簡易檢索 / 詳目顯示

研究生: 許立政
Li-Cheng Hsu
論文名稱: 氧化鋅奈米線陣列應用於表面增幅拉曼光譜分析
The Analysis of Surface-Enhanced Raman Spectroscopy based on Zinc Oxide Nanowire Arrays
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳景翔
none
劉豫川
none
陳貞夙
none
吳季珍
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 162
中文關鍵詞: 表面增幅拉曼光譜奈米球微影蝕刻氧化鋅奈米柱陣列
外文關鍵詞: surface enhanced Raman scattering, nanosphere lithography, zinc oxide nanorod arrays
相關次數: 點閱:597下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為藉著製備多維度結構基板,以應用於表面增幅拉曼光譜分析上。不同以往,早期表面增幅拉曼基板大多是將金屬奈米粒子製備於平面基板上,但本研究以傾斜-撈取法技術可簡易製備出規則排列的聚苯乙烯奈米球單層薄膜,間接製備出二氧化矽遮罩,以增加玻璃基板表面積及結構複雜性,且搭配著二氧化遮罩製備出有序的氧化鋅陣列來探討有序及無序的氧化鋅陣列於表面增幅拉曼訊號的表現。
    此外,在本研究中,選擇不同的還原劑製備出不同粒徑大小之銀奈米粒子,藉此被覆於先前所製備不同維度的基板上。從實驗中可得知:以硼氫化鈉做為還原劑可合成粒徑約20 nm的銀奈米粒子;以檸檬酸鈉做為還原劑則可合成出約為60 nm的銀奈米粒子。之後,將不同維度的基板先以聚乙烯吡啶中進行表面修飾,再將之含浸於銀奈米粒子溶液中。之後,使用Rhodamine 6G分子做為探測物質,進行比較各種不同維度基板之最佳化條件分析,最後並進行微量濃度之極限分析。在分析結果中可得知:以檸檬酸鈉為還原劑所合成之銀奈米粒子具有較大的粒徑,將其應用於不同維度的基板皆具有較強的拉曼增幅訊號;且在以氧化鋅奈米柱陣列的輔助之下,使基板結構由原先二維結構演進成三維結構,更進一步搭配奈米球微影蝕刻技術製備出有序氧化鋅陣列基板,可取得更強的拉曼增幅訊號。其增強因子計算出可增至6.61×107,並且可獲得1×10-13 M的Rhodamine 6G分子偵測濃度極限。


    In this study, the main tropic focused on the preparation of multi-dimensional nanostructure substrates for applying on the researches of surface enhanced Raman scattering (SERS). In the previous researches, the metal nanoparticles were prepared on the substrates directly for SERS. Herein, a simple dip-catch method was employed on assembling large area polystyrene spheres (PS)monolayer. By using the PS monolayer, an inverse opal structure could be made by filling in silicon dioxide sol-gel solution. In these two-dimensional nanostructures, the surface areas increased. In order to increase surface areas furthermore, the order zinc oxide nanorod arrays (ZnO-NRAs)were grown on glass substrate by using PS monolayer lithography method.
    In addition, different sizes of silver nanoparticles (Ag-NPs)were synthesized by using two different kinds of reduction reagent. When sodium borohydride was used, the sizes of Ag-NPs are around 20 nm; trisodium citrate dihydrate was used, the sizes of Ag-NPs are around 60 nm. Before decorating different sizes of Ag-NPs, the surfaces of multi-dimensional nanostructures substrates were modified by poly(2-vinylpyridine). In order to find the Ag-NPs decoration time, Rhodamine 6G (R6G)molecules was used as probe to determine the optimal conditions. Form analysis results, we could find SERS substrates decorated with large Ag-NPs have high Raman intensities, especially for ZnO-NRAs nanostructures were used as SERS substrates for auxiliary the original substrate structure from the original two-dimensional structure to three-dimensional structure, and ordered zinc oxide array substrate prepared with nanosphere lithography technology to gain a stronger Raman signal. The enhancement factor calculated about 6.61 ×107, and Rhodamine 6G molecular detection concentration limit of 1×10-13 M can be detected.

