. Archives international medicine, 17:863-871.
    [19]Ducharme, M.B., Brajkovic, D., and Frim, J., 1999. The effect of direct and indirect hand heating on finger blood flow and dexterity during cold exposure. Journal of thermal biology, 24: 391-396.
    [20]Enander, A., 1984. Performance and sensory aspects of work in cold environments: a review. Ergonomics 27, 365-378.
    [21]Enander, A.E. and Hygge, S., 1990. Thermal stress and human performance, Scandinavian Journal of work Environment & Health, 16, Suppl 1:44-50.
    [22]Fleischman, E. and Hempel, W.E., 1954. A factor analysis of dexterity tests. Personnel Psychology, 7(1): 15-32.
    [23]Fox, R. H., Löfstedt, B. E., Woodward, P. M., Eriksson, E., and Werkstrom, B., 1969. Comparison of thermoregulatory function in men and women. Journal of Applied Physiology, 26(4):444–453.
    [24]Fransson-Hall, C. and Kilbom, Å., 1993. Sensitivity of the hand to surface pressure. Applied Ergonomics, 24(3), 181-189.
    [25]Gaydos, H. F., 1985. The effect on complex manual performance of cooling the body while maintaining the hands at normal temperature. Journal of Applied Physiology, 12, 373-380.
    [26]Geurts, C. L. M., Sleivert, G. G., and Cheung, S. S., 2006. Local cold acclimation during exercise and its effect on neuromuscular function of the hand. Applied Physiology Nutrition and Metabolism, 31: 717-725.
    [27]Geurts, C. L., Sleivert, G. G. and Cheung, S. S., 2005. Local cold acclimation of the hand impairs thermal responses of the finger without improving hand neuromuscular function. Acta Physiologica Scandinavica, 183:117–124.
    [28]Glaser, E. M., and Shephard, R. J., 1963. Simultaneous experimental acclimatization to heat and cold in man. Journal of Physiology, 169, 592-602.
    [29]Glaser, E. M., and Whittow, G. C., 1957. Retention in a warm environment of adaptation to localized cooling. Journal of Physiology, 136, 98-111.
    [30]Glaser, E. M., Hall, M. S., and Whittow, G. C., 1959. Habituation to heating and cooling of the same hand. Journal of Physiology, 146, 152-164.
    [31]Goldman, R. F., 1964. The Arctic soldier: Possible research solutions for his protection. In C. R. Kolb and F. M. G. Holstrom(Eds.) Review of research on military problems in cold regions. USAF Arctic Aeromedical Laboratory Technical Documentary Report No. 64-28.
    [32]Havenith, G., Heus, R., and Daanen, H.A.M., 1995. The hand in the cold, performance and risk. Arctic Medical Research, 54(Suppl. 2): 37-47.
    [33]Hellstrom, B., 1965.Local effects of acclimatization to cold in man. Oslo: Universitetsforlaget.
    [34]Hensel, H., 1981. Thermoreception and temperature regulation. Monographs of the physiological society No. 38. Academic Press, London.
    [35]Holewijn, M., and Heus, R., 1992. Effects of temperature on electrmyogram and muscle function. Eur J Appl Physiol Occup Physiol, 65:541-545.
    [36]Holmer, I., 1994. Extremity cooling and performance. In: Work in cold environments. Edited by Homer I. NIOH & NIVA Finland. pp49-55.
    [37]Hom, C., Vasquez, P., and Pozos, R. S., 2004. Peripheral skin temperature effects on muscle oxygen levels. Journal of Thermal Biology, 29, 785-789.
    [38]Hunter, J., Kerr, E.H., and Whillans, M.G., 1952. The relation between joint stiffness upon exposure to cold and the characteristics of sinovial fluid. Canadian Journal of Medical Science, 30, 367-377.
    [39]Imamura, R., Rissanen, S., Kinnunen, M., and Rintamaki, H., 1998. Manual performance in cold conditions while wearing NBC clothing. Ergonomics 41(10), 1421-1432.
    [40] Irving, L., 1966. Adaptations to cold. Scientific American, 214, pp. 94–101.
