簡易檢索 / 詳目顯示

研究生: 林凱聖
Kai-Sheng Lin
論文名稱: 大氣常壓微電漿輔助合成石墨烯量子點-銀奈米粒子複合物在表面增強拉曼散射之應用
Microplasma-assisted Synthesis of Graphene Quantum Dots-Silver Nanoparticle Nanohybrids for Improved Surface Enhanced Raman Scattering
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江偉宏
Wei-Hung Chiang
李以仁
I‐Ren Lee
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 88
中文關鍵詞: 大氣常壓微電漿石墨烯量子點銀奈米粒子表面增強拉曼散射
外文關鍵詞: Microplasma, Graphene Quantum Dots, Silver Nanoparticle, Surface-Enhanced Raman Scattering 
相關次數: 點閱:581下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來相關實驗及理論計算之研究指出,石墨烯量子點此零維度奈米材料其具有獨特的物理、化學及光學特性,逐漸受到各界注視。由於其具有石墨烯之奈米結構,因而保有石墨烯優越的物理化學性質,包括大比表面積、高電子遷移率、低毒性和化學穩定性等。更當其尺寸小於100 nm時,電子會受量子侷限效應和邊界效應之影響因而產生獨特的光致發光性質。這些優點使得石墨烯量子點非常有潛力運用於開發生物分子感測器之應用。表面增強拉曼散射是一種高靈敏度檢測技術,可用來大幅增強待測物的拉曼訊號。多數的研究證實了貴重金屬如金和銀及石墨烯相關碳材皆能作為表面增強拉曼散射基材的可行性及潛力。 但相較於石墨烯,石墨烯量子點應用於表面增強拉曼散射上之探討仍不夠完整。

    在此研究中採用具有不同性質之石墨烯量子點來探討的石墨烯量子點的表面增強拉曼散射特性。 此外將石墨烯量子點與金屬奈米粒子複合後,將能夠大幅的提升材料的表面增強拉曼散射活性。在此研究中透過使用大氣常壓微電漿輔助電化學法來達到快速合成石墨烯量子點-銀奈米粒子複合物。在一系列的材料鑑定過後,微電漿電化學輔助法可以成功得將銀奈米粒子附載到石墨烯量子點的表面上,形成具有異質二聚體奈米結構的複合材料。光致發光光譜及螢光壽命分析證實,在石墨烯量子點-銀奈米粒子複合物中有非輻射螢光共振能量轉移的現象發生。此研究了進一步探討具有不同螢光共振能量轉移效率的石墨烯量子點-銀奈米粒子複合物對表面增強拉曼散射活性之影響。


    Recently experimental and theoretical works have reported that graphene quantum dots (GQDs), a unique form of a zero-dimensional nanostructure, and their exceptional properties make them promising in biosensing applications. Surface-enhanced Raman scattering(SERS) is an ultra-sensitive analytical technique for bio-molecules detection. While the potential of SPR metals (e.g. Au and Ag) and graphene for SERS has been demonstrated, but the work of GQDs applied as SERS substrates is still lacking. Here we reported the rational design to develop GQD-based SERS active substrate.
    Furthermore, modified GQD with metal nanostructures will lead to important advance for SERS-based detection. Here we demonstrate a facile synthesis of GQD-AgNP nanohybrids by using the atmospheric-pressure microplasma-assisted electrochemistry. Detailed nanomaterial characterizations including transmission electron microscopy, UV/Vis spectroscopy show that the microplasma-assisted electrochemical reaction can successfully grow Ag nanoparticles (AgNP) onto the GQD surfaces to form the GQD-AgNP nanohybrids with heterodimeric nanostructures within the minute scale. Besides, the photoluminescence (PL) optical study and lifetime analysis of GQDs and GQD-AgNP indicated that the non-radiative fluorescence resonance energy transfer involved in the GQD-AgNP nanohybrids.
