簡易檢索 / 詳目顯示

研究生: 陳衍豐
Yan-Feng Chen
論文名稱: 各向異性金奈米粒子/奈米雲母片混成材料製備及其表面增強拉曼散射光譜於生物快速檢測之應用
Preparation of Anisotropic Gold Nanoparticles / Nano Mica Platelets Hybrid Materials and Applied for Surface-Enhanced Raman Spectroscopy with Rapid Biological Detection
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
古德興
吳昌謀
李佳蓉
邱智瑋
梁國全
游進陽
鄭智嘉
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 91
中文關鍵詞: 三角形金奈米板金奈米立方體奈米雲母片表面增強拉曼散射
外文關鍵詞: triangular gold nanoplates, gold nanocubes, nano mica platelets, surface-enhanced Raman spectroscopy
相關次數: 點閱:38下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主要以化學合成法快速製備各向異性貴金屬奈米粒子,並且穩定於二維脫層奈米雲母片的表面上。脫層雲母片NMPs表面富有大量的電荷並可提供較大的比表面積,可作於穩定奈米粒子良好生長的基材,此外,透過相關參數的設計,可輕易的調控奈米粒子的形狀及顆粒大小。在合成不同形態的金奈米粒子時,由於添加陽離子界面活性劑作為保護劑包圍於奈米粒子的周圍,可使表面帶正電荷,對於檢測表面帶負電荷的分子有良好的吸附效果。接著利用表面增強拉曼光譜(SERS)檢測生物分子DNA鹼基,以初步判斷奈米混合材料是否可應用於生物分子系統的檢測上。最後,設計有機高分子分散劑,以調控NMPs表面的親疏水性,進一步將其應用在親水性金黃色葡萄球菌或是疏水性大腸桿菌等不同菌種的快速檢測上,本論文主要分成兩個部分作探討:
    第一部分,通過一步快速成長法製備三角形金奈米板(TAuNPs),並穩定於二維脫層奈米雲母片(NMPs)的表面,藉由氧化蝕刻的方式形成具有避雷針效應(lightning rod effect)之TAuNPs/NMPs奈米混成材料。透過相關參數的設計,可輕易調整TAuNPs的邊緣長度使其介於30 nm~90 nm之間,接著,利用表面增強拉曼光譜(SERS)檢測DNA鹼基腺嘌呤(adenine)分子,其偵測極限濃度可達10-9M、拉曼增強因子(EF)達5.7 × 107,相對標準偏差(RSD)為9.8%。最後以此應用於金黃色葡萄球菌的細菌檢測中,此奈米混成材料的表面帶電性及親水性質對於金黃色葡萄球菌的SERS訊號上有顯著的提升,SERS結果顯示,其檢測極限濃度達102 CFU/mL,相對標準偏差(RSD)為11.2%,由此可知,此TAuNPs/NMPs 奈米混成材料對於SERS生物檢測上可提供相當快速且高靈敏的檢測效果。
    第二部分,使用種子介導法快速合成金奈米立方體(AuNCs)並將其還原於二維脫層奈米雲母片(NMPs)的表面,以製備出具有三維lightning rod effect之AuNCs/NMPs奈米混成材料。首先,藉由改變生長溶液的添加量,可輕易調整AuNCs的平均粒徑使其介於30 nm~70 nm之間,接著,脫層型態的AuNCs/NMPs亦能透過自組裝的方式產生三維熱點效應以增強拉曼訊號,在表面增強拉曼散射光譜(SERS)檢測生物分子adenine也展現出極高的靈敏性,其偵測極限濃度達10-9M、拉曼增強因子(EF)達3.6 ×108。由於AuNCs粒子間具有較為規則的排列下,其再現性表現優異,相對標準偏差(RSD)為10.7%。最後,透過親水性高分子POE2000與雙親性高分子PIB–POE–PIB以不同重量比的添加量對NMPs表面進行改質,藉由控制NMPs表面的親疏水性(hydrophilic-hydrophobic)使其對細菌具有良好的吸附性及選擇性,並進一步將此AuNCs/POE/NMPs及AuNCs/PIB–POE–PIB/NMPs分別應用於親水性金黃色葡萄球菌及疏水性大腸桿菌的SERS檢測上。在SERS檢測結果顯示,金黃色葡萄球菌的檢測極限濃度達92 CFU/mL,另外,大腸桿菌的檢測極限濃度達1.6 ×102 CFU/mL。此AuNCs/POE/NMPs及AuNCs/PIB–POE–PIB/NMPs具有不同的親疏水性親和力,大幅提升了對於不同親疏水性質細菌的捕捉效果及偵測靈敏度,在SERS生物檢測系統中提供了快速、高選擇性且高靈敏度的檢測效果。


    The main focus of this study is the rapid preparation of anisotropic noble metal nanoparticles using chemical synthesis. These nanoparticles are stabilized on two-dimensional delaminated nano mica platelets (NMPs) surface. The NMP surfaces are rich in ionic charges and provide a large specific surface area, serving as a substrate for the stabilized growth of the nanoparticles. Moreover, by adjusting relevant parameters, the shape and particle size of the nanoparticles can be easily controlled. In the synthesis of different shapes of gold nanoparticles, cationic surfactants are utilized as protective agents surrounding the nanoparticles, rendering the surface positively charged and facilitating the adsorption of molecules with negative charges for detection. Subsequently, surface-enhanced Raman spectroscopy (SERS) is utilized to detect DNA bases as a preliminary assessment of whether the nanohybrid can be applied in biological system detection. Finally, organic polymer dispersants are designed to modulate the hydrophilicity or hydrophobicity of the NMPs' surface. Then applied to rapidly detect bacteria such as hydrophilic Staphylococcus aureus or hydrophobic Escherichia coli. This study will be mainly divided into two sections for exploration.