    [41]ISO, 1992. Analytical determination and interpretation of cold stress using calculation of the required clothing insulation (IREQ) and local cooling effects. International Standards Organisation, Geneva, TR 11079.
    [42]Kadefors, R., Kaiser, E., and Petersen, I., 1968. Dynamic spectrum analysis of myo-potentials and with special reference to muscle fatigue. Electromyography, 8:39-74.
    [43]Kenshalo, D. R., 1970. Psychophysical studies of temperature sensitivity. In: (Neff WD ed) Contributions to sensory physiology. Academic Press, New York.
    [44]Kurppa, K., Viikari-Juntura, E., Kuosma, E., Huuskonen, M., and Kivi, P., 1991. Incidence of tenosynovitis or peritendinitis and epicondylitis in a meat-processing factory. Scandinavian Journal of Work Environment and Health, 17, 32-37.
    [45]Lavender, S. A. and Marras, W. S., 1990. An electromyographic analysis of an ergonomic intervention with the jackleg drill. Applied Ergonomics, 21(2), 90-100.
    [46]Lehmuskallio, E., Hassi, J., and Kettunen, P., 2002. The skin in the cold. Int J Circumpolar Health 61: 277-286.
    [47]Lockhart, J. M., Kiess, H. O., and Clegg, T. J., 1975. Effect of rate and level of lowered finger surface temperature on manual performance. Journal Applied Physiology, 40, 106-113.
    [48]Lockhart, J.M., 1968. Extreme body cooling and psychomotor performance. Ergonomics, 11, 249-260.
    [49]McCullough, E. A., Eckels, S., and Harms, C., 2009. Determining temperature ratings for children’s cold weather clothing. Applied Ergonomics, 40 (5), 870-877.
    [50]Meigal, A. Y., Oksa, J., Hohtola, E., Lupandin, Y. V., and Rintamaki, H., 1998.Influence of cold shivering on fine motor control in the upper limb. Acta Physiol Scand, 163:41-47.
    [51]Milner-Brown, H. S., and Stein, R. B., 1975. The relation between the surface electromyogram and muscular force. The Journal of Physiology, 246:549-569.
    [52]Morse, J. L., Jung, M. C., Bashford, G. R., and Hallbeck, M. S., 2006. Maximal dynamic grip force and wrist torque: The effects of gender, exertion direction, angular velocity, and wrist angle. Applied Ergonomics, 37:737-742.
    [53]Neiburger, E., 1992. Latex gloves and manual dexterity. A study of 50 midwest dentists. N.Y. State Dental Journal, 58: 24-28.
    [54]Oksa, J., Ducharme, M. B., and Rintamaki, H., 2002. Combined effect of repetitive work and cold on muscle function and fatigue. Journal of Applied Physiology, 92:354–361.
    [55]Oksa, J., Rintamäki, H., and Mäkinen, T., 1993. Physical characteristics and decrement in muscular performance after whole body cooling. Ann. Physiol. Anthropol., 12: 335-339.
    [56]Oksa, J., Rintamaki, H., and Rissanen, S., 1996. Recovery of muscular performance by rewarming exercise in the cold. Human Movement Science, 15, 591-603.
    [57]Oksa, J., Rintamäki, H., and Rissanen, S., 1997. Muscle performance and electromyogram activity of the lower leg muscles with different levels of cold exposure. European Journal of Applied Physiology, 75: 484-490.
    [58]Parsons, K., 2003. Human Thermal Environments. The effects of hot, moderate and cold on human health, comfort and performance. 2nd Ed. Taylor & Francis, London and New York.
    [59]Person, R. S., Libkind, M. S., 1970. Simulation of electromyograms showing interference patterns. Electroencephalogr Clin Neurophysiol, 28:625-632.
    [60]Petrofsky, J.S., Lind, A.R., 1980. The influence of temperature on the amplitude and frequency components of the EMG during brief and sustained isometric contraction. European Journal of Applied Physiology, 44, 189-200.
    [61]Pilcher, J.J., Nadler, E, and Busch, C., 2002. Effects of hot and cold temperature exposure on performance: a meta-analytic review. Ergonomics, 45(10):682-698.