    In the systematic Raman study, R6G is selected as the Raman probe molecules. First, we compare the SERS property of three kinds of GQDs with different photoluminescence property (e.g. different emission wavelength), Raman results show that SERS performance of GQDs is highly influenced by the molecular adsorption ability. The as-produced GQD-AgNP nanohybrids shows superior SERS performance with high enhancement factor (EF) around 1x10^8.

    We further studied the GQD-AgNP nanohybrids with different FRET efficiency. The results revealed that FRET of the as-produced GQD-AgNP nanohybrids is the dominant factor to SERS properties in our study.

    Abstract I 摘要 III 致謝 IV List of figures VII List of tables XII Content 1 1. Introduction 1 1.1. Surface-enhanced Raman Scattering (SERS) 1 1.2. SERS mechanism 3 1.2.1 Electromagnetic enhancement mechanism (EM) 3 1.2.2 Chemical enhancement mechanism (CM) 5 1.3. Graphene quantum dots (GQDs) 9 1.4. GQD-Ag nanoparticle nanohybrids 20 1.5. Fluorescence resonance energy transfer phenomena (FRET) 24 1.6. Atmospheric pressure microplasma technique 27 2. Experimental Section 31 2.1. Material and Chemicals 31 2.2. Characterization 32 2.2.1 Ultraviolet-Visible spectroscopy (UV-Vis) 32 2.2.2 Photoluminescence spectroscopy (PL) 32 2.2.3 Fourier-transform infrared spectroscopy (FT-IR) 33 2.2.4 Time-Correlated Single-Photon Counting (TCSPC) 33 2.2.5 Transmission electron microscope (TEM) 34 2.2.6. X-ray photoelectron spectroscopy (XPS) 34 2.2.7 Raman spectroscopy 35 2.2.8 Ultraviolet photoelectron spectroscopy (UPS) 35 2.3. Microplasma-assisted Synthesis of GQD-AgNP nanohybrids 36 2.4. Preparation of SERS substrate 38 2.5. Adsorption ability of nanomaterials for Rhodamine 6G 39 2.6. Quantum yield calculation 39 3. Results and discussion 41 3.1. Characterization of GQD and GQD-AgNP nanohybrids 41 3.1.1 UV/Vis spectroscopy 42 3.1.2 Photoluminescence spectroscopy (PL) 44 3.1.3 Raman spectroscopy 48 3.1.4 Fourier-transform infrared spectroscopy (FT-IR) 50 3.1.5 X-ray photoelectron spectroscopy (XPS) 51 3.1.6 Transmission electron microscope (TEM) 55 3.2. Fluorescence resonance energy transfer (FRET) between GQD and AgNP 59 3.2.1 Spectral overlap between GQDs and AgNP 59 3.2.2 Fluorescence lifetime analysis by time correlated single photon counting (TCSPC) 61 4. SERS study of nanomaterials 63 4.1 SERS enhancement of GQD with different emission wavelength 65 4.2 SERS effect of GQD-AgNP nanohybrids 69 4.3 SERS enhancement of GQD-AgNP with different FRET efficiency 71 4.4 Limit of detection of R6G on GQD-AgNP nanohybrids 77 5. Conclusion 79 6. Reference 80

    1. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of instrumental analysis. 2017: Cengage learning.
    2. Butler, H.J., et al., Using Raman spectroscopy to characterize biological materials. Nat Protoc, 2016. 11(4): p. 664-87.
    3. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
    4. Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 1997. 78(9): p. 1667.
    5. Jin, J., et al., Precisely Controllable Core-Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions. ACS Appl Mater Interfaces, 2016.
    6. Fan, Z., R. Kanchanapally, and P.C. Ray, Hybrid Graphene Oxide Based Ultrasensitive SERS Probe for Label-Free Biosensing. The Journal of Physical Chemistry Letters, 2013. 4(21): p. 3813-3818.
    7. Ren, W., Y. Fang, and E. Wang, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. Acs Nano, 2011. 5(8): p. 6425-6433.