    中文摘要………………………………………………………………………………………………………………………………Ⅰ Abstract…………………………………………………………………………………………………………………………Ⅱ 致謝………………………………………………………………………………………………………………………………………Ⅳ 目錄………………………………………………………………………………………………………………………………………V 表目錄…………………………………………………………………………………………………………………………………Ⅹ 圖目錄………………………………………………………………………………………………………………………………ⅩI 第一章、 緒論…………………………………………………………………………………………………………………1 1-1 前言……………………………………………………………………………………………………………………………1 1-2 研究動機與目的………………………………………………………………………………………………………2 第二章、 理論基礎與文獻回顧……………………………………………………………………………………3 2-1 氧化鋅基本性質及成長方法…………………………………………………………………………………3 2-1-1 氧化鋅基本性質…………………………………………………………………………………………………3 2-1-2 氧化鋅製備方式…………………………………………………………………………………………………6 2-1-2-1 水熱法………………………………………………………………………………………………………………6 2-1-3 製備規則排列的氧化鋅奈米柱………………………………………………………………………11 2-1-3-1 奈米球微影蝕刻技術…………………………………………………………………………………12 2-2 金屬奈米粒子之製備方法……………………………………………………………………………………15 2-2-1 鹽類化學還原法…………………………………………………………………………………………………15 2-2-1-1 銀奈米粒子的製備………………………………………………………………………………………17 2-3 規則排列的微奈米結構…………………………………………………………………………………………19 2-3-1 微奈米結構的發現……………………………………………………………………………………………19 2-3-2 至備規則排列的微奈米結構……………………………………………………………………………20 2-3-3 自組裝……………………………………………………………………………………………………………………21 2-3-3-1 自然滴製法………………………………………………………………………………………………………22 2-3-3-2 旋轉塗佈法………………………………………………………………………………………………………25 2-3-3-3 Langmuir-Blodgett薄膜法……………………………………………………………………25 2-3-3-4 LB-like法………………………………………………………………………………………………………26 2-3-4 奈米球微影蝕刻……………………………………………………………………………………………………28 2-3-4-1 結構的分類………………………………………………………………………………………………………29 2-3-4-2 奈米球微影蝕刻的應用…………………………………………………………………………………31 2-4 拉曼散射原理及發展…………………………………………………………………………………………………39 2-4-1 拉曼散射發展歷史…………………………………………………………………………………………………39 2-4-2 固體中的晶格震盪…………………………………………………………………………………………………39 2-4-3 拉曼散射光譜原理………………………………………………………………………………………………42 2-5 表面增幅拉曼散射……………………………………………………………………………………………………45 2-5-1 表面增幅拉曼散射光譜的發現…………………………………………………………………………45 2-5-2 表面增強機制…………………………………………………………………………………………………………45 2-5-2-1 表面增強機制-電磁場增強效應……………………………………………………………………45 2-5-2-2 表面增強機制-化學增強效應…………………………………………………………………………47 2-5-3 表面增幅拉曼散射光譜相關計算方程式……………………………………………………………48 2-5-3-1 表面增幅拉曼強度計算……………………………………………………………………………………48 2-5-3-2 表面增幅拉曼散射增強因子計算……………………………………………………………………49 2-6 表面增幅拉曼發展…………………………………………………………………………………………………………53 2-6-1 表面增幅拉曼光譜的基板發展………………………………………………………………………………53 2-6-2 激發雷射光的選擇……………………………………………………………………………………………………62 第三章、 實驗步驟及方法…………………………………………………………………………………………………66 3-1 實驗流程簡圖…………………………………………………………………………………………………………………66 3-2 實驗要漂與設備儀器……………………………………………………………………………………………………67 3-2-1 藥品/耗材名稱…………………………………………………………………………………………………………67 3-2-2 實驗設備……………………………………………………………………………………………………………………71 3-2-3 分析儀器……………………………………………………………………………………………………………………73 