    [62]Pope, D., Croft, P., Pritchard, C., Silman, A., and Macfarlane, G., 1997. Occupational factors related to shoulder pain and disability. Occupational and Environmental Medicine, 54,316-321.
    [63]Riley, M.W. and Cochran, D.J., 1984. Dexterity performance and reduced ambient temperature. Human Factors, 26(2): 207-214.
    [64]Rissanen, S., Hassi, J., Juopperi, K., and Rintamaki, H., 2001. Effect of whole body cooling on sensory perception and Manual performance in subjects with Raynaud’s phenomenon. Comparative Biochemistry and Physiology Part A 128, 749-757.
    [65]Rome, L.C., 1990. Influence of temperature on muscle recruitment and muscle function in vivo. American Journal of Physiology, 259:R210-R222.
    [66]Rueckriegel, S.M., Blankenburg, F., Burghardt, R., Ehrlich, S., Henze, G., Mergl, R., and Driever, P.H., 2008. Influence of age and movement complexity on kinematic hand movement parameters in childhood and adolescence. International Journal of Developmental Neuroscience, 26 (7): 655-663.
    [67]Sawyer, J. and Bennett, A., 2006. Comparing the level of dexterity offered by latex and nitrile safeskin gloves. The Annals of Occupational Hygiene, 50(3):289-296.
    [68]Schiefer, R. E., Kok, R., Lewis, M. I. and Meese, G. B., 1984. Finger skin temperature and manual dexterity; some inter-group differences. Applied Ergonomics, 15(2), 135-141.
    [69]Schieffer, R. E., Kok, R., Lewis, M. I. and Meese, G. B., 1984. Finger skin temperature and manual dexterity; some inter-group differences. Applied Ergonomics, 15(2), 135-141.
    [70]Shiojiri, T., Shibasaki, M., Aoki, K., Kondo, N., and Koga, S., 1997. Effects of reduced muscle temperature on the oxygen uptake kinetics at the start of exercise. Acta Physiologica Scandinavica, 159:327–333.
    [71]Sloan, R. E., and Keatinge, W. R., 1973. Cooling rates of young people swimming in cold water. Journal of Applied Physiology, 35, 371-375.
    [72]Sloan, R. E., and Keatinge, W. R., 1973. Cooling rates of young people swimming in cold water. Journal of Applied Physiology, 35, 371-375.
    [73]Sormunen, E., Oksa, J., Pienimäki, T., Rissanen, S., and Rintamäki, H., 2006. Muscular and cold strain of female workers in meatpacking work. International Journal of Industrial Ergonomics, 36:713-720.
    [74]Suizu, K., Inoue, M., Fujimura, T., Morita, H., Inagaki, J., Kan, H., and Harada, N., 2004. Influence of waterproof covering on finger skin temperature and hand pain during immersion test for diagnosing hand-arm vibration syndrome. Industrial Health, 42, 79-82.
    [75]Tiffin, J., 1948. The purdue pegboard: Norms and studies of reliability and validity. Journal of Applied Psychology, 32:234-247.
    [76]Tikuisis, P., Meunier, P., and Jubenville, C. E., 2001. Human body surface area: measurement and prediction using three dimensional body scans. European Journal of Applied Physiology, 85,264-271
    [77]United States Army Center Health Promotion and Preventive Medicine (CHPPM), 2004. Prevention and management of cold weather injuries. 2004-2005http://chppm-www.apgea.army.mil/coldinjury/PreventManageCWI20042005.pdf
    [78]Winkel, J., Jorgensen, K., 1991. Significance of skin temperature changes in surface electromyography. European Journal of Applied Physiology. 63,345-348.
    [79]Winslow, C-E. A., Gagge, A. P., and Herrington, L. P., 1939. Influence of air movement upon heat losses from closed human body. American Journal of Physiology, 127-505.
    [80]Wu, S. W., Wu, S. F., Liang, H. W., Wu, Z. T., and Huang, S., 2009. Measuring factors affecting grip strength in a Taiwan Chinese population and a comparison with consolidated norms. Applied Ergonomics, 40, 811-815.

    QR CODE