    8. Vendrell, M., et al., Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol, 2013. 31(4): p. 249-57.
    9. Alvarez-Puebla, R. and L. Liz-Marzan, Environmental applications of plasmon assisted Raman scattering. Energy & Environmental Science, 2010. 3(8): p. 1011-1017.
    10. Li, D.-W., et al., Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta, 2014. 181(1): p. 23-43.
    11. Halvorson, R.A. and P.J. Vikesland, Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses. Environmental Science & Technology, 2010. 44(20): p. 7749-7755.
    12. Stiles, P.L., et al., Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem (Palo Alto Calif), 2008. 1: p. 601-26.
    13. Wang, Y., B. Yan, and L. Chen, SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev, 2013. 113(3): p. 1391-428.
    14. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58: p. 267-97.
    15. Li, Y., et al., A facile fabrication of large-scale reduced graphene oxide–silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. J. Mater. Chem. C, 2015. 3(16): p. 4126-4133.
    16. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008. 37(5).
    17. Ding, G., et al., Graphene oxide-silver nanocomposite as SERS substrate for dye detection: Effects of silver loading amount and composite dosage. Applied Surface Science, 2015. 345: p. 310-318.
    18. Ling, X., et al., Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy. Small, 2012. 8(9): p. 1365-72.
    19. Feng, S., et al., Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Science advances, 2016. 2(7): p. e1600322.
    20. Xu, H., et al., Effect of graphene Fermi level on the Raman scattering intensity of molecules on graphene. ACS nano, 2011. 5(7): p. 5338-5344.
    21. Liu, D., et al., Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. Nat Commun, 2018. 9(1): p. 193.
    22. Ling, X., et al., Lighting up the Raman signal of molecules in the vicinity of graphene related materials. Acc Chem Res, 2015. 48(7): p. 1862-70.
    23. Zhang, N., L. Tong, and J. Zhang, Graphene-Based Enhanced Raman Scattering toward Analytical Applications. Chemistry of Materials, 2016. 28(18): p. 6426-6435.
    24. Xu, W., N. Mao, and J. Zhang, Graphene: a platform for surface-enhanced Raman spectroscopy. Small, 2013. 9(8): p. 1206-24.
    25. Cheng, H., et al., Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement. Acs Nano, 2012. 6(3): p. 2237-2244.
    26. Lin, L., et al., Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends in Analytical Chemistry, 2014. 54: p. 83-102.
    27. Zheng, X.T., et al., Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small, 2015. 11(14): p. 1620-36.
    28. Shen, J., et al., Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun (Camb), 2011. 47(9): p. 2580-2.
    29. Zhu, S., et al., Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Advances, 2012. 2(7).
    30. Amjadi, M., Z. Abolghasemi-Fakhri, and T. Hallaj, Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. Journal of Photochemistry and Photobiology A: Chemistry, 2015. 309: p. 8-14.
    31. Sun, H., et al., Recent advances in graphene quantum dots for sensing. Materials Today, 2013. 16(11): p. 433-442.
    32. Jin, H., et al., Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction. J Am Chem Soc, 2015. 137(24): p. 7588-91.
    33. Zhang, Z., et al., Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy & Environmental Science, 2012. 5(10).
    34. Kim, S., et al., Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots: Interplay between Size and Shape. ACS Nano, 2012. 6(9): p. 8203-8208.
    35. Wang, Z., H. Zeng, and L. Sun, Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. Journal of Materials Chemistry C, 2015. 3(6): p. 1157-1165.
    36. Zhu, S., et al., Photoluminescence mechanism in graphene quantum dots: Quantum confinement effect and surface/edge state. Nano Today, 2017. 13: p. 10-14.
    37. Peng, J., et al., Graphene quantum dots derived from carbon fibers. Nano letters, 2012. 12(2): p. 844-849.
    38. Pan, D., et al., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Advanced Materials, 2010. 22(6): p. 734-738.
    39. Lu, J., et al., One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS nano, 2009. 3(8): p. 2367-2375.
    40. Zhang, M., et al., Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. Journal of Materials Chemistry, 2012. 22(15): p. 7461-7467.
    41. Zhuo, S., M. Shao, and S.-T. Lee, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS nano, 2012. 6(2): p. 1059-1064.
    42. Wang, L., et al., Carbon quantum dots displaying dual-wavelength photoluminescence and electrochemiluminescence prepared by high-energy ball milling. Carbon, 2015. 94: p. 472-478.
    43. Dong, Y., et al., Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 2012. 50(12): p. 4738-4743.
    44. Tang, L., et al., Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano, 2012. 6(6): p. 5102-5110.
    45. Yang, Y., et al., One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun., 2012. 48(3): p. 380-382.
    46. Baker, S.N. and G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl, 2010. 49(38): p. 6726-44.
    47. Cayuela, A., et al., Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun (Camb), 2016. 52(7): p. 1311-26.
    48. Pu, C., et al., Synthetic Control of Exciton Behavior in Colloidal Quantum Dots. Journal of the American Chemical Society, 2017. 139(9): p. 3302-3311.
    49. Sk, M.A., et al., Revealing the tunable photoluminescence properties of graphene quantum dots. Journal of Materials Chemistry C, 2014. 2(34): p. 6954.
    50. Ding, H., et al., Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano, 2016. 10(1): p. 484-91.
    51. Yeh, T.F., et al., Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence. J Phys Chem Lett, 2016. 7(11): p. 2087-92.
    52. Ye, R., et al., Bandgap engineering of coal-derived graphene quantum dots. ACS Appl Mater Interfaces, 2015. 7(12): p. 7041-8.
    53. Tetsuka, H., et al., Molecularly Designed, Nitrogen-Functionalized Graphene Quantum Dots for Optoelectronic Devices. Advanced Materials, 2016. 28(23): p. 4632-4638.
    54. López‐Lorente, Á.I., Carbon‐Based Luminescent Nanosensors. Encyclopedia of Analytical Chemistry, 2016.
    55. Wang, D., et al., Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon, 2012. 50(6): p. 2147-2154.
    56. Qian, Z., et al., Highly Luminescent N‐Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform. Chemistry-A European Journal, 2014. 20(8): p. 2254-2263.
    57. Wang, F., et al., Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions. Sensors and Actuators B: Chemical, 2014. 190: p. 516-522.
    58. Qi, Y.-X., et al., Highly sensitive and selective fluorescent detection of cerebral lead (II) based on graphene quantum dot conjugates. Chemical Communications, 2013. 49(90): p. 10599-10601.
    59. Wang, B., et al., Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014. 131: p. 384-387.
    60. Cai, F., et al., A simple one-pot synthesis of highly fluorescent nitrogen-doped graphene quantum dots for the detection of Cr (VI) in aqueous media. Rsc Advances, 2014. 4(94): p. 52016-52022.
    61. Dong, Y., et al., Graphene Quantum Dot as a Green and Facile Sensor for Free Chlorine in Drinking Water. Analytical Chemistry, 2012. 84(19): p. 8378-8382.
    62. Zhao, J., et al., Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors and Actuators B: Chemical, 2016. 223: p. 246-251.
    63. Liu, J.-J., et al., Graphene quantum dots-based fluorescent probe for turn-on sensing of ascorbic acid. Sensors and Actuators B: Chemical, 2015. 212: p. 214-219.
    64. Ran, X., et al., Ag Nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols. Chemical Communications, 2013. 49(11).
    65. Zhao, H., et al., A universal immunosensing strategy based on regulation of the interaction between graphene and graphene quantum dots. Chem. Commun., 2013. 49(3): p. 234-236.
    66. Zhang, Z., et al., A facile one-pot method to high-quality Ag-graphene composite nanosheets for efficient surface-enhanced Raman scattering. Chem Commun (Camb), 2011. 47(22): p. 6440-2.
    67. Huang, J., et al., Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale, 2010. 2(12): p. 2733-8.
    68. Choi, H., et al., Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics, 2013. 7(9): p. 732-738.
    69. Dong, Y., et al., Carbon based dot capped silver nanoparticles for efficient surface-enhanced Raman scattering. J. Mater. Chem. C, 2016. 4(31): p. 7472-7477.
    70. Bhunia, S.K., et al., Carbon-Dot/Silver-Nanoparticle Flexible SERS-Active Films. ACS Appl Mater Interfaces, 2016. 8(38): p. 25637-43.
    71. Wu, C., et al., Two-step synthesis of Ag@GQD hybrid with enhanced photothermal effect and catalytic performance. Nanotechnology, 2016. 27(48): p. 48LT02.
    72. De, B. and N. Karak, Recent progress in carbon dot–metal based nanohybrids for photochemical and electrochemical applications. Journal of Materials Chemistry A, 2017. 5(5): p. 1826-1859.
    73. Shen, L., et al., Growth and stabilization of silver nanoparticles on carbon dots and sensing application. Langmuir, 2013. 29(52): p. 16135-40.
    74. Ran, C., et al., A general route to enhance the fluorescence of graphene quantum dots by Ag nanoparticles. RSC Adv., 2014. 4(42): p. 21772-21776.
    75. Choi, Y., et al., Interface-controlled synthesis of heterodimeric silver–carbon nanoparticles derived from polysaccharides. ACS nano, 2014. 8(11): p. 11377-11385.
    76. Lu, Q., et al., Hydroxyl-rich C-dots synthesized by a one-pot method and their application in the preparation of noble metal nanoparticles. Chem Commun (Camb), 2015. 51(33): p. 7164-7.
    77. Jana, J., et al., Silver nanoparticle anchored carbon dots for improved sensing, catalytic and intriguing antimicrobial activity. Dalton Trans, 2015. 44(47): p. 20692-707.
    78. Ge, J., et al., Green synthesis of graphene quantum dots and silver nanoparticles compounds with excellent surface enhanced Raman scattering performance. Journal of Alloys and Compounds, 2016. 663: p. 166-171.
    79. Su, Y., et al., Silver Nanoparticles/N-Doped Carbon-Dots Nanocomposites Derived fromSiraitia Grosvenoriiand Its Logic Gate and Surface-Enhanced Raman Scattering Characteristics. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1728-1735.
    80. Zhang, Y., et al., Facile synthesis of core–shell–satellite Ag/C/Ag nanocomposites using carbon nanodots as reductant and their SERS properties. CrystEngComm, 2013. 15(32): p. 6305.
    81. Chen, S., et al., In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H(2)O(2) and glucose. Anal Chem, 2014. 86(13): p. 6689-94.
    82. Shen, L.M., et al., Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent. Anal Chem, 2014. 86(10): p. 5002-8.
    83. Zhang, X. and X. Du, Carbon Nanodot-Decorated Ag@SiO2 Nanoparticles for Fluorescence and Surface-Enhanced Raman Scattering Immunoassays. ACS Appl Mater Interfaces, 2016. 8(1): p. 1033-40.
    84. Shi, B., et al., Visual discrimination of dihydroxybenzene isomers based on a nitrogen-doped graphene quantum dot-silver nanoparticle hybrid. Nanoscale, 2015. 7(41): p. 17350-8.
    85. Zhao, J., et al., Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution. Applied Physics Letters, 2016. 109(2): p. 021905.
    86. Eustis, S. and M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical society reviews, 2006. 35(3): p. 209-217.
    87. Xu, J., et al., Efficient fluorescence quenching in carbon dots by surface-doped metals--disruption of excited state redox processes and mechanistic implications. Langmuir, 2012. 28(46): p. 16141-7.
    88. Liang, Z., et al., Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Appl Mater Interfaces, 2016. 8(27): p. 17478-88.
    89. Freeman, R. and I. Willner, Optical molecular sensing with semiconductor quantum dots (QDs). Chem Soc Rev, 2012. 41(10): p. 4067-85.
    90. Lakowicz, J.R. and B.R. Masters, Principles of fluorescence spectroscopy. Journal of Biomedical Optics, 2008. 13(2): p. 029901.
    91. Wu, P. and L. Brand, Resonance energy transfer: methods and applications. Analytical biochemistry, 1994. 218(1): p. 1-13.
    92. Samukawa, S., et al., The 2012 Plasma Roadmap. Journal of Physics D: Applied Physics, 2012. 45(25).
    93. Becker, K.H., K.H. Schoenbach, and J.G. Eden, Microplasmas and applications. Journal of Physics D: Applied Physics, 2006. 39(3): p. R55-R70.
    94. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32).
    95. Shi, J.J. and M.G. Kong, Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas. Phys Rev Lett, 2006. 96(10): p. 105009.
    96. Chiang, W.-H., C. Richmonds, and R.M. Sankaran, Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science and Technology, 2010. 19(3): p. 034011.
    97. Akolkar, R. and R.M. Sankaran, Charge transfer processes at the interface between plasmas and liquids. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2013. 31(5): p. 050811.
    98. Huang, T. and X.H. Nancy Xu, Synthesis and Characterization of Tunable Rainbow Colored Colloidal Silver Nanoparticles Using Single-Nanoparticle Plasmonic Microscopy and Spectroscopy. J Mater Chem, 2010. 20(44): p. 9867-9876.
    99. Zhu, S., et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun (Camb), 2011. 47(24): p. 6858-60.
    100. Prajapati, R., A. Bhattacharya, and T.K. Mukherjee, Resonant excitation energy transfer from carbon dots to different sized silver nanoparticles. Phys Chem Chem Phys, 2016. 18(41): p. 28911-28918.
    101. Dresselhaus, M.S., et al., Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Letters, 2010. 10(3): p. 751-758.
    102. Suh, M.P., et al., A Redox-Active Two-Dimensional Coordination Polymer:  Preparation of Silver and Gold Nanoparticles and Crystal Dynamics on Guest Removal. Journal of the American Chemical Society, 2006. 128(14): p. 4710-4718.
    103. Chen, L., et al., Single gold-nanoparticles-decorated silver/carbon nanowires as substrates for surface-enhanced Raman scattering detection. RSC Advances, 2013. 3(48).
    104. Permatasari, F.A., et al., Role of C-N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route. Sci Rep, 2016. 6: p. 21042.
    105. Jin, S.H., et al., Tuning the Photoluminescence of Graphene Quantum Dots through the Charge Transfer Effect of Functional Groups. ACS Nano, 2013. 7(2): p. 1239-1245.
    106. Song, L., et al., Structure observation of graphene quantum dots by single-layered formation in layered confinement space †Electronic supplementary information (ESI) available: Detailed experimental materials, apparatus, experimental procedures and characterization data. See DOI: 10.1039/c5sc01416f Click here for additional data file. Chemical Science, 2015. 6(8): p. 4846-4850.
    107. Subramanian, A., et al., Graphene quantum dot antennas for high efficiency Förster resonance energy transfer based dye-sensitized solar cells. Journal of Power Sources, 2017. 343: p. 39-46.
    108. Jensen, L. and G.C. Schatz, Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
    109. Hildebrandt, P. and M. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry, 1984. 88(24): p. 5935-5944.
    110. Ling, X., et al., Can graphene be used as a substrate for Raman enhancement? Nano Lett, 2010. 10(2): p. 553-61.
    111. Fan, W., et al., Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale, 2014. 6(9): p. 4843-51.
    112. Ju, J., et al., Sustained and Cost Effective Silver Substrate for Surface Enhanced Raman Spectroscopy Based Biosensing. Sci Rep, 2017. 7(1): p. 6917.
    113. Lin, Z., et al., Nitrogen dots as reductant and stabilizer for the synthesis of AgNPs/N-dots nanocomposites for efficient surface-enhanced Raman scattering detection. Talanta, 2018. 178: p. 515-521.

    無法下載圖示 全文公開日期 2023/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE