簡易檢索 / 詳目顯示

研究生: 賴承賦
Cheng-Fu Lai
論文名稱: 分析奈米金粒子之細胞攝入生物相容性與骨傳導性以應用於表面增強拉曼散射
Analysis of Cellular Uptake Biocompatibility and Osteoconduction of Gold Nanoparticles for the Application of SERS
指導教授: 何明樺
Ming-Hua Ho
口試委員: 高震宇
Chen-Yu Kao
曾婷芝
Tina T.-C. Tseng
陳維良
Wei-Liang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 142
中文關鍵詞: 奈米金骨母細胞骨傳導性表面增強拉曼散射
外文關鍵詞: gold nanoparticle, osteoblast, osteoconduction, surface-enhanced Raman scattering
相關次數: 點閱:716下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用水果萃取液合成奈米金粒子(gold nanoparticles),此一新式製程中不需使用有機溶劑,可降低因溶劑殘留而可能產生的細胞毒性。由穿透式電子顯微鏡結果顯示,在不同的反應條件下可以分別合成球型與三角形兩種型態的奈米金粒子,由動態光散射粒徑分析儀的檢測結果指出,球型與三角形奈米金粒子在液相中之平均粒徑分別為46±0.5 nm及66±1.4 nm。
    體外細胞實驗中,我們觀察骨母細胞(7F2)對奈米金粒子的攝入情形,TEM影像指出骨母細胞在24小時內便可將奈米金粒子攝入,且隨著時間逐漸往細胞核移動。整體而言,球型奈米金粒子進到細胞所需的時間較短,粒子被細胞排出的速度也比較快,三角形奈米金粒子進到細胞核裡的速率較慢,且粒子在細胞裡的滯留時間較久。
    細胞活性的實驗結果指出奈米金粒子在初期並不會顯著地影響細胞活性,但粒子在細胞內滯留超過七天後,細胞活性便開始明顯地被抑制了,與細胞攝入的結果相較,可發現三角形奈米金粒子在細胞裡的滯留時間較久,而使得細胞活性受到抑制。此外,奈米金粒子一旦進入到細胞核裡,便會抑制鹼性磷酸酶的分泌,代表骨細胞的初期分化受到了奈米金粒子的抑制,且與活性變化的趨勢相仿,抑制效應隨著奈米金於細胞核中的滯留時間與濃度增加而越明顯。然而,奈米金粒子對於後期骨細胞的礦化並不會產生影響。
    表面增強拉曼光譜監測活細胞之實驗結果顯示,奈米金粒子對細胞的拉曼訊號或有增強的效應,但相對地,細胞的螢光訊號也隨著大幅增強而遮蔽了有意義的拉曼訊號。


    In this research, gold nanoparticles (GNPs) with different morphologies were synthesized by using apple extract without any organic solvents. The transmission electron microscopy (TEM) results indicated there were two different shapes of GNPs, spherical and triangle ones. The average sizes of GNPs determined by dynamic light scattering (DLS) were respectively 46±0.5 nm and 66±1.4 nm for spherical and triangle GNPs.
    The cellular uptake of GNPs in osteoblast (7F2) was observed by TEM. The result indicated that the GNPs were internalized by cell within 24 hours, and GNPs were gradually approached the nucleus with longer incubation time. The uptake of spherical GNPs took place in shorter period, but spherical GNPs were appeared to exocytose at a faster rate. Triangle GNPs were transported into the nucleus at a slower rate, and the retention time of triangle GNPs in cells was longer than that of spherical GNPs.
    In the culture from 1 to 5 day, the uptake of GNPs, no matter spherical or triangle ones, did not affect the viability of osteoblastic cells. However, triangle GNPs suppressed cell activity at the 7th day in the culture, which was possibly because of the long retention time of triangle GNPs in cells. The alkaline phosphatase (ALP) activity of osteoblasts decreased when GNPs appeared in the nucleus. Besides, the inhibition in early osteogenic differentiation was more significant with longer retention time of GNPs in nucleus and higher concentration of GNPs. On the contrary, the biomineralization, the most important marker in the late stage of osteogenic differentiation, was not affected by GNPs.
    The results from surface enhance Raman scattering (SERS) show that Raman signals of living cells would be enhanced by internalized GNPs, but the cellular fluorescence was also enhanced dramatically. Therefore, the characterization of osteogenic differentiation by SERS was not successful in this research, which would be enhanced by applying different wavelength in SERS analysis. On the other hand, the expression and decay of ALP was revealed from Raman spectra, revealing the potential of SERS in monitoring osteogenic differentiation.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XII 表目錄 XIX 方程式目錄 XX 專有名詞及縮寫 XXI 第一章 緒論 1 第二章 文獻回顧 3 2.1 奈米科技 3 2.1.1 奈米科技的簡介 3 2.1.2 奈米材料的基本定義 3 2.2 奈米金粒子的特性、製備與應用 5 2.2.1 奈米金粒子的特性 5 2.2.2 奈米金粒子的製備 6 2.3 奈米金粒子與細胞之作用 8 2.3.1 奈米金粒子與細胞間的作用 9 2.3.2 奈米金表面改質對細胞毒性的影響 11 2.3.3 奈米金尺寸對細胞毒性的影響 12 2.3.4 奈米金形狀對細胞毒性的影響 13 2.3.5 奈米金電性對細胞毒性的影響 17 2.3.6 奈米金對細胞分化的影響 19 2.3.7 奈米金在生物醫學方面的應用 20 2.4 骨母細胞 22 2.4.1 骨母細胞的來源 22 2.4.2 骨母細胞分化標記 24 2.5 拉曼散射 25 2.5.1 拉曼散射之原理 25 2.5.2 拉曼散射之應用 30 2.5.3 表面增強拉曼散射之原理 31 2.5.4 表面增強拉曼散射之應用 32 2.6 實驗設計與目的 33 第三章 實驗材料與方法 34 3.1 實驗藥品 34 3.2 實驗儀器 36 3.3 實驗奈米金粒子製備 37 3.3.1 蘋果萃取液之準備 38 3.3.2 奈米金粒子合成 38 3.3.3 奈米金粒子物性分析 38 3.3.4 奈米金粒子之殺菌程序 39 3.4 體外細胞實驗 39 3.4.1 實驗操作 39 3.4.2 細胞來源 39 3.4.3 細胞培養 40 3.4.4 細胞冷凍保存 41 3.4.5 細胞解凍及培養 42 3.4.6 細胞計數 42 3.4.7 粒線體活性測試 44 3.4.8 鹼性磷酸酶測試 46 3.4.9 蛋白質濃度測定 48 3.4.10 Von Kossa染色 49 3.4.11 穿透式電子顯微鏡樣品製備 50 3.4.12 拉曼光譜檢測 52 第四章 結果與討論 54 4.1 奈米金粒子的物性分析 54 4.1.1 奈米金粒子型態分析及前處理 54 4.1.2 紫外光/可見光光譜分析(UV/Vis spectrum) 59 4.2 奈米金粒子被細胞攝入的情形 61 4.3 奈米金粒子對細胞行為的影響 75 4.3.1 細胞粒線體活性測試 75 4.3.2 細胞總蛋白質 78 4.3.3 鹼性磷酸酶表現 81 4.3.4 細胞礦化(Von Kossa stain) 87 4.3.5 表面增強拉曼散射監測活細胞 92 第五章 結論 100 參考文獻 102

    1. 賴炤銘、李錫隆(2003),奈米材料的特殊效應與應用,Chemistry (The Chinese Chem. Soc., Taipei),61(4),585-597。
    2. Daniel, M.C. and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical reviews, 2004. 104(1): p. 293-346.
    3. Alivisatos, P., The use of nanocrystals in biological detection. Nature biotechnology, 2004. 22(1): p. 47-52.
    4. Brewer, S.H., W.R. Glomm, M.C. Johnson, M.K. Knag, and S. Franzen, Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir, 2005. 21(20): p. 9303-9307.
    5. Lacerda, S.H.D.P., J.J. Park, C. Meuse, D. Pristinski, M.L. Becker, A. Karim, and J.F. Douglas, Interaction of gold nanoparticles with common human blood proteins. ACS nano, 2009. 4(1): p. 365-379.
    6. Aubin-Tam, M.E. and K. Hamad-Schifferli, Structure and function of nanoparticle–protein conjugates. Biomedical Materials, 2008. 3(3): p. 034001.
    7. Maxwell, D.J., J.R. Taylor, and S. Nie, Self-assembled nanoparticle probes for recognition and detection of biomolecules. Journal of the American Chemical Society, 2002. 124(32): p. 9606-9612.
    8. Hulteen, J.C. and R.P. Van Duyne, Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. Journal of Vacuum Science & Technology A, 1995. 13(3): p. 1553-1558.
    9. CooperaStevenson, P., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 1951. 11: p. 55-75.
    10. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature, 1973. 241(105): p. 20-22.
    11. Jana, N.R., L. Gearheart, and C.J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials, 2001. 13(18): p. 1389.
    12. Jana, N.R., L. Gearheart, and C.J. Murphy, Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 2001. 17(22): p. 6782-6786.
    13. Aslam, M., L. Fu, M. Su, K. Vijayamohanan, and V.P. Dravid, Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. Journal of Materials Chemistry, 2004. 14(12): p. 1795-1797.
    14. Malikova, N., I. Pastoriza-Santos, M. Schierhorn, N.A. Kotov, and L.M. Liz-Marzan, Layer-by-layer assembled mixed spherical and planar gold nanoparticles: control of interparticle interactions. Langmuir, 2002. 18(9): p. 3694-3697.
    15. Huang, H. and X. Yang, Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate research, 2004. 339(15): p. 2627-2631.
    16. Sylvestre, J.P., A.V. Kabashin, E. Sacher, M. Meunier, and J.H. Luong, Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. Journal of the American Chemical Society, 2004. 126(23): p. 7176-7177.
    17. Sharma, J., Y. Tai, and T. Imae, Biomodulation Approach for Gold Nanoparticles: Synthesis of Anisotropic to Luminescent Particles. Chemistry – An Asian Journal, 2010. 5(1): p. 70-73.
    18. Sokolov, K., D. Nida, M. Descour, A. Lacy, M. Levy, B. Hall, S. Dharmawardhane, A. Ellington, B. Korgel, and R. Richards‐Kortum, Molecular optical imaging of therapeutic targets of cancer. Advances in cancer research, 2006. 96: p. 299-344.
    19. Paciotti, G.F., L. Myer, D. Weinreich, D. Goia, N. Pavel, R.E. McLaughlin, and L. Tamarkin, Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug delivery, 2004. 11(3): p. 169-183.
    20. Chen, J., D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.Y. Li, H. Zhang, Y. Xia, and X. Li, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano letters, 2007. 7(5): p. 1318-1322.
    21. Nel, A.E., L. Madler, D. Velegol, T. Xia, E.M. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson, Understanding biophysicochemical interactions at the nano–bio interface. Nature materials, 2009. 8(7): p. 543-557.
    22. Pastan, I. and M.C. Willingham, The pathway of endocytosis, in Endocytosis. 1985, Springer. p. 1-44.
    23. Palade, G.E., Intracellular aspects of the process of protein secretion. Science, 1975. 189(4206): p. 867.
    24. Silverstein, S.C., R.M. Steinman, and Z.A. Cohn, Endocytosis. Annual review of biochemistry, 1977. 46(1): p. 669-722.
    25. Yen, H.J., S.h. Hsu, and C.L. Tsai, Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small, 2009. 5(13): p. 1553-1561.
    26. Chithrani, B.D. and W.C.W. Chan, Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Letters, 2007. 7(6): p. 1542-1550.
    27. Marsh, M. and H. McMahon, The structural era of endocytosis. Science, 1999. 285(5425): p. 215-220.
    28. Mukherjee, S., R.N. Ghosh, and F.R. Maxfield, Endocytosis. Physiological reviews, 1997. 77(3): p. 759-803.
    29. Liu, Y., D.C. Wu, W.D. Zhang, X. Jiang, C.B. He, T.S. Chung, S.H. Goh, and K.W. Leong, Polyethylenimine‐Grafted Multiwalled Carbon Nanotubes for Secure Noncovalent Immobilization and Efficient Delivery of DNA. Angewandte Chemie, 2005. 117(30): p. 4860-4863.
    30. Kam, N.W.S., Z. Liu, and H. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angewandte Chemie, 2006. 118(4): p. 591-595.
    31. Tkachenko, A.G., H. Xie, D. Coleman, W. Glomm, J. Ryan, M.F. Anderson, S. Franzen, and D.L. Feldheim, Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. Journal of the American Chemical Society, 2003. 125(16): p. 4700-4701.
    32. Xie, H., A.G. Tkachenko, W.R. Glomm, J.A. Ryan, M.K. Brennaman, J.M. Papanikolas, S. Franzen, and D.L. Feldheim, Critical flocculation concentrations, binding isotherms, and ligand exchange properties of peptide-modified gold nanoparticles studied by UV-visible, fluorescence, and time-correlated single photon counting spectroscopies. Analytical chemistry, 2003. 75(21): p. 5797-5805.
    33. Feldherr, C.M. and D. Akin, Variations in signal-mediated nuclear transport during the cell cycle in BALB/c 3T3 cells. Experimental cell research, 1994. 215(1): p. 206-210.
    34. Fischer, N.O., C.M. McIntosh, J.M. Simard, and V.M. Rotello, Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proceedings of the National Academy of Sciences, 2002. 99(8): p. 5018-5023.
    35. Weizmann, Y., F. Patolsky, and I. Willner, Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst, 2001. 126(9): p. 1502-1504.
    36. Park, S.J., T.A. Taton, and C.A. Mirkin, Array-based electrical detection of DNA with nanoparticle probes. Science, 2002. 295(5559): p. 1503-1506.
    37. Gole, A., C. Dash, C. Soman, S. Sainkar, M. Rao, and M. Sastry, On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjugate chemistry, 2001. 12(5): p. 684-690.
    38. Connor, E.E., J. Mwamuka, A. Gole, C.J. Murphy, and M.D. Wyatt, Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small, 2005. 1(3): p. 325-327.
    39. Chithrani, B.D., A.A. Ghazani, and W.C.W. Chan, Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters, 2006. 6(4): p. 662-668.
    40. Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen‐Dechent, Size‐Dependent Cytotoxicity of Gold Nanoparticles. Small, 2007. 3(11): p. 1941-1949.
    41. Cui, W., J. Li, Y. Zhang, H. Rong, W. Lu, and L. Jiang, Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine: Nanotechnology, Biology and Medicine, 2012. 8(1): p. 46-53.
    42. Khlebtsov, N.G. and L.A. Dykman, Optical properties and biomedical applications of plasmonic nanoparticles. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010. 111(1): p. 1-35.
    43. Lewinski, N., V. Colvin, and R. Drezek, Cytotoxicity of nanoparticles. Small, 2008. 4(1): p. 26-49.
    44. Thomas, M. and A.M. Klibanov, Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 2003. 100(16): p. 9138-9143.
    45. Goodman, C.M., C.D. McCusker, T. Yilmaz, and V.M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate chemistry, 2004. 15(4): p. 897-900.
    46. Tkachenko, A.G., H. Xie, Y. Liu, D. Coleman, J. Ryan, W.R. Glomm, M.K. Shipton, S. Franzen, and D.L. Feldheim, Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate chemistry, 2004. 15(3): p. 482-490.
    47. Fu, W., D. Shenoy, J. Li, C. Crasto, G. Jones, C. Dimarzio, S. Sridhar, and M. Amiji. Biomedical applications of gold nanoparticles functionalized using hetero-bifunctional poly (ethylene glycol) spacer. in Materials Research Society Symposium Proceedings. 2005. Cambridge Univ Press.
    48. Shenoy, D., W. Fu, J. Li, C. Crasto, G. Jones, C. DiMarzio, S. Sridhar, and M. Amiji, Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery. International journal of nanomedicine, 2006. 1(1): p. 51.
    49. Shukla, R., V. Bansal, M. Chaudhary, A. Basu, R.R. Bhonde, and M. Sastry, Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 2005. 21(23): p. 10644-10654.
    50. Pernodet, N., X. Fang, Y. Sun, A. Bakhtina, A. Ramakrishnan, J. Sokolov, A. Ulman, and M. Rafailovich, Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small, 2006. 2(6): p. 766-773.
    51. Murphy, C.J., A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, and S.C. Baxter, Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of Chemical Research, 2008. 41(12): p. 1721-1730.
    52. Mu, Q., D.L. Broughton, and B. Yan, Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano letters, 2009. 9(12): p. 4370-4375.
    53. Aubin-Tam, M.E. and K. Hamad-Schifferli, Gold nanoparticle-cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir, 2005. 21(26): p. 12080-12084.
    54. Voet, D. and J. Voet, Biochemistry. 2nd, 1995, New York: John Wiley & Sons, Inc.
    55. Lin, J., H. Zhang, Z. Chen, and Y. Zheng, Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. Acs Nano, 2010. 4(9): p. 5421-5429.
    56. Li, W.J., R. Tuli, X. Huang, P. Laquerriere, and R.S. Tuan, Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials, 2005. 26(25): p. 5158-5166.
    57. Xin, X., M. Hussain, and J.J. Mao, Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials, 2007. 28(2): p. 316-325.
    58. Prabhakaran, M.P., J.R. Venugopal, and S. Ramakrishna, Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials, 2009. 30(28): p. 4996-5003.
    59. Liu, D., J. Zhang, C. Yi, and M. Yang, The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chinese Science Bulletin, 2010. 55(11): p. 1013-1019.
    60. Yi, C., D. Liu, C.C. Fong, J. Zhang, and M. Yang, Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. Acs Nano, 2010. 4(11): p. 6439-6448.
    61. Kim, J., S. Park, J.E. Lee, S.M. Jin, J.H. Lee, I.S. Lee, I. Yang, J.S. Kim, S.K. Kim, and M.H. Cho, Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angewandte Chemie, 2006. 118(46): p. 7918-7922.
    62. Pan, D., G.M. Lanza, S.A. Wickline, and S.D. Caruthers, Nanomedicine: perspective and promises with ligand-directed molecular imaging. European journal of radiology, 2009. 70(2): p. 274-285.
    63. Hainfeld, J.F. and R.D. Powell, New frontiers in gold labeling. Journal of Histochemistry & Cytochemistry, 2000. 48(4): p. 471-480.
    64. Sau, T.K. and D.V. Goia, Biomedical Applications of Gold Nanoparticles, in Fine Particles in Medicine and Pharmacy. 2012, Springer. p. 101-145.
    65. Chen, P.C., S.C. Mwakwari, and A.K. Oyelere, Gold nanoparticles: from nanomedicine to nanosensing. Nanotechnology, science and applications, 2008. 1: p. 45.
    66. SUMBAYEV, V.V., I.M. YASINSKA, and B.F. GIBBS, Biomedical Applications of Gold Nanoparticles.
    67. Raisz, L.G., Physiology and pathophysiology of bone remodeling. Clinical chemistry, 1999. 45(8): p. 1353-1358.
    68. Caplan, A.I. and S.P. Bruder, Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in molecular medicine, 2001. 7(6): p. 259-264.
    69. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, Transcriptional control of osteoblast growth and differentiation. Physiological reviews, 1996. 76(2): p. 593-629.
    70. 楊志明(2002)。組織工程。台北:九州圖書。
    71. Lowe, J.S. and A. Stevens(2006)。人體組織學(尹相姝,譯)。台北:藝軒。 (原著第三版出版於2005年)
    72. McCreery, R.L., Raman spectroscopy for chemical analysis. Vol. 225. 2005: John Wiley & Sons.
    73. Stewart, S., D. Shea, C.P. Tarnowski, M.D. Morris, D. Wang, R. Franceschi, D.L. Lin, and E. Keller, Trends in early mineralization of murine calvarial osteoblastic cultures: a Raman microscopic study. Journal of Raman Spectroscopy, 2002. 33(7): p. 536-543.
    74. Fleischman, M., P. Hendra, and A. McQuillan, Surface-enhanced Raman scattering from silver particles on polymer-replica substrates. Chem Phys Lett, 1974. 26: p. 123.
    75. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 84(1): p. 1-20.
    76. Moskovits, M., Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. The Journal of Chemical Physics, 2008. 69(9): p. 4159-4161.
    77. Koglin, E., J. Sequaris, and P. Valenta, Surface Raman spectra of nucleic acid components adsorbed at a silver electrode. Journal of Molecular Structure, 1980. 60: p. 421-425.
    78. Cotton, T.M., S.G. Schultz, and R.P. Van Duyne, Surface-enhanced resonance Raman scattering from water-soluble porphyrins adsorbed on a silver electrode. Journal of the American Chemical Society, 1982. 104(24): p. 6528-6532.
    79. Holt, R.E. and T.M. Cotton, Free flavin interference in surface enhanced resonance Raman spectroscopy of glucose oxidase. Journal of the American Chemical Society, 1987. 109(6): p. 1841-1845.
    80. Kneipp, K., Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld, Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering. Physical review letters, 1996. 76(14): p. 2444.
    81. Kneipp, K., H. Kneipp, G. Deinum, I. Itzkan, R.R. Dasari, and M.S. Feld, Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering. Applied spectroscopy, 1998. 52(2): p. 175-178.
    82. Westerink, B., G. Damsma, H. Rollema, J. De Vries, and A. Horn, Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life sciences, 1987. 41(15): p. 1763-1776.
    83. Schulze, H.G., M.W. Blades, A.V. Bree, B.B. Gorzalka, L.S. Greek, and R.F. Turner, Characteristics of backpropagation neural networks employed in the identification of neurotransmitter Raman spectra. Applied spectroscopy, 1994. 48(1): p. 50-57.
    84. Kneipp, K., A.S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K.E. Shafer-Peltier, J.T. Motz, R.R. Dasari, and M.S. Feld, Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Applied Spectroscopy, 2002. 56(2): p. 150-154.
    85. Chen, H.M., R.S. Liu, and D.P. Tsai, A versatile route to the controlled synthesis of gold nanostructures. Crystal Growth and Design, 2009. 9(5): p. 2079-2087.
    86. 蘇淵明(2010)。探討奈米金粒子對類骨細胞行為的影響。國立台灣科技大學化學工程系碩士論文,已出版,台北。
    87. Link, S. and M.A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B, 1999. 103(21): p. 4212-4217.
    88. Jain, P.K., K.S. Lee, I.H. El-Sayed, and M.A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B, 2006. 110(14): p. 7238-7248.
    89. Norman, T.J., C.D. Grant, D. Magana, J.Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, Near infrared optical absorption of gold nanoparticle aggregates. The Journal of Physical Chemistry B, 2002. 106(28): p. 7005-7012.
    90. Liz-Marzan, L.M., Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir, 2006. 22(1): p. 32-41.
    91. Jeong, G.H., Y.W. Lee, M. Kim, and S.W. Han, High-yield synthesis of multi-branched gold nanoparticles and their surface-enhanced Raman scattering properties. Journal of colloid and interface science, 2009. 329(1): p. 97-102.
    92. Taraska, J.W. and W. Almers, Bilayers merge even when exocytosis is transient. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(23): p. 8780-8785.
    93. Mustafa, T., F. Watanabe, W. Monroe, M. Mahmood, Y. Xu, L.M. Saeed, A. Karmakar, D. Casciano, S. All, and A.S. Biris, Impact of gold nanoparticle concentration on their cellular uptake by MC3T3-E1 mouse osteoblastic cells as analyzed by transmission electron microscopy. J Nanomedic Nanotechnol, 2011. 2(118): p. 2.
    94. Niidome, T., M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, PEG-modified gold nanorods with a stealth character for in vivo applications. Journal of Controlled Release, 2006. 114(3): p. 343-347.
    95. Chen, C.S., M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Geometric control of cell life and death. Science, 1997. 276(5317): p. 1425-1428.
    96. Adams, J.C. and F.M. Watt, Regulation of development and differentiation by the extracellular matrix. DEVELOPMENT-CAMBRIDGE-, 1993. 117: p. 1183-1183.
    97. Richter, L., V. Charwat, C. Jungreuthmayer, F. Bellutti, H. Brueckl, and P. Ertl, Monitoring cellular stress responses to nanoparticles using a lab-on-a-chip. Lab on a Chip, 2011. 11(15): p. 2551-2560.
    98. Park, M.V.D.Z., W. Annema, A. Salvati, A. Lesniak, A. Elsaesser, C. Barnes, G. McKerr, C.V. Howard, I. Lynch, K.A. Dawson, A.H. Piersma, and W.H. de Jong, In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicology and Applied Pharmacology, 2009. 240(1): p. 108-116.
    99. Zhou, G., G. Gu, Y. Li, Q. Zhang, W. Wang, S. Wang, and J. Zhang, Effects of Cerium Oxide Nanoparticles on the Proliferation, Differentiation, and Mineralization Function of Primary Osteoblasts In Vitro. Biological trace element research, 2013. 153(1-3): p. 411-418.
    100. Taton, T.A., Nanotechnology: Boning up on biology. Nature, 2001. 412(6846): p. 491-492.
    101. Parekh, S.H., Y.J. Lee, K.A. Aamer, and M.T. Cicerone, Label-free cellular imaging by broadband coherent anti-Stokes Raman scattering microscopy. Biophysical journal, 2010. 99(8): p. 2695-2704.
    102. Chiang, H.K., F.Y. Peng, S.C. Hung, and Y.C. Feng, In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts. Journal of Raman Spectroscopy, 2009. 40(5): p. 546-549.
    103. Hanlon, E., R. Manoharan, T.W. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, and M. Feld, Prospects for in vivo Raman spectroscopy. Physics in medicine and biology, 2000. 45(2): p. R1.
    104. Qi, J. and G. Wu, The surface enhanced Raman study of alkaline phosphatase and its enzymatic action on adenosine-5′-monophosphate. Spectrochimica Acta Part A: Molecular Spectroscopy, 1989. 45(2): p. 243-247.

    QR CODE