    The first part is the rapid preparation of triangular gold nanoplates (TAuNPs) using a one-step growth method, followed by their stabilization on the surface of two-dimensional delaminated nano mica platelets (NMPs). Through oxidation etching, the TAuNPs/NMPs nanohybrids are prepared and exhibit a lightning rod effect. By designing relevant parameters, the edge length of TAuNPs can be easily adjusted in the range of 30 nm to 90 nm. Then, surface-enhanced Raman spectroscopy (SERS) is used to detect adenine, a DNA base molecule, achieving a detection limit of 10-9M, a Raman enhancement factor (EF) of 5.7 × 107, and a relative standard deviation (RSD) of 9.8%. Finally, this nanohybrid is applied to the detection of S. aureus, showcasing significant enhancement in the SERS signal due to the nanohybrid material's charged surface and hydrophilic properties. The SERS results demonstrate a detection limit of 102 CFU/mL and an RSD of 11.2% for S. aureus. Thus, the TAuNPs/NMPs nanohybrid exhibits rapid and highly sensitive detection capabilities in SERS-based biological detection.
    The second part is the rapid synthesis of gold nanocubes (AuNCs) via a seed-mediated method and their reduction on the surface of NMPs, enabling the development of AuNCs/NMPs nanohybrids with a lightning-rod effect. First, the growth-solution amount can be changed to easily adjust the AuNCs' average particle size within a range of 30–70 nm. Delaminated AuNCs/NMPs nanohybrids can generate a 3D hotspot effect through self-assembly to enhance the Raman signal. SERS is highly sensitive in detecting adenine biomolecules. Its LOD and Raman enhancement factor reached 10-9 M and 3.6×108. Excellent reproducibility was obtained owing to the relatively regular arrangement of AuNC particles, and the relative standard deviation (RSD) was 10.7%. Finally, the surface of NMPs was modified by adding the hydrophilic polymer POE2000 and amphiphilic polymer PIB–POE–PIB at different weight ratios. The adjustment of the surface hydrophilicity and hydrophobicity of AuNCs/NMPs nanohybrids led to better adsorption and selectivity for bacteria. AuNCs/POE/NMPs and AuNCs/PIB–POE–PIB/NMPs were further applied to the SERS detection of hydrophilic S. aureus and hydrophobic E. coli. The detection results suggest that the LOD of S. aureus and E. coli. reached 92 CFU/mL and 1.6 × 102 CFU/mL, respectively. Therefore, fast, highly selective, and highly sensitive SERS biological-detection results were obtained.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 VIII 表目錄 XIII 第一章、緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章、文獻回顧 4 2.1 拉曼散射光譜(Raman Scattering) 4 2.1.1 拉曼光譜的起源及原理 4 2.1.2 表面增強拉曼散射(SERS) 5 2.1.3 表面增強拉曼光譜的應用 6 2.2 貴金屬奈米材料 8 2.2.1 貴金屬奈米粒子 8 2.2.2 三角形金奈米板 10 2.2.3 金奈米立方體 12 2.3 二維奈米材料 13 2.3.1 黏土的基本性質 13 2.3.2 脫層奈米黏土 15 2.4 界面活性劑 17 2.4.1 界面活性劑之介紹 17 2.4.2 聚醚胺 18 2.5 細菌 19 2.6 金奈米粒子/奈米雲母片製成具三維熱點效應之SERS基板 21 第三章、實驗方法 24 3.1 實驗材料 24 3.2 實驗儀器 29 第四章、具三維避雷針效應的三角形金奈米板/二維奈米雲母片作為柔性SERS生物感測基底 31 4.1 簡介 31 4.2 實驗步驟 33 4.2.1 脫層黏土(NMPs)之製備 33 4.2.2 TAuNPs/NMPs之製備 34 4.2.3 金黃色葡萄球菌之培養 34 4.3 結果與討論 35 4.3.1 三角形金奈米板(TAuNPs)之合成與鑑定 35 4.3.2 TAuNPs/NMPs之分析 41 4.3.3 金黃色葡萄球菌之檢測 45 4.4 結論 48 第五章、可調控親水-疏水性金奈米立方體/二維奈米雲母片製成可撓曲性SERS基板並應用於細菌感測器 49 5.1 實驗簡介 49 5.2 實驗步驟 51 5.2.1 金奈米立方體(AuNCs)溶液的配製 51 5.2.2 AuNCs/NMPs nanohybrids的製備 51 5.2.3 親水性AuNCs/POE/NMPs及疏水性AuNCs/PIB–POE–POB/NMPs之製備 52 5.2.4 細菌培養 53 5.3 結果與討論 54 5.3.1 不同尺度的金奈米立方體(AuNCs)之合成與鑑定 54 5.3.2 AuNCs/NMPs nanohybrids之分析 58 5.3.3 親水性AuNCs/POE/NMPs檢測金黃色葡萄球菌 63 5.3.4 疏水性AuNCs/PIB–POE–PIB/NMPs檢測大腸桿菌 67 5.3.5 親疏水性SERS底板對細菌之吸附力探討 72 5.4 結論 76 第六章、總結 77 References 79 附錄 89 Publication list 89 Awards 91

    1. Mosca, S.; Conti, C.; Stone, N.; Matousek, P. Spatially offset Raman spectroscopy. Nat. Rev. Methods Primers 2021, 1, 21.
