簡易檢索 / 詳目顯示

研究生: 林宗珊
Christa - Desmonda Ruslim
論文名稱: 以新穎方式合成金屬奈米結構與其表面增強拉曼光譜之應用
Novel Synthesis of Metal Nanostructures for SERS Application
指導教授: 戴龑
Yian Tai
口試委員: 李振綱
Cheng-Kang Lee
林巧韻
Chiao-Yun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 94
中文關鍵詞: 銀奈米結構金奈米結構表面增強拉曼散射Rhodamine6GMelamine
外文關鍵詞: Silver nanostructures, Gold nanostructures, SERS, R6G, Melamine
相關次數: 點閱:216下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究在不藉由任何模板以及晶種粒子之情況下,於溶液中進行氧化還原反應合成出大量單晶、具有堆疊花瓣立體結構且近似六角形之奈米結構。此種銀奈米粒子之穩定性良好,可維持此種立體結構超過一個月;此外,也致力於研究利用生物可分解且天然的一般用紙合成出非等向之金奈米結構。
    藉由UV-Visible 、SEM與TEM觀察奈米結構之形狀及尺寸; XRD進行奈米結構晶相之分析以及利用XPS進行表面基團之鑑定;並利用塗佈Rhodamine6G以及Melamine於奈米粒子之表面,進行表面增強拉曼散射效應之分析。
    此研究採用一種新穎的方式進行非等向奈米金屬結構之合成,並可由表面增強拉曼散射之分析結果可得知,因非等向之形狀所具有特殊之光學性質於未來應用上極具有潛力。


    In this study, we synthesized metal nanostructures with novel approaches. A unique flower-like silver nanostructures have been synthesized with a simple solution galvanic reaction without any templates or seeds. The nanostructures, which are single crystalline truncate-hexagonal shape with multi-layers of petals, exhibiting high yield and uniform size. These nanostructures also exhibited high stability upon the fact that the structures can be kept intact even after 1 month of storage. On the other hand, paper substrate, a biodegradable and cost efficient material was used to synthesize anisotropic gold nanostructures.
    To characterize the as-synthesized silver and gold nanostructures, analytical methods such as UV-Visible, SEM, TEM, XRD, and XPS have been carried out. Furthermore, large surface-enhanced Raman scattering (SERS) effect was also observed upon utilizing the nanostructures by using Rhodamine 6G (R6G) and melamine as probe molecules. Our study suggested novel approaches to synthesis large quantity of metal anisotropic nanostructures with unique optical properties that can be used for further applications.

    ABSTRACT i 中文摘要 ii ACKNOWLEDGEMENTS iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES x LIST OF ABBREVIATIONS xi CHAPTER 1 INRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 2 2.1 METAL NANOSTRUCTURES 2 2.2 SYNTHESIS OF METAL NANOSTRUCTURES 3 2.2.1 Conventional synthesis 5 2.2.2 Template-directed synthesis 6 2.2.3 Size and morphology-controlled synthesis 7 2.3 ROLE OF CAPPING AND REDUCING AGENTS 9 2.4 APPLICATIONS OF METAL NANOSTRUCTURES 13 2.4.1 Catalyst 14 2.4.2 Biological assay 14 2.4.3 Drug delivery 14 2.4.4 Nanosensor 16 2.5 SURFACE-ENHANCED RAMAN SPECTROSCOPY (SERS) 18 2.5.1 SERS-active substrate 19 2.5.2 SERS probe molecules 20 2.6 SELF-ASSEMBLED MONOLAYERS (SAMS) 21 2.6.1 Different types of SAMs functional groups 23 2.6.2 SAMs fabrication 24 CHAPTER 3 MATERIAL AND METHODS 25 3.1 MATERIALS 25 3.2 EQUIPMENTS AND INSTRUMENTS 25 3.3 EXPERIMENTAL PROCEDURES 26 3.3.1 Synthesis of flower-like AgNS 26 3.3.1.1 SAMs-substrate preparation 27 3.3.1.2 SAMs fabrication 28 3.3.1.3 Immobilization of AgNS on SAMs substrates 28 3.3.2 Synthesis of AuNS with paper substrate 28 3.4 ANALYTICAL PROCEDURES 29 3.4.1 UV-Vis analysis 29 3.4.2 Scanning electron microscopy analysis 30 3.4.3 Transmission electron microscopy analysis 31 3.4.4 X-ray diffraction analysis 31 3.4.5 X-ray photoelectron spectroscopy analysis 32 3.4.6 Surface-enhanced Raman spectroscopy analysis 33 CHAPTER 4 RESULTS AND DISCUSSION 34 4.1 SYNTHESIS OF FLOWER-LIKE AGNS 34 4.1.1 Characterization 34 4.1.2 Proposed mechanism 38 4.1.3 SERS application 40 4.1.4 SAMs modified-substrate 43 4.2 SYNTHESIS OF ANISOTROPIC AUNS 45 4.2.1 AuNS distribution on paper-based substrate 48 4.2.2 Shape effect factor of AuNS 54 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 67 5.1 CONCLUSIONS 67 5.2 FUTURE WORK 67 REFERENCES 68

    1. Klabunde KJ (Ed.). Nanoscale Materials in Chemistry. Canada: John Wiley & Sons, Inc.; 2001.
    2. Rotello V (Ed.). Nanoparticles: building blocks for nanotechnology. Canada: Springer Science+Business Media, Inc.; 2004.
    3. Tolaymat TM, Badawy AME, Genaidy A, Scheckel KG, Luxton TP, Suidan M: An evidence-based environmental perpective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers Science of the Total Environment 2010, 408:999-1006.
    4. Sharma J, Imae T: Recent Advances in Fabrication of Anisotropic Metallic Nanostructures. J Nanosci Nanotechnol 2009, 9:19-40.
    5. Brechignac C, Houdy P, Lahmani M (Eds.): Nanomaterials and Naochemistry. Verlag: Springer; 2007.
    6. Mulvihill MJ, Ling XY, Henzie J, Yang P: Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. JAmChemSoc 2009, 132:268-274.
    7. Haes AJ HC, McFarland AD, Schatz GC, Van Duyne RP, Zou S: Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 2005, 30:368-375.
    8. Taton TA MC, Letsinger RL: Scanometric DNA array detection with nanoparticle probes. Science 2000, 289:1757-1760.
    9. Velev OD KE: In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 1999, 15:3693-3698.
    10. AP A: The use of nanocrystals in biological detection. Nat Biotechnol 2005, 22:47-51.
    11. Haynes CL VDR: Plasmon-sampled surface-enhanced Raman excitation spectroscopy. JPhysChemB 2003, 107:7426-7433.
    12. Macklin JJ TJ, Harris TD, Brus LE: Imaging and time-resolved spectroscopy of single molecules at an interface. Science 1996, 272:255-258.
    13. Cao YC JR, Mirkin CA: Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297:1536-1540.
    14. McFarland AD VDR: Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano lett 2003, 3:7426-7433.
    15. Smythe EJ, Dickey MD, Bao J, Whitesides GM, Capasso F: Optical Antenna Arrays on a Fiber Facet for in Situ Surface-Enhanced Raman Scattering Detection. Nano lett 2009, 9:1132-1138.
    16. Zhang X, Hicks EM, Zhao J, Schatz GC, Duyne RPV: Electrochemical Tuning of Silver Nanoparticles Fabricated by Nanosphere Lithography. Nano lett 2005, 5:1503-1507.
    17. Yonzon CR, Haynes CL, Zhang X, Joseph T. Walsh J, Duyne RPV: A Glucose Biosensor Based on Surface-Enhanced Raman Scattering: Improved Partition Layer, Temporal Stability, Reversibility, and Resistance to Serum Protein Interference. Anal Chem 2004, 76:78-85.
    18. Link S, El-Sayed MA: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. JPhysChemB 1999, 103:4212-4217.
    19. Sharma J, Imae T: Recent advances in fabrication of anisotropic nanostructures. Journal of Nanoscience and Nanotechnology 2009, 9:19-40.
    20. Turkevich J, Stevenson PC, Hillier J: A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 1951, 11:55-75.
    21. Satija J, Bharadwaj R, Sai V, Mukherji S: Emerging use of nanostructure films containing capped gold nanoparticles in biosensors. Nanotechnology, Science and Applications 2010, 3:171-188.
    22. M G: Beitrgeazur optik truber medien, speziell kolloidaler metallosungen. Ann Phys 1908, 25:377-445.
    23. Draine BT, Flatau PJ: Discrete-dipole approximation for scattering calculations. J Opt Soc Am A 1994, 11:1491-1499.
    24. Futamata M, Maruyama Y, Ishikawa M: Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J Phys Chem B 2003, 107:7607-7617.
    25. Sau T, Murphy C: Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 2004, 2004:8648-8649.
    26. Liu M, Guyot SP: Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 2005, 109:22192-22200.
    27. Frens G: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 1973, 241:20-22.
    28. Balasubramanian SK, Liming Y, Lin Yue L Y, Choon Nam O, Wei YI O, Liya E Y: Characterization, purification, and stability of gold nanoparticles. Biomaterials 2010, 31:9023-9030.
    29. Li W, Guo Y, Zhang P: SERS-Active Silver Nanoparticles Prepared by a Simple and Green Method. JPhysChemC 2010, 114:6413-6417.
    30. Sun L, Song Y, Wang L, Guo C, Sun Y, Liu Z, Li Z: Ethanol-induced formation of sIlver nanoparticle aggregates for highly active SERS substrates and application in DNA detection. J Phys Chem C 2008, 112:1415-1422.
    31. Koglin E, Kip BJ, Meier RJ: Adsorption and Displacement of Melamine at the Ag/Electrolyte Interface Probed by Surface-Enhanced Raman Microprobe Spectroscopy. JPhysChem 1996, 100:5078-5089.
    32. Hong L, Li Q, Lin H, Li Y: Synthesis of flower-like silver nanoarchitectures at room temperature. Materials Research Bulletin 2009, 44:1201-1204.
    33. Silvert PY, Herrera-Urbina R, Duvauchelle N, Vijayakrishnan V, Elhsissen KT: Preparation of colloidal silver dispersions by the polyol process 1. Synthesis and characterization. JMaterChem 1996, 6:573-577.
    34. Henglein A, Giersig M: Formation of colloidal silver nanoparticles: Capping action of citrate. JPhysChemB 1999, 103:9533-9539.
    35. Van Hyning DL, Zukoski CF: Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 1998, 14:7034-7046.
    36. Sun Y, Yin Y, T.Mayers B, Herricks T, Xia Y: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 2002, 14:4736-4745.
    37. Sun Y, Xia Y: Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298:2176-2179.
    38. Wiley BJ, Sang HI, Zhi YL, McLellan J, Siekkinen A, Xia Y: Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. JPhysChemB 2006, 110:15666-15675.
    39. Jana NR, Gearheart L, Murphy CJ: Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles. Langmuir 2001, 17:6782-6786.
    40. Jeon SH, Xu P, Zhang B, H.Mack N, Tsai H, Chiang LY, Wang HL: Polymer-assisted preparation of metal nanoparticles with controlled size and morphology. JMaterChem 2010, 21:2550.
    41. Raveendran P, Fu J, Wallen SL: Completely "Green" synthesis and stabilization of metal nanoparticles. J Am Chem Soc 2003, 125:13940-13941.
    42. Xiong Y, Washio I, Chen J, Cai H, Li Z-Y, Xia Y: Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 2006, 22:8563-8570.
    43. Wiley B, Herricks T, Sun Y, Xia Y: Polyol Synthesis of Silver Nanoparticles: Use of Chloride and Oxygen to Promote the Formation of Single-Crystal, Truncated Cubes and Tetrahedrons. Nano Lett 2004, 4:1733-1739.
    44. Herricks T, Chen J, Xia Y: Polyol synthesis of platinum nanoparticles: control of morphology with sodium nitrate. Nano Lett 2004, 4:2367-2371.
    45. Washio Y, Xiong Y, Yin Y, Xia Y: Reduction by the End Groups of Poly(vinyl pyrrolidone): A New and Versatile Route to the Kinetically Controlled Synthesis of Ag Triangular Nanoplates. Adv Mater 2006, 18:1745-1749.
    46. Cobley CM, Skrabalak SE, Campbell DJ, Xia Y: Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 2009, 4:171-179.
    47. Wang N, Zou R, Chen H, Chen H, Sun Y, Wu J, Tian Q, Yang J, Chen Z, Hu J: Uniform ZnSe microspheres self-assembled from ZnSe polyhedron shaped nanocrystals. CrystEngComm 2011, 13:1518-1524.
    48. Eustis S, El-Sayed MA: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. ChemSocRev 2006, 35:209.
    49. Fromm DP, Sundaramurthy A, Kinkhabwala A, Schuck PJ, Kino GS, Moerner WE: Exploring the chemical enhancement for surface-enhanced raman scattering with Au bowtie nanoantennas. JChemPhys 2006, 124:061101.
    50. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM: Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415.
    51. Hao E, Schatz GC, Hupp JT: Synthesis and optical properties of anisotropic metal nanoparticles. JFluoresc 2004, 14:331-341.
    52. Hirsch LR, Stafford RJ, Bankson JA, Serchen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. ProcNatlAcadSciUSA 2003, 100:13549-13554.
    53. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA: Calculated absorption and scattering properties of gold nanoparticle of different size, shape, and composition: applications in biological imaging and biomedicine. JPhysChemB 2006, 110:7238-7248.
    54. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG: Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294:1901-1903.
    55. Kottmann JP, Martin OJ, Smith DR, Schultz S: Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy. Journal of Microscopy 2001, 202:60-65.
    56. Maier SA, Kik PG, Atwater HA: Observation of coupled plasmon-polarition modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. ApplPhysLett 2002, 81:1714-1716.
    57. Nehl CL, Hafner JH: Shape-dependent plasmon resonances of gold nanoparticles. JMatterChem 2008, 18:2415-2419.
    58. Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA: Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312:1027-1030.
    59. Narayanan R, Sayed MAE: Catalysis with transition metal nanoparticles in colloidal solution:nanoparticle shape dependence and stability. JPhysChemB 2005, 109:12663-12676.
    60. Ghosh P, Han G, De M, Kim CK, Rotello VM: Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews 2008, 60:1307–1315.
    61. Weishaupt KR, Gomer CJ, Dougherty TJ: Identification of singlet oxygen as cytotoxic agent in photo-inactivation of a murine tumor. Cancer Res 1976, 36:2326–2329.
    62. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. ProcNatlAcadSci(USA) 2003, 100:13549-13554.
    63. Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R, Tromberg B: Noninvasive functional optical spectroscopy of human breast tissue. ProcNatlAcadSciUSA 2001, 98:4420-4425.
    64. Liang A, Liang Y, Jiang Z, Jiang H: Resonance scattering spectral detection of catalase activity using Au@Ag nanoparticle as probe and coupling catalase catalytic reaction with fenton reaction. J Fluoresc 2009, 19:1009-1015.
    65. Gomes I, Santos NC, Oliveira LMA, Quintas A, Eaton P, Pereira E: Probing surface properties of cytochrome c at Au bionanoconjugates. J Phys Chem C 2008, 112:16340-16347.
    66. Murphy D, Redmond G, De La Torre BG, Eritja R: Hybridization and melting behaviour of peptide nucleic acid (PNA) oligonucleotide chimeras conjugated to gold nanoparticles. Helv Chim Acta 2004, 87:2727-2734.
    67. Schneider G, Decher G: From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett 2004, 4:1833-1839.
    68. Schneider GF, Decher G: From "nano-bags" to "micro-pouches". Understanding and tweaking flocculation-based processes for the preparation of new nanoparticle-composites. Nano Lett 2008, 8:3598-3604.
    69. Diegoli S, Manciulea A, Begum S, Jones I, Lead J, Preece J: Interaction between manufactured gold nanoparticles and naturally occuring organic macromolecules. Sci Total Environ 2008, 402:51-61.
    70. Liang Z, Zhang J, Wang L, Song S, Fan C, Li G: A centrifugation-based method for preparation of gold nanoparticles and its application in biodetection. Int J Mol Sci 2007, 8:526-532.
    71. Guan J, Jiang L, Zhao L, Li J, Yang W: pH-dependent response of citrate capped Au nanoparticle to Pb2+ ion. Colloids Surf A 2008, 325:194-197.
    72. Balasubramanian SK, Jittiwat J, Manikandan J, Ong CN, Yu LE, Ong WY: Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 2010, 31:2034-2042.
    73. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwa lP: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 2009, 5:106-117.
    74. Stakenborg T, Peeters S, Reekmans G, Laureyn W, Jans H, Borghs G: Increasing the stability of DNA-functionalized gold nanoparticles using mercaptoalkanes. J Nanopart Res 2008, 10:143-152.
    75. Kim JH, Lee TR: Thermo and pH-responsive hydrogel-coated gold nanoparticles. Chem Matter 2004, 16:3647-3651.
    76. He H, Xie C, Ren J: Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal Chem 2008, 80:5951-5957.
    77. Sonavane G, Tomoda K, Makino K: Biodistribution of colloidal gold nanoparticles after intravenous administration:effect of particle size. Colloids Surf B 2008, 66:274-280.
    78. Nath N, Chilkoti A: Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 2004, 76:5370-5378.
    79. Huang H, He C, Zeng Y: A novel label-free multi throughput optical biosensor based on localized surface plasmon resonance. Biosens Bioelectron 2009, 24:2255-2259.
    80. Marinakos S, Chen S, Chilkoti A: Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem 2007, 79:5278-5283.
    81. Nath N, Chilkoti A: A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 2002, 74:504-509.
    82. Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E: Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 2005, 77:6976-6984.
    83. Lee JY, Lee C, Lin E, Wei P: Single live cell refractometer using nanoparticle coated fiber tip. Appl Phys Lett 2008, 93:173110.
    84. Xu G, Li H, Ma X, Jia X, Dong J, Qian W: A cuttlebone-derived matrix substrate for hydrogen peroxide/glucose detection. Biosens Bioelectron 2009, 25:362-367.
    85. Dmitriev A, Pakizeh T, Kall M, Sutherland D: Gold–silica–gold nanosandwiches: tunable bimodal plasmonic resonators. Small 2007, 3:294-299.
    86. Gonzalez DJ, Garcia MA, Garcia MJ: Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small 2008, 4:202--205.
    87. Wang Y, Shen Y, Xie A, Li S, Wang X, Cai Y: A simple method to construct bifunctional Fe3O4/Au hybrid nanostructures and tune their optical properties in the near-infrared region. J Phys Chem C 2010, 114:4297-4301.
    88. McCreery RL: Raman Spectroscopy for Chemical Analysis. Canada: A John Wiley & Sons, Inc.; 2000.
    89. He L, Liu Y, Lin M, Awika J, Ledoux DR, Li H, Mustapha A: A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates. Sens & Instrumen Food Qual 2008, 2:66-71.
    90. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997, 78:1667-1670.
    91. Chen L, Luo L, Chen Z, Zhang M, Zapien JA, Lee CS, Lee ST: ZnO/Au composite nanoarrays as substrates for surface-enhanced Raman scattering detection. JPhysChemC 2010, 114:93-100.
    92. Guzel R, Ustundag Z, Eski H, Keskin S, Taner B, Durgun ZG, Turan AAI, Solak AO: Effect of Au and Au@Ag core-shell nanoparticles on the SERS of bridging organic molecules. Journal of Colloid and Interface Science 2010, 351:35-42
    93. Ko H, Singamaneni S, Tsukruk VV: Nanostructured Surfaces and Assemblies as SERS Media. Small 2008, 4:1576-1599.
    94. Lee SJ, Morrill AR, Moskovits M: Hot Spots in Silver Nanowire Bundles for Surface-Enhanced Raman Spectroscopy. JAmChemSoc 2006, 128:2200-2201.
    95. Tao A, Kim F, Hess C, Goldberger J, He R, Sun Y, Xia Y, Yang P: Langmuir−Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett 2003, 3:1229-1233.
    96. Xiaobing Du HC, Yaowen Huang, Yiping Zhao: Qualitative and Quantitative Determination of Melamine by Surface-Enhanced Raman Spectroscopy Using Silver Nanorod Array Substrates. Applied Spectroscopy 2010, 64:781-785.
    97. Michaels AM, Jiang J, Brus L: Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. JPhysChemB 2000, 104:11965-11971.
    98. Xu H, Bjerneld E, Kall M, Borjesson L: Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 1999, 83:4357-4360.
    99. Ahonen P, Laaksonen T, Nykanen A, Ruokolainen J, Kontturi K: Formation of stable Ag-nanoparticle aggregates induced by dithiol cross-linking. JPhysChemB 2006, 110:12954-12958.
    100. Hu J, Zhao B, Xu W, Fan Y, Li B, Ozaki Y: Simple method for preparing controllably aggregated silver particle films used as surface-enhanced Raman scattering active substrates. Langmuir 2002, 18:6839-6844.
    101. Braun G, Pavel I, Morrill AR, Seferos DS, Bazan GC, Reich NO, Moskovits M: Chemically patterned microspheres for controlled nanoparticle assembly in the construction of SERS hot spots. J Am Chem Soc 2007, 129:7760-7761.
    102. Schwartzberg AM, Grant CD, Wolcott A, Talley CE, Huser TR, Bogomolni R, Zhang JZ: Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. JPhysChemB 2004, 108:19191-19197.
    103. Xu X, Stevens M, Cortie MB: In situ precipitation of gold nanoparticles onto glass for potential architectural applications. Chem Matter 2004, 16:2259-2266.
    104. Hutter E, Cha S, Liu JF, Park J, Yi J, Fendler JH: Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging. JPhysChemB 2000, 105:8-12.
    105. Wang Y, Yang Q, Shan G, Wang C, Du J, Wang S: Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater Lett 2005, 59:3046-3049.
    106. Liang H, Li Z, Wang W, Wu Y, Xu H: Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering. Advanced Materials 2009, 21:4614-4618.
    107. Lee CH, Tian L, Singamaneni S: Paper-based SERS swab for rapid trace detection on real-world surfaces. Applied Materials&Interfaces 2010, 2:3429-3435.
    108. Ngo YH, Li D, Simon GP, Garnier G: Paper surfaces functionalized by nanoparticles. Advances in Colloid and Interface Science 2011, 163:23-28.
    109. Lyth SM, Silva SRP: Field emission from multiwall carbon nanotubes on paper substrates. Applied Physics Letters 2007, 90:173124-173123.
    110. Ghule K, Ghule AV, Chen B-J, Ling Y-C: Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry 2006, 8:1034-1041.
    111. McLellan JM, Siekkinen A, Chen J, Younan X: Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chemical Physics Letters 2006, 427:122-126.
    112. Sharma J, Tai Y, Imae T: Synthesis of confeito-like gold nanostructures by a solution phase galvanic reaction. The Journal of Physical Chemistry C 2008, 112:17033-17037.
    113. Liu B, Lin M, Li H: Potential of SERS for rapid detection of melamine and cyanuric acid extracted from milk. Sens & Instrumen Food Qual 2010, 4:13-19.
    114. Ballav N, Weidner T, Rcsler K, Lang H, Zharnikov M: A new approach for the fabrication of strongly heterogeneous mixed self-assembled monolayers. ChemPhysChem 2007, 8:819-822.
    115. Ballav N, Shaporenko A, Krakert S, Terfort A, Zharnikov M: Tuning the exchange reaction between a self-assembled monolayer and potential substituents by electron Irradiation. JPhysChemC 2007, 111:7772-7782.
    116. Tao B, Hua CX: Preparation and characterization of lanthanum-based thin films on sulfonated self-assembled monolayer of 3-mercaptopropyl trimethoxysilane. Thin Solid Films 2006, 515:2262-2267.
    117. Chaki NK, Aslam M, Sharma J, Vijayamohanan K: Applications of self-assembled monolayers in materials chemistry. Proc Indian Acad Sci (Chem Sci) 2001, 113:659-670.
    118. Herzer N, Haensch C, Hoeppener S, Schubert US: Orthogonal Functionalization of Silicon Substrates Using Self-Assembled Monolayers. Langmuir 2010, 26:8358-8365.
    119. Sharma J, Chang H-c, Tai Y: Discriminate Crystallinities of Tin Doped Indium Oxide Films on Self-Assembled Monolayers Modified Glass Substrates. Langmuir 2010, 26:8251-8255.
    120. Ulman A: Formation and structure of self-assembled monolayers. ChemRev 1996, 96:1533-1554.
    121. Adams DM, Brus L, Chidsey CED, Creager S, Creutz C, Kagan CR, Kamat PV, Lieberman M, Lindsay S, Marcus RA, et al: Charge transfer on the nanoscale: current status. JPhysChemB 2003, 107:6668-6697.
    122. Aizenberg J, Black AJ, Whitesides GM: Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver. Journal of the American Chemical Society 1999, 121:4500-4509.
    123. Jeon SH, Xu P, Zhang B, H.Mack N, Tsai H, Y.Chiang L, Wang H-L: Polymer-assisted preparation of metal nanoparticles with controlled size and morphology. Journal of Materials Chemistry 2011, 21:2550.
    124. Michaels AM, Nirmal M, Brus LE: Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals. JAmChemSoc 1999, 121:9932-9939.
    125. Du X, Chu H, Huang Y, Zhao Y: Qualitative and Quantitative Determination of Melamine by Surface-Enhanced Raman Spectroscopy Using Silver Nanorod Array Substrates. Applied Spectroscopy 2010, 64:781-785.
    126. Zhang XF, Zou MQ, Qi XH, Liu F, Zhu XH, Zhao BH: Detection of melamine in liquid milk using surface-enhanced Raman scattering spectroscopy. JRaman Spectrosc 2010, 41:1365-1370.
    127. Crawford RL: Lignin biodegradation and transformation. New York: John Wiley and Sons; 1981.
    128. Updegraff D: Semimicro determination of cellulose in biological materials. Analytical Biochemistry 1969, 32: 420–424.
    129. Cha S-H, Kim K-H, Lee W-K, Lee J-C: Preparation of gold microparticles using halide ions in bulk block copolymer phases via photoreduction. Journal of Solid State Chemistry 2009, 182:1575-1580.
    130. Kahraman M, Tokman N, Culha M: Silver Nanoparticle Thin Films with Nanocavities for Surface-Enhanced Raman Scattering. ChemPhysChem 2008, 9:902-910.
    131. Fang J, Du S, Lebedkin S, Li Z, Kruk R, Kappes M, Hahn H: Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy. Nano Lett 2010, 10:5006-5013.
    132. Bell SEJ, Sirimuthu NMS: Quantitative surface-enhanced Raman spectroscopy. Chemical Society Reviews 2008, 37:1012-1024.
    133. Mrozek MF, Zhang D, Ben-Amotz D: Oligosaccharide identification and mixture quantification using Raman spectroscopy and chemometric analysis. Carbohydrate Research 2004, 339:141-145.
    134. Rai A, Singh A, Ahmad A, Sastry M: Role of Halide Ions and Temperature on the Morphology of Biologically Synthesized Gold Nanotriangles. Langmuir 2005, 22:736-741.
    135. Wang L, Wei G, Guo C, Sun L, Sun Y, Song Y, Yang T, Li Z: Photochemical synthesis and self-assembly of gold nanoparticles. Colloids and Surfaces A: PhysicochemEngAspects 2008, 312:148-153.
    136. Wang F, Liu Y, Wan X, Zhou J, Chen Y: Synthesis and properties of copolymers based on 5,6-dinitrobenzothiadiazole with low band gap and broad absorption spectra. SCIENCE CHINA Chemistry, 54:617-624.
    137. Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ: Digestive-Ripening Agents for Gold Nanoparticles:a€‰ Alternatives to Thiols. Chemistry of Materials 2003, 15:935-942.
    138. Niu Z, Fang Y: Surface-enhanced Raman scattering of single-walled carbon nanotubes on silver-coated and gold-coated filter paper. Journal of Colloid and Interface Science 2006, 303:224-228.
    139. Dorris GM, Gray DG: The surface analysis of paper and wood fibers by ESCA (electron spectroscopy for chemical analysis) I. Application to cellulose and lignin. Cellulose Chemistry and Technology 1978, 12:9-23.
    140. Sapieha S, Verreault M, E. K-SJ, Sacher E, Wertheimer MR: X-ray photoelectron study of the plasma fluorination of lignocellulose. Applied Surface Science 1990, 44:165-169.
    141. Lutzenkirchen-Hecht D, Rohrmann K, Stocker T, Thiel W: XPS investigations of ink-jet printed paper. Surface and Interface Analysis 2007, 39:845-851.

    QR CODE