3-3 實驗步驟…………………………………………………………………………………………………………………………79 3-3-1 清洗玻璃基板……………………………………………………………………………………………………………79 3-3-2 製備銀奈米粒子…………………………………………………………………………………………………………79 3-3-3 製備SERS基板-銀奈米粒子被覆於玻璃基板……………………………………………………81 3-3-4 製備SERS基板-銀奈米粒子被覆於二氧化矽遮罩基板……………………………………82 3-3-5 製備SERS基板-銀奈米粒子被覆於無序氧化鋅奈米柱陣列基板…………………86 3-3-6 製備SERS基板-銀奈米粒子被覆於有序氧化鋅規則陣列基板88 第四章、 結果與討論………………………………………………………………………………………………………………93 4-1以水熱法成長規則排列之氧化鋅奈米柱陣列…………………………………………………………………93 4-1-1製備聚苯乙烯奈米球單層薄膜………………………………………………………………………………………93 4-1-1-1技術一:以自然滴製法製備聚苯乙烯奈米球單層薄膜………………………………………93 4-1-1-2技術二:以傾斜-撈取法方式製備聚苯乙烯奈米球單層薄膜……………………………98 4-1-2製備具規排列及蜂窩狀結構之二氧化矽遮罩……………………………………………………………102 4-1-2-1以溶膠-凝膠法製備二氧化矽遮罩…………………………………………………………………………102 4-1-3以水熱法成長氧化鋅奈米柱陣列…………………………………………………………………………………107 4-1-3-1氧化鋅晶種層效應………………………………………………………………………………………………………107 4-2金屬銀奈米粒子製備與探討…………………………………………………………………………………………………119 4-2-1以檸檬酸鈉為還原劑來製備銀奈米粒子………………………………………………………………………119 4-2-2以硼氫化鈉為還原劑來製備銀奈米粒子………………………………………………………………………122 4-3不同維度及形態之SERS基板討論………………………………………………………………………………………124 4-3-1金屬銀奈米粒子之修飾時間……………………………………………………………………………………………127 4-3-2不同形態SERS基板……………………………………………………………………………………………………………141 4-3-3SERS基板之增強因子計算………………………………………………………………………………………………145 第五章、結論……………………………………………………………………………………………………………………………………155 第六章、參考文獻……………………………………………………………………………………………………………………………157

    1. Duncan Graham and Royston Goodacre, Chemical Society Reviews, 37, 883 (2008)
    2. Roger M. Jarvis and Royston Goodacre, Analytical Chemistry, 76, 40 (2003)
    3. Zhiyong Fan and Jia G. Lu, Journal of Nanoscience and Nanotechnology, 5, 1561 (2005)
    4. Guang Zhu, Rusen Yang, Sihong Wang, and Zhong Lin Wang, Nano Letters, 10, 3151 (2010)
    5. Hemtej Gullapalli, Venkata S. M. Vemuru, Ashavani Kumar, Andres Botello-Mendez, Robert Vajtai, Mauricio Terrones, Satish Nagarajaiah, and Pulickel M. Ajayan, Small, 6, 1641 (2010)
    6. Zhong Lin Wang and Jinhui Song, Science, 312, 242 (2006)
    7. Yefan Chen, D. M. Bagnall, Hang-jun Koh, Ki-tae Park, Kenji Hiraga, Ziqiang Zhu, and Takafumi Yao, Journal of Applied Physics, 84, 3912 (1998)
    8. Daniel Vanmaekelbergh and Lambert K. van Vugt, Nanoscale, 3, 2783 (2011)
    9. Nishuang Liu, Guojia Fang, Wei Zeng, Hai Zhou, Fei Cheng, Qiao Zheng, Longyan Yuan, Xiao Zou, and Xingzhong Zhao, ACS Applied Materials & Interfaces, 2, 1973 (2010)
    10. Jing Ye, Yu Zhao, Libin Tang, Li-Miao Chen, C. M. Luk, S. F. Yu, S. T. Lee, and S. P. Lau, Applied Physics Letters, 98, 263101 (2011)
    11. Chengkun Xu, Jiamin Wu, Umang V. Desai, and Di Gao, Journal of the American Chemical Society, 133, 8122 (2011)
    12. A. B. Djurisic, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, and S. Gwo, Applied Physics Letters, 88, 103107 (2006)
    13. Bixia Lin, Zhuxi Fu, and Yunbo Jia, Applied Physics Letters, 79, 943 (2001)
    14. Ting-Jen Hsueh, Cheng-Liang Hsu, Shoou-Jinn Chang, and I. Cherng Chen, Sensors and Actuators B: Chemical, 126, 473 (2007)
    15. Davide Calestani, Roberto Mosca, Massimiliano Zanichelli, Marco Villani, and Andrea Zappettini, Journal of Materials Chemistry, 21, 15532 (2011)
    16. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, and L. A. Patil, Sensors and Actuators B: Chemical, 115, 128 (2006)
    17. Seung Chul Lyu, Ye Zhang, Cheol Jin Lee, Hyun Ruh, and Hwack Joo Lee, Chemistry of Materials, 15, 3294 (2003)
    18. Xiaoxian Zhang, Lihuan Zhang, Min Gao, Weiya Zhou, and Sishen Xie, Journal of Nanoscience and Nanotechnology, 10, 7432 (2010)
    19. Yolanda Y. Villanueva, Da-Ren Liu, and Pei Tzu Cheng, Thin Solid Films, 501, 366 (2006)
    20. Ki Seok Kim, Hyun Jeong, Mun Seok Jeong, and Gun Young Jung, Advanced Functional Materials, 20, 3055 (2010)
    21. Jaejin Song and Sangwoo Lim, The Journal of Physical Chemistry C, 111, 596 (2006)
    22. Can-Yun Zhang, Xiao-Min Li, Xia Zhang, Wei-Dong Yu, and Jun-Liang Zhao, Journal of Crystal Growth, 290, 67 (2006)
    23. Ying Zhou, Weibing Wu, Guangda Hu, Haitao Wu, and Shougang Cui, Materials Research Bulletin, 43, 2113
    24. Zhenbo Xia, Jian Sha, Yanjun Fang, Yuting Wan, Zongli Wang, and Yewu Wang, Crystal Growth & Design, 10, 2759 (2010)
    25. Lori E. Greene, Matt Law, Dawud H. Tan, Max Montano, Josh Goldberger, Gabor Somorjai, and Peidong Yang, Nano Letters, 5, 1231 (2005)
    26. Michael Breedon, Mohammad Bagher Rahmani, Sayyed-Hossein Keshmiri, Wojtek Wlodarski, and Kourosh Kalantar-zadeh, Materials Letters, 64, 291 (2010)
    27. K. B. Sundaram and A. Khan, Thin Solid Films, 295, 87 (1997)
    28. Shu-Yi Liu, Tao Chen, Jing Wan, Guo-Ping Ru, Bing-Zong Li, and Xin-Ping Qu, Applied Physics A: Materials Science & Processing, 94, 775 (2009)
    29. H Q Le, S J Chua, K P Loh, E A Fitzgerald, and Y W Koh, Nanotechnology, 17, 483 (2006)
    30. Julia W. P. Hsu, Zhengrong R. Tian, Neil C. Simmons, Carolyn M. Matzke, James A. Voigt, and Jun Liu, Nano Letters, 5, 83 (2004)
    31. Sumetha Suwanboon, Pongsaton Amornpitoksuk, and Nantakan Muensit, Ceramics International, 37, 2247 (2011)
    32. Andrej Degen and Marija Kosec, Journal of the European Ceramic Society, 20, 667 (2000)
    33. J.  H Kim, D. Andeen, and F.  F Lange, Advanced Materials, 18, 2453 (2006)
    34. WangWang, Christopher J. Summers, and Zhong Lin Wang, Nano Letters, 4, 423 (2004)
    35. DF Liu, YJ Xiang, XC Wu, ZX Zhang, LF Liu, L. Song, XW Zhao, SD Luo, WJ Ma, and J. Shen, Nano Letters, 6, 2375 (2006)
    36. Hong Jin Fan, Woo Lee, Robert Hauschild, Marin Alexe, Gwenael Le Rhun, Roland Scholz, Armin Dadgar, Kornelius Nielsch, Heinz Kalt, Alois Krost, Margit Zacharias, and Ulrich Gosele, Small, 2, 561 (2006)
    37. S. Sakamoto, L. Philippe, M. Bechelany, J. Michler, H. Asoh, and S. Ono, Nanotechnology, 19, 405304 (2008)
    38. Cheng Li, Guosong Hong, Pengwei Wang, Dapeng Yu, and Limin Qi, Chemistry of Materials, 21, 891 (2009)
    39. J. J. Dong, X. W. Zhang, Z. G. Yin, S. G. Zhang, J. X. Wang, H. R. Tan, Y. Gao, F. T. Si, and H. L. Gao, ACS Applied Materials & Interfaces, 3, 4388 (2011)
    40. Daragh Byrne, Enda McGlynn, Joseph Cullen, and Martin O. Henry, Nanoscale, 3, 1675 (2011)
    41. Jian-Hong Lee, Yi-Wen Chung, Min-Hsiung Hon, and Ing-Chi Leu, Appl. Phys. A, 97, 403 (2009)
    42. Fumitaka Mafune, Jun-ya Kohno, Yoshihiro Takeda, Tamotsu Kondow, and Hisahiro Sawabe, The Journal of Physical Chemistry B, 104, 8333 (2000)
    43. D.D. Evanoff Jr and G. Chumanov, ChemPhysChem, 6, 1221 (2005)
    44. Yoshiteru Mizukoshi, Kenji Okitsu, Yasuaki Maeda, Takao A. Yamamoto, Ryuichiro Oshima, and Yoshio Nagata, The Journal of Physical Chemistry B, 101, 7033 (1997)
    45. Y.C. Liu, C.C. Yu, and S.F. Sheu, J. Mater. Chem., 16, 3546 (2006)
    46. Yanying Rao, Qin Tao, Ming An, Chunhui Rong, Jian Dong, Yurong Dai, and Weiping Qian, Langmuir, 27, 13308 (2011)
    47. M.B. Mohamed, K.Z. Ismail, S. Link, and M.A. El-Sayed, The Journal of Physical Chemistry B, 102, 9370 (1998)
    48. Dan V. Goia and Egon Matijevic, New Journal of Chemistry, 22, 1203 (1998)
    49. K.C. Song, S.M. Lee, T.S. Park, and B.S. Lee, Korean Journal of Chemical Engineering, 26, 153 (2009)
    50. J. Alan Creighton, Christopher G. Blatchford, and M. Grant Albrecht, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 75, 790 (1979)
    51. L. Mulfinger, S.D. Solomon, M. Bahadory, A.V. Jeyarajasingam, S.A. Rutkowsky, and C. Boritz, Journal of chemical education, 84, 322 (2007)
    52. Yue Liu and Cheng Zhi Huang, Analyst, (2012)
    53. A. Šileikaitė, I. Prosyčevas, J. Puišo, A. Juraitis, and A. Guobienė, Mater. Sci.-Medzg, 12, 287 (2006)
    54. PC Lee and D. Meisel, The Journal of Physical Chemistry, 86, 3391 (1982)
    55. Rita Kakkar, E. D. Sherly, Kalpana Madgula, D. Keerthi Devi, and B. Sreedhar, Journal of Applied Polymer Science, 126, E154 (2012)
    56. Frank Marlow, Muldarisnur, Parvin Sharifi, Rainer Brinkmann, and Cecilia Mendive, Angewandte Chemie International Edition, 48, 6212 (2009)
    57. P. Vukusic, J. R. Sambles, and C. R. Lawrence, Proceedings of the Royal Society of London. Series B: Biological Sciences, 271, S237 (2004)
    58. L. Wang, Q. Yan, and XS Zhao, Langmuir, 22, 3481 (2006)
    59. D. M. Eigler and E. K. Schweizer, Nature, 344, 524 (1990)
    60. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, Langmuir, 8, 3183 (1992)
    61. Hailin Cong and Weixiao Cao, Langmuir, 19, 8177 (2003)
    62. Yadong Yin, Yu Lu, Byron Gates, and Younan Xia, Journal of the American Chemical Society, 123, 8718 (2001)
    63. G. Arutinov, S. Brichkin, and V. Razumov, Nanotechnologies in Russia, 5, 67 (2010)
    64. B. Franklin, Philos. Trans. R. Soc. London, 64, 445 (1774)
    65. George L. Gaines Jr, Thin Solid Films, 99, ix (1983)
    66. J. Rybczynski, U. Ebels, and M. Giersig, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219, 1 (2003)
    67. X. Wang, C.J. Summers, and Z.L. Wang, Nano Letters, 4, 423 (2004)
    68. Hongbo Xu, Nan Lu, Dianpeng Qi, Liguo Gao, Juanyuan Hao, Yandong Wang, and Lifeng Chi, Microelectronic Engineering, 86, 850 (2009)
    69. Kun-Che Hsieh, Tsung-Yen Tsai, Dehui Wan, Hsuen-Li Chen, and Nyan-Hwa Tai, ACS Nano, 4, 1327 (2010)
    70. Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, Journal of Crystal Growth, 311, 2973 (2009)
    71. X.  D Wang, C. Neff, E. Graugnard, Y. Ding, J.  S King, L.  A Pranger, R. Tannenbaum, Z.  L Wang, and C.  J Summers, Advanced Materials, 17, 2103 (2005)
    72. Yue Li, Takeshi Sasaki, Yoshiki Shimizu, and Naoto Koshizaki, Journal of the American Chemical Society, 130, 14755 (2008)
    73. Shaoli Zhu and Yongqi Fu, Plasmonics, 4, 209 (2009)
    74. Yue Wang, Shubo Han, Alejandro L. Briseno, Raymond J. G. Sanedrin, and Feimeng Zhou, Journal of Materials Chemistry, 14, 3488 (2004)
    75. Liang Li, Tianyou Zhai, Haibo Zeng, Xiaosheng Fang, Yoshio Bando, and Dmitri Golberg, Journal of Materials Chemistry, 21, 40 (2011)
    76. A. Kosiorek, W. Kandulski, H. Glaczynska, and M. Giersig, Small, 1, 439 (2005)
    77. Yaguang Wei, Wenzhuo Wu, Rui Guo, Dajun Yuan, Suman Das, and Zhong Lin Wang, Nano Letters, 10, 3414 (2010)
    78. 李世鴻, 半導體工程原理. (全威圖書出版, 2002), pp.99.
    79. 洪連輝•劉立基•魏榮君, 固態物理學導論. (高立圖書有限公司, 2011), pp.95.
    80. J.D. Ingle and S.R. Crouch, Spectrochemical analysis. (Prentice Hall, 1988), p.499.
    81. W. Kiefer, Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications. (Wiley-VCH, 2011), p.26.
    82. E.C. Le Ru and P.G. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy: and related plasmonic effects. (Elsevier Science, 2008).
    83. Katrin Kneipp, Harald Kneipp, Irving Itzkan, Ramachandra R Dasari, and Michael S Feld, Journal of Physics: Condensed Matter, 14, R605 (2002)
    84. K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced Raman Scattering: Physics And Applications. (Springer, 2006), p.6.
    85. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chemical Physics Letters, 26, 163 (1974)
    86. L. Jensen, C.M. Aikens, and G.C. Schatz, Chemical Society Reviews, 37, 1061 (2008)
    87. Alan Campion and Patanjali Kambhampati, Chemical Society Reviews, 27, 241 (1998)
    88. E. Hutter and J.  H Fendler, Advanced Materials, 16, 1685 (2004)
    89. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, The Journal of Physical Chemistry C, 111, 13794 (2007)
    90. Andrzej Kudelski, Chemical Physics Letters, 414, 271 (2005)
    91. Stephan Link and Mostafa A. El-Sayed, The Journal of Physical Chemistry B, 103, 8410 (1999)
    92. Ming Li, Scott K Cushing, Jianming Zhang, Jessica Lankford, Zoraida P Aguilar, Dongling Ma, and Nianqiang Wu, Nanotechnology, 23, 115501 (2012)
    93. Shikuan Yang, Feng Xu, Stefan Ostendorp, Gerhard Wilde, Huaping Zhao, and Yong Lei, Advanced Functional Materials, 21, 2446 (2011)
    94. Madhuchanda Banerjee, Shilpa Sharma, Arun Chattopadhyay, and Siddhartha Sankar Ghosh, Nanoscale, 3, 5120 (2011)
    95. Ioana E. Pavel, Khadijeh S. Alnajjar, Jennifer L. Monahan, Adam Stahler, Nora E. Hunter, Kent M. Weaver, Joshua D. Baker, Allie J. Meyerhoefer, and David A. Dolson, Journal of chemical education, 89, 286 (2011)
    96. R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, and D.G. Walter, Science, 267, 1629 (1995)
    97. Serhiy Malynych, Igor Luzinov, and George Chumanov, The Journal of Physical Chemistry B, 106, 1280 (2002)
    98. W. Ruan, Z. Lu, T. Zhou, B. Zhao, and L. Niu, Anal. Methods, 2, 684 (2010)
    99. Ramesh Kattumenu, Chang H. Lee, Limei Tian, Michael E. McConney, and Srikanth Singamaneni, Journal of Materials Chemistry, 21, 15218 (2011)
    100. Jianing Chen, Thomas Martensson, Kimberly A Dick, Knut Deppert, H Q Xu, Lars Samuelson, and Hongxing Xu, Nanotechnology, 19, 275712 (2008)
    101. Chang H. Lee, Limei Tian, and Srikanth Singamaneni, ACS Applied Materials & Interfaces, 2, 3429 (2010)
    102. Ruey-Chi Wang, Yong-Siang Gao, and Shu-Jen Chen, Nanotechnology, 20, 375605 (2009)
    103. Weiqiang Mu, Dae-Kue Hwang, Robert P. H. Chang, and John B. Ketterson, Journal of Raman Spectroscopy, 42, 941 (2011)
    104. Y. Nishijima, L. Rosa, and S. Juodkazis, Optics Express, 20, 11466 (2012)
    105. Wen-Chi Lin, Shi-Hwa Huang, Chang-Long Chen, Chih-Chia Chen, Din Tsai, and Hai-Pang Chiang, Applied Physics A: Materials Science & Processing, 101, 185 (2010)
    106. Chuang Qian, Chao Ni, Wenxuan Yu, Wengang Wu, Haiyang Mao, Yifei Wang, and Jun Xu, Small, 7, 1801 (2011)
    107. Chuanwei Cheng, Bin Yan, She Mein Wong, Xianglin Li, Weiwei Zhou, Ting Yu, Zexiang Shen, Hongyu Yu, and Hong Jin Fan, ACS Applied Materials & Interfaces, 2, 1824 (2010)
    108. Hua Qi, O. J. Glembocki, and S. M. Prokes, Journal of Nanomaterials, 2012 (2012)
    109. Marvin C. Tobin, The Journal of Chemical Physics, 50, 4551 (1969)
    110. horiba, Semiconductors,
    111. Jau-Ye Shiu, Chun-Wen Kuo, Peilin Chen, and Chung-Yuan Mou, Chemistry of Materials, 16, 561 (2004)
    112. Yue Liu and Cheng Zhi Huang, Analyst, 137, 3434 (2012)
    113. Peter Hildebrandt and Manfred Stockburger, The Journal of Physical Chemistry, 88, 5935 (1984)
    114. G. S. S. Saini, Sarvpreet Kaur, S. K. Tripathi, C. G. Mahajan, H. H. Thanga, and A. L. Verma, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 653 (2005)
    115. Serhiy Malynych and George Chumanov, Journal of the American Chemical Society, 125, 2896 (2003)
    116. Steven R. Emory, William E. Haskins, and Shuming Nie, Journal of the American Chemical Society, 120, 8009 (1998)
    117. I. Cherng Chen, Yen-Chen Maggie Liou, Jyisy Yang, and Tien-Yu Shieh, Journal of Raman Spectroscopy, 42, 339 (2011)

    QR CODE