    2. Chase, D. B. Fourier transform Raman spectroscopy. J. Am. Chem. Soc. 1986, 108, 7485–7488.
    3. Camp Jr, C. H.; Lee, Y. J.; Heddleston, J. M.; Hartshorn, C. M.; Walker, A. R. H.; Rich, J. N.; Lathia, J. D. Cicerone, M. T. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. Photonics 2014, 8, 627–634.
    4. Wang, G.; Yi, R.; Zhai, X.; Bian, R.; Gao, Y.; Cai, D.; Liu, J.; Huang, X.; Lu, G.; Li, H.; Huang, W. A flexible SERS-active film for studying the effect of non-metallic nanostructures on Raman enhancement. Nanoscale 2018, 10, 16895–16901.
    5. Nie, S.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.
    6. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.
    7. Lane, L. A.; Qian, X.; Nie, S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529.
    8. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.
    9. Jensen, L.; Aikens, C. M.; Schatz, G. C. Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 2008, 37, 1061–1073.
    10. Kim, D. S.; Honglawan, A.; Yang, S.; Yoon, D. K. Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template. ACS Appl. Mater. Interfaces 2017, 9, 7787–7792.
    11. Wei, H.; Abtahi, S. M. H.; Vikesland, P. J. Plasmonic colorimetric and SERS sensors for environmental analysis. Environ. Sci. Nano 2015, 2, 120–135.
    12. Almaviva, S.; Palucci, A.; Botti, S.; Puiu, A.; Rufoloni, A. Validation of a miniaturized spectrometer for trace detection of explosives by surface-enhanced Raman spectroscopy. Challenges 2016, 7, 14.
    13. Cialla-May, D.; Zheng, X. S.; Weber, K.; Popp, J. J. C. S. R. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961.
    14. Zheng, X. S.; Jahn, I. J.; Weber, K.; Cialla-May, D.; Popp, J. Label-free SERS in biological and biomedical applications: recent progress, current challenges and opportunities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 197, 56–77.
    15. Liu, Y.; Zhou, H.; Hu, Z.; Yu, G.; Yang, D.; Zhao, J. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review. Biosens. Bioelectron. 2017, 94, 131–140.
    16. Sinha, S. S.; Jones, S.; Pramanik, A.; Ray, P. C. Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis. Acc. Chem. Res. 2016, 49, 2725–2735.
    17. Zhao, W.; Zhang, D.; Zhou, T.; Huang, J.; Wang, Y.; Li, B.; Chen, L.; Yang, J.; Liu, Y. Aptamer-conjugated magnetic Fe3O4@ Au core-shell multifunctional nanoprobe: A three-in-one aptasensor for selective capture, sensitive SERS detection and efficient near-infrared light triggered photothermal therapy of Staphylococcus aureus. Sens. Actuators B Chem. 2022, 350, 130879.
    18. Kearns, H.; Goodacre, R.; Jamieson, L. E.; Graham, D.; Faulds, K. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal. Chem. 2017, 89, 12666–12673.
    19. Pahlow, S.; Meisel, S.; Cialla-May, D.; Weber, K.; Rösch, P.; Popp, J. Isolation and identification of bacteria by means of Raman spectroscopy. Adv. Drug Deliv. Rev. 2015, 89, 105–120.
    20. Pérez-Jiménez, A. I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577.
    21. He, M. Q.; Yu, Y. L.; Wang, J. H. Biomolecule-tailored assembly and morphology of gold nanoparticles for LSPR applications. Nano Today 2020, 35, 101005.
    22. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 1–16.
    23. Kleinman, S. L.; Frontiera, R. R.; Henry, A. I.; Dieringer, J. A.; Van Duyne, R. P. Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 2013, 15, 21–36.
    24. Etchegoin, P. G.; Le Ru, E. C. A perspective on single molecule SERS: current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10, 6079–6089.
    25. Willets, K. A.; Duyne, R. P. V. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.
    26. Lin, L.; Chen, M.; Qin, H.; Peng, X. Ag nanocrystals with nearly ideal optical quality: synthesis, growth mechanism, and characterizations. J. Am. Chem. Soc. 2018, 140, 17734–17742.
    27. Kim, T.; Kang, S.; Heo, J.; Cho, S.; Kim, J. W.; Choe, A.; Walker, B.; Shanker, R.; Ko, H.; Kim, J. Y. Nanoparticle‐enhanced silver‐nanowire plasmonic electrodes for high‐performance organic optoelectronic devices. Adv. Mater. 2018, 30, 1800659.
    28. Ahmad, S. A.; Das, S. S.; Khatoon, A.; Ansari, M. T.; Afzal, M.; Hasnain, M. S.; Nayak, A. K. Bactericidal activity of silver nanoparticles: A mechanistic review. Mater. Sci. Energy Technol. 2020, 3, 756–769.
    29. Lednický, T.; Bonyár, A. Large scale fabrication of ordered gold nanoparticle–epoxy surface nanocomposites and their application as label-free plasmonic DNA biosensors. ACS Appl. Mater. Interfaces 2020, 12, 4804–4814.
    30. Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.
    31. Urbieta, M.; Barbry, M.; Zhang, Y.; Koval, P.; Sánchez-Portal, D.; Zabala, N.; Aizpurua, J. Atomic-scale lightning rod effect in plasmonic picocavities: A classical view to a quantum effect. ACS Nano 2018, 12, 585–595.
    32. Kumar, G.; Soni, R. K. Trace-level detection of explosive molecules with triangular silver nanoplates-based SERS substrates. Plasmonics 2022, 17, 559–573.
    33. Milligan, W. O.; Morriss, R. H. Morphology of colloidal gold--A comparative study. J. Am. Chem. Soc. 1964, 86, 3461–3467.
    34. Millstone, J. E.; Park, S.; Shuford, K. L.; Qin, L. D.; Schatz, G. C.; Mirkin, C. A. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc 2005, 127, 5312–531318.
    35. Kuttner, C.; Mayer, M.; Dulle, M.; Moscoso, A.; López-Romero, J. M.; Förster, S.; Fery, A.; Pérez-Juste, J.; Contreras-Cáceres, R. Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance. ACS Appl. Mater. Interfaces 2018, 10, 11152–11163.
    36. Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzán, L. M. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833–5842.
    37. Millstone, J. E.; Hurst, S. J.; Métraux, G. S.; Cutler, J. I.; Mirkin, C. A. Colloidal gold and silver triangular nanoprisms. Small 2009, 5, 646–664.
    38. Wu, X.; Ming, T.; Wang, X.; Wang, P.; Wang, J.; Chen, J. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 2010, 4 113–120.
    39. Craig, G. E.; Brown, S. D.; Lamprou, D. A.; Graham, D.; Wheate, N. J. Cisplatin-tethered gold nanoparticles that exhibit enhanced reproducibility, drug loading, and stability: a step closer to pharmaceutical approval? Inorg. Chem. 2012, 51, 3490–3497.
    40. Park, J. E.; Lee, Y.; Nam, J. M. Precisely shaped, uniformly formed gold nanocubes with ultrahigh reproducibility in single-particle scattering and surface-enhanced Raman scattering. Nano Lett. 2018, 18, 6475–6482.
    41. Bordley, J. A.; Hooshmand, N.; El-Sayed, M. A. The coupling between gold or silver nanocubes in their homo-dimers: a new coupling mechanism at short separation distances. Nano Lett. 2015, 15, 3391–3397.
    42. Chiu, C. W. Lin, J. J. Self-assembly behavior of polymer-assisted clays. Prog. Polym. Sci. 2012, 37, 406–444.
    43. Wang, Y. C.; Huang, T. K.; Tung, S. H.; Wu, T. M.; Lin, J. J. Self-assembled clay films with a platelet–void multilayered nanostructure and flame-blocking properties. Sci. Rep. 2013, 3, 2621.
    44. Gaharwar, A. K.; Cross, L. M.; Peak, C. W.; Gold, K.; Carrow, J. K.; Brokesh, A.; Singh, K. A. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Adv. Mater. 2019, 31, 1900332.
    45. Zhang, J.; Zhou, F.; He, Z.; Pan, Y.; Zhou, S.; Yan, C.; Luo, L.; Gao, Y. AIEgen intercalated nanoclay-based photodynamic/chemodynamic theranostic platform for ultra-efficient bacterial eradication and fast wound healing. ACS Appl. Mater. Interfaces 2022, 14, 30533–30545.
    46. Zhang, Y.; Long, M.; Huang, P.; Yang, H.; Chang, S.; Hu, Y.; Tang, A.; Mao, L. Emerging integrated nanoclay-facilitated drug delivery system for papillary thyroid cancer therapy. Sci. Rep. 2016, 6, 33335.
    47. Chiu, C. W.; Huang, T. K.; Wang, Y. C.; Alamani, B. G.; Lin, J. J. Intercalation strategies in clay/polymer hybrids. Prog. Polym. Sci. 2014, 39, 443–485.
    48. Chu, C. C.; Chiang, M. L.; Tsai, C. M.; Lin, J. J. Exfoliation of montmorillonite clay by mannich polyamines with multiple quaternary salts. Macromolecules, 2005, 15, 6240–6243.
    49. Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F. Wang, J. K.; Wang, Y. L. Highly Raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Adv. Mater. 2006, 18, 491–495.
    50. Liu, T. Y.; Ho, J. Y.; Wei, J. C.; Cheng, W. C.; Chen, I. H.; Shiue, J.; Wang, H. H.; Wang, J. K.; Wang, Y. L.; Lin, J. J. Label-free and culture-free microbe detection by three dimensional hot-junctions of flexible Raman-enhancing nanohybrid platelets. J. Mater. Chem. B 2014, 2, 1136–1143.
    51. Shaban, S. M.; Kang, J.; Kim, D. H. Surfactants: Recent advances and their applications. Compos. Commun. 2020, 22, 100537.
    52. Lin, J. J.; Chen, Y. M. Amphiphilic properties of poly (oxyalkylene) amine-intercalated smectite aluminosilicates. Langmuir, 2004, 20, 4261–4264.
    53. Soong, Y. C.; Li, J. W.; Chen, Y. F.; Chen, J. X.; Lee Sanchez, W. A.; Tsai, W. Y.; Chou, T. Y.; Cheng, C. C.; Chiu, C. W. Polymer-assisted dispersion of boron nitride/graphene in a thermoplastic polyurethane hybrid for cooled smart clothes. ACS Omega 2021, 6, 28779–28787.
    54. Li, J. W.; Chen, Y. S.; Chen, Y. F.; Chen, J. X.; Kuo, C. F. J.; Chen, L. Y.; Chiu, C. W. Enhanced efficiency of dye-sensitized solar cells based on polymer-assisted dispersion of platinum nanoparticles/carbon nanotubes nanohybrid films as FTO-free counter electrodes. Polymers 2021, 13, 3103.
    55. Chiu, C. W.; Huang, C. Y.; Li, J. W.; Li, C. L. Flexible hybrid electronics nanofiber electrodes with excellent stretchability and highly stable electrical conductivity for smart clothing. ACS Appl. Mater. Interfaces 2022, 14, 42441–42453.
    56. Dame, R. T.; Rashid, F. Z. M.; Grainger, D. C. Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat. Rev. Genet. 2020, 21, 227–242.
    57. Brown, S.; Santa Maria Jr, J. P.; Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 2013, 67, 313–336.
    58. Vergalli, J.; Bodrenko, I. V.; Masi, M.; Moynié, L.; Acosta-Gutierrez, S.; Naismith, J. H.; Davin-Regli, A.; Ceccarelli, M.; van den Berg, B.; Winterhalter, M.; Pagès, J. M. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat. Rev. Microbiol. 2020, 18, 164–176.
    59. Jones, R. R.; Miksch, C.; Kwon, H.; Pothoven, C.; Rusimova, K. R.; Kamp, M.; Gong, K.; Zhang, L.; Batten, T.; Smith, B.; Silhanek, A. V.; Fischer, P.; Wolverson, D.; Valev, V. K. Dense arrays of nanohelices: Raman scattering from achiral molecules reveals the near‐field enhancements at chiral metasurfaces. Adv Mater. 2023, 2209282.
    60. Chen, Y. F.; Wang, C. H.; Chang, W. R.; Li, J. W.; Hsu, M. F.; Sun, Y. S.; Liu, T. Y.; Chiu, C. W. Hydrophilic–hydrophobic nanohybrids of AuNP-immobilized two-dimensional nanomica platelets as flexible substrates for high-efficiency and high-selectivity surface-enhanced Raman scattering microbe detection. ACS Appl. Bio Mater. 2022, 5, 1073–1083.
    61. Huang, Z.; Zhang, A.; Zhang, Q.; Cui, D. Nanomaterial-based SERS sensing technology for biomedical application. J. Mater. Chem. B 2019, 7, 3755–3774.
    62. Perumal, J.; Wang, Y.; Attia, A. B. E.; Dinish, U. S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580.
    63. Lao, Z.; Zheng, Y.; Dai, Y.; Hu, Y.; Ni, J.; Ji, S.; Cai, Z.; Smith, Z. J.; Li, J.; Zhang, L.; Wu, D.; Chu, J. Nanogap plasmonic structures fabricated by switchable capillary‐force driven self‐assembly for localized sensing of anticancer medicines with microfluidic SERS. Adv. Funct. Mater. 2020, 30, 1909467.
    64. Fan, M.; Andrade, G. F.; Brolo, A. G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020, 1097, 1–29.
    65. Sarfo, D. K.; Izake, E. L.; O’Mullane, A. P.; Ayoko, G. A. Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1294–1329.
    66. Su, X.; Xie, Y.; Liu, X.; Chen, M.; Zheng, C.; Zhong, H.; Li, M. Absolute quantification of serum exosomes in patients with an SERS-Lateral flow strip biosensor for noninvasive clinical cancer diagnosis. ACS Appl. Mater. Interfaces 2023, 15, 37130–37142.
    67. Plou, J.; Valera, P. S.; Garcia, I.; de Albuquerque, C. D.; Carracedo, A.; Liz-Marzan, L. M. Prospects of surface-enhanced Raman spectroscopy for biomarker monitoring toward precision medicine. ACS Photonics 2022, 9, 333–350.
    68. Sinha, S. S.; Jones, S.; Pramanik, A.; Ray, P. C. Nanoarchitecture based SERS for biomolecular fingerprinting and label-free disease markers diagnosis. Acc. Chem. Res. 2016, 49, 2725–2735.
    69. Martín-Gracia, B.; Martín-Barreiro, A.; Cuestas-Ayllón, C.; Grazú, V.; Line, A.; Llorente, A.; de la Fuente, J. M.; Moros, M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J. Mater. Chem. B 2020, 8, 6710–6738.
    70. Daraee, H.; Eatemadi, A.; Abbasi, E.; Fekri Aval, S.; Kouhi, M.; Akbarzadeh, A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 410–422.
    71. Zhang, Y.; McKelvie, I. D.; Cattrall, R. W.; Kolev, S. D. Colorimetric detection based on localised surface plasmon resonance of gold nanoparticles: Merits, inherent shortcomings and future prospects. Talanta 2016, 152, 410–422.
    72. Princy, K. F.; Gopinath, A. Optimization of physicochemical parameters in the biofabrication of gold nanoparticles using marine macroalgae Padina tetrastromatica and its catalytic efficacy in the degradation of organic dyes. J. Nanostructure Chem. 2018, 8, 333–342.
    73. Ganapuram, B. R.; Alle, M.; Dadigala, R.; Dasari, A.; Maragoni, V.; Guttena, V. Catalytic reduction of methylene blue and Congo red dyes using green synthesized gold nanoparticles capped by salmalia malabarica gum. Int. Nano Lett. 2015, 5, 215–222.
    74. Panariello, L.; To, K. C.; Khan, Z.; Wu, G.; Gkogkos, G.; Damilos, S.; Parkin, I. V.; Gavriilidis, A. Kinetics-based design of a flow platform for highly reproducible on demand synthesis of gold nanoparticles with controlled size between 50 and 150 nm and their application in SERS and PIERS sensing. Chem. Eng. J. 2021, 423, 129069.
    75. Nehra, K.; Pandian, S. K.; Bharati, M. S. S.; Soma, V. R. Enhanced catalytic and SERS performance of shape/size controlled anisotropic gold nanostructures. New J. Chem. 2019, 43, 3835–3847.
    76. Zhu, J.; Jin, X. L. Electrochemical synthesis of gold triangular nanoplates and self-organized into rhombic nanostructures. Superlattices Microstruct. 2007, 41, 271–276.
    77. Miranda, A.; Malheiro, E.; Skiba, E.; Quaresma, P.; Carvalho, P. A.; Eaton, P.; de Castro, B.; Shelnutt, J. A.; Pereira, E. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length. Nanoscale 2010, 2, 2209–2216.
    78. Yu, S.; Hachtel, J. A.; Chisholm, M. F.; Pantelides, S. T.; Laromaine, A.; Roig, A. Magnetic gold nanotriangles by microwave-assisted polyol synthesis. Nanoscale 2015, 7, 14039–14046.
    79. Jakhmola, A.; Celentano, M.; Vecchione, R.; Manikas, A.; Battista, E.; Calcagno, V.; Netti, P. A. Self-assembly of gold nanowire networks into gold foams: production, ultrastructure and applications. Inorg. Chem. Front. 2017, 4, 1033–1041.
    80. Bi, L.; Wang, Y.; Yang, Y.; Li, Y.; Mo, S.; Zheng, Q.; Chen, L. Highly sensitive and reproducible SERS sensor for biological pH detection based on a uniform gold nanorod array platform. ACS Appl. Mater. Interfaces 2018, 10, 15381–15387.
    81. James, K. T.; O'Toole, M. G.; Patel, D. N.; Zhang, G.; Gobin, A. M.; Keynton, R. S. A high yield, controllable process for producing tunable near infrared-absorbing gold nanoplates. RSC Adv. 2015, 5, 12498–12505.
    82. Chang, C. C.; Wang, G.; Takarada, T.; Maeda, M. Iodine-mediated etching of triangular gold nanoplates for colorimetric sensing of copper ion and aptasensing of chloramphenicol. ACS Appl. Mater. Interfaces 2017, 9, 34518–34525.
    83. Persano, F.; Batasheva, S.; Fakhrullina, G.; Gigli, G.; Leporatti, S.; Fakhrullin, R. Recent advances in the design of inorganic and nano-clay particles for the treatment of brain disorders. J. Mater. Chem. B 2021, 9, 2756–2784.
    84. Tu, C.; Zhou, J.; Peng, L.; Man, S.; Ma, L. Self-assembled nano-aggregates of fluorinases demonstrate enhanced enzymatic activity, thermostability and reusability. Biomater. Sci. 2020, 8, 648–656.
    85. Chiu, C. W.; Lin, P. H. Hierarchical self-assembly of random mica nanosheet-stabilized silver nanoparticles into flower microstructures for highly sensitive SERS substrates. RSC Adv. 2015, 5, 86522–86528.
    86. DuChene, J. S.; Niu, W.; Abendroth, J. M.; Sun, Q.; Zhao, W.; Huo, F.; Wei, W. D. Halide anions as shape-directing agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 2013, 25, 1392–1399.
    87. Gao, M.; Zheng, X.; Khan, I.; Cai, H.; Lan, J.; Liu, J.; Wang, J.; Wu, J.; Huang, S.; Li, S.; Kang, J. Resonant light absorption and plasmon tunability of lateral triangular Au nanoprisms array. Physics Letters A 2019, 383, 125881.
    88. Madzharova, F.; Heiner, Z.; Gühlke, M.; Kneipp, J. Surface-enhanced hyper-Raman spectra of adenine, guanine, cytosine, thymine, and uracil. J. Phys. Chem. C 2016, 120, 15415–15423.
    89. Ma, X.; He, S.; Qiu, B.; Luo, F.; Guo, L.; Lin, Z. Noble metal nanoparticle-based multicolor immunoassays: an approach toward visual quantification of the analytes with the naked eye. ACS Sens. 2019, 4, 782–791.
    90. Ramalingam, V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv. Colloid Interface Sci. 2019, 271, 101989.
    91. Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-gold nanoparticle bioconjugates for biosensors: synthesis, characterization and selected applications. Biosens. Bioelectron. 2020, 165, 112370.
    92. Sen, A.; Poulsen, H.; Sondhauss, S.; Hodgkiss, J. M. How saliva interferes with colorimetric gold nanoparticle aptasensors: understanding and mitigating surface interactions. ACS Sens. 2023, 8, 1841–1849.
    93. Fusco, Z.; Rahmani, M.; Bo, R.; Tran‐Phu, T.; Lockrey, M.; Motta, N.; Neshev, D.; Tricoli, A. High‐temperature large‐scale self‐assembly of highly faceted monocrystalline au metasurfaces. Adv. Funct. Mater. 2019, 29, 1806387.
    94. Yockell-Lelièvre, H.; Lussier, F.; Masson, J. F. Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS. J. Phys. Chem. C 2015, 119, 28577–28585.
    95. Kim J. H.; Cha, S.; Kim, Y.; Son, J.; Park, J. E.; Oh, J. W.; Nam, J. M. Nontrivial, unconventional electrochromic behaviors of plasmonic nanocubes. Nano Lett. 2021, 21, 7512–7518.
    96. Yu, M.; Tian, Q.; He, G.; Cui, K.; Zhang, J. Surface-enhanced Raman scattering fiber probe based on silver nanocubes. Adv. Fiber Mater. 2021, 3, 349–358.
    97. Malik, P.; Sarker, D.; Kumar, D.; Schwartzkopf, M.; Srivastava, P.; Ghosh, S. Tuning LSPR of thermal spike-induced shape-engineered Au nanoparticles embedded in Si3N4 thin-film matrix for SERS applications. ACS Appl. Mater. Interfaces 2023, 15, 45426–45440.
    98. Oksenberg, E.; Shlesinger, I.; Tek, G.; Koenderink, A. F.; Garnett, E. C. Complementary surface-enhanced Raman scattering (SERS) and IR absorption spectroscopy (SEIRAS) with nanorods-on-a-mirror. Adv. Mater. 2023, 33, 2211154.
    99. Xu, Y. K.; Hwang, S.; Kim, S.; Chen, J. Y. Two orders of magnitude fluorescence enhancement of aluminum phthalocyanines by gold nanocubes: A remarkable improvement for cancer cell imaging and detection. ACS Appl. Mater. Interfaces 2014, 6, 5619–5628.
    100. Umar, A.; Kim, J.; Choi, S. M. One-pot synthesis of monodisperse single-crystalline spherical gold nanoparticles for universal seeds. Cryst. Growth Des. 2021, 21, 4133–4140.
    101. Jeon, J. W. Ledin, P. A.; Geldmeier, J. A.; Ponder Jr, J. F.; Mahmoud, M. A.; El-Sayed, M.; Reynolds, J. R.; Tsukruk, V. V. Electrically controlled plasmonic behavior of gold nanocube@ polyaniline nanostructures: Transparent plasmonic aggregates. Chem. Mater. 2016, 28, 2868–2881.
    102. Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two‐dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 2015, 27, 7261–7284.
    103. Lee, Y. C.; Chiu, C. W. Immobilization and 3D hot-junction formation of gold nanoparticles on two-dimensional silicate nanoplatelets as substrates for high-efficiency surface-enhanced Raman scattering detection. Nanomaterials 2019, 9, 324.
    104. Chiu, C. W.; Lin, P. H. Core/shell Ag@ silicate nanoplatelets and poly (vinyl alcohol) spherical nanohybrids fabricated by coaxial electrospraying as highly sensitive SERS substrates. RSC Adv. 2016, 6, 67204–67211.
    105. Yu, C.; Zhang, P.; Wang, J.; Jiang, L. Superwettability of gas bubbles and its application: from bioinspiration to advanced materials. Adv. Mater. 2017, 29, 1703053.
    106. Chen, Y. F.; Chang, W. R.; Lee, C. J.; Chiu, C. W. Triangular gold nanoplates/two-dimensional nano mica platelets with a 3D lightning-rod effect as flexible nanohybrid substrates for SERS bacterial detection. J. Mater. Chem. B 2022, 10, 9974–9983.
    107. Zhang, Z.; Wang, Y.; Mei, Z.; Wang, Y.; Li, H.; Li, S.; Xia, F. Incorporating hydrophobic moieties into self-assembled monolayers to enable electrochemical aptamer-based sensors deployed directly in a complex matrix. ACS Sens. 2022, 7, 2615–2624.
    108. Thiele, M.; Soh, J. Z. E.; Knauer, A.; Malsch, D.; Stranik, O.; Müller, R.; Csáki, A.; Henkel, T.; Köhler, J. M.; Fritzsche, W. Gold nanocubes–Direct comparison of synthesis approaches reveals the need for a microfluidic synthesis setup for a high reproducibility. Chem. Eng. J. 2016, 288, 432–440.
    109. Konig, T. A.; Ledin, P. A.; Kerszulis, J.; Mahmoud, M. A.; El-Sayed, M. A.; Reynolds, J. R.; Tsukruk, V. V. Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 2014, 8, 6182–6192.
    110. Li, J. W.; Tsai, H. A.; Lee, H. T.; Cheng, Y. H.; Chiu, C. W.; Suen, M. C. Synthesis and properties of side chain fluorinated polyurethanes and evaluation of changes in microphase separation. Prog. Org. Coat. 2020, 145, 105702.
    111. Hamadi, F.; Latrache, H. Comparison of contact angle measurement and microbial adhesion to solvents for assaying electron donor–electron acceptor (acid–base) properties of bacterial surface. Colloids Surf. B 2008, 65, 134–139.
    112. Ho, J. Y.; Liu, T. Y.; Wei, J. C.; Wang, J. K.; Wang, Y. L.; Lin, J. J. Selective SERS detecting of hydrophobic microorganisms by tricomponent nanohybrids of silver–silicate-platelet–surfactant. ACS Appl. Mater. Interfaces 2014, 6, 1541–1549.
    113. Jing, Y.; Wang, R.; Wang, Q.; Xiang, Z.; Li, Z.; Gu, H.; Wang, X. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: fundamentals and applications. Adv. Compos. Hybrid Mater. 2021, 4, 885–905.
    114. Zhou, J.; Wang, D.; Yang, H.; Wang, F. Specific detection of acetamiprid with aptamer based on flexible and adhesive SERS membrane. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 270, 120801.
    115. Wu, P. F.; Fan, X. Y.; Xi, H. Y.; Pan, N.; qian Shi, Z.; You, T. T.; Gao, Y. K.; Yin, P. G. Multifunctional self-assembled gold nanorod monolayer/Ti3C2Tx nanocomposites based on interfacial electrostatic for highly sensitive SERS detection of organic dyes and adenine. J. Alloys Compd. 2022, 920, 165978.
    116. Zhu, A.; Ali, S.; Xu, Y.; Ouyang, Q.; Chen, Q. A SERS aptasensor based on AuNPs functionalized PDMS film for selective and sensitive detection of Staphylococcus aureus. Biosens. Bioelectron. 2021, 172, 112806.
    117. Wang, X. Y.; Yang, J. Y.; Wang, Y. T.; Zhang, H. C.; Chen, M. L.; Yang, T.; Wang, J. H. M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus. Talanta 2021, 221, 121668.
    118. Juneja, S.; Bhattacharya, J. Coffee ring effect assisted improved S. aureus screening on a physically restrained gold nanoflower enriched SERS substrate. Colloids Surf. B 2019, 182, 110349.
    119. Bi, L.; Wang, X.; Cao, X.; Liu, L.; Bai, C.; Zheng, Q.; Choo, J.; Chen, L. SERS-active Au@ Ag core-shell nanorod (Au@ AgNR) tags for ultrasensitive bacteria detection and antibiotic-susceptibility testing. Talanta 2020, 220, 121397.
    120. Petronella, F.; De Biase, D.; Zaccagnini, F.; Verrina, V.; Lim, S. I.; Jeong, K. U.; Miglietta, S.; Petrozza, V.; Scognamiglio, V.; Godman, N. P.; Evans, D. R.; McConney, M.; De Sio, L. Label-free and reusable antibody-functionalized gold nanorod arrays for the rapid detection of Escherichia coli cells in a water dispersion. Environ. Sci. Nano 2022, 9, 3343–3360.

    無法下載圖示 全文公開日期 2034/02/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE