簡易檢索 / 詳目顯示

研究生: 林忠永
Chung-Yung Lin
論文名稱: 錫-銻系無鉛銲料與銀或銅基材間的相平衡及動力學的研究
The Study of Phase Equilibria and Kinetics between the Sn-Sb Based Lead-free Solders and Ag/Cu Substraes
指導教授: 李嘉平
Chiapyng Lee
口試委員: 顏怡文
Yee-wen Yen
高振宏
C. Robert Kao
張翼
YiEdward Chang
呂志鵬
Jim Leu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 180
中文關鍵詞: 錫-銻-銅系統錫-銻-銀系統相平衡動力學
外文關鍵詞: Sn-Sb-Cu system, Sn-Sb-Ag system, Phase Equilibria, Kinetics
相關次數: 點閱:193下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究以實驗觀察的方法來決定Sn-Sb-Ag 三元系統在400℃、260℃、150℃的等溫截面相圖,實驗結果顯示 Sn-Sb-Ag系統不存在三元化合物,有二個完全互溶的區域,其中一個為Ag3Sn及Ag3Sb所形成的同晶形化合物,標示為ε,另一個為Ag4Sn及Ag4Sb所形成的同晶形化合物,標示為ζ,ε相為一很穩定的相,分別與ζ、Sb、SbSn及液態Sn相平衡共存,Ag在Sb、SbSn 相的溶解度很低,在此系統共有6個單相區,7個二相區,2個三相區。此外,Sn-Sb/Ag反應偶的生成相與Sn/Ag反應偶相似,為Ag3Sn,添加5~40wt%Sb於Sn與Ag基材在400℃反應,Sb在Ag3Sn的溶解量可達6.6 at.%Sb,生成的Ag3Sn厚度隨Sn-Sb合金中Sn濃度增加而增加。
    以實驗觀察的方法來決定Sn-Sb-Cu 三元系統在260℃、150℃的等溫截面相圖,實驗結果亦得知,在此溫度範圍 Sn-Sb-Cu 三元系的等溫截面相圖沒有三元化合物,Cu3Sn及Cu4Sb形成同晶形化合物,標示為δ,為一很穩定的相,分別與Cu、Cu6Sn5、SbSn、Cu2Sb平衡共存,Cu在Sb及SbSn 相的溶解度很低,。此外,在本實驗範圍溫度260℃~150℃,Sn-Sb/Cu反應偶的生成相與Sn/Cu反應偶相似,為Cu6Sn5、δ。添加5~40wt%Sb於Sn與Cu基材在150℃反應,Sb在生成的Cu6Sn5的溶解量約為2.7 at.%Sb。Sn-25wt%Sb、Sn-40wt%Sb合金與Cu反應在150℃時,銲料本體為Sn、SbSn兩相與Cu6Sn5共存,Sn-5wt%Sb合金與Cu反應在150℃時,及 Sn-3wt%Sb~Sn-7wt%Sb合金在260℃,銲料本體皆為Sn相與Cu6Sn5共存。
    此外,本文亦探討非反應性添加合金元素的影響,Sn-37 wt%Pb、Sn-3.5 wt%Ag、Sn-58 wt%Bi中的Pb、Ag、Bi角色為Sn的非反應性添加合金元素,不會與Ni反應,添加非反應性合金元素會降低錫系銲料中錫濃度,添加3.5wt%的少量銀至錫,對錫濃度影響不顯著。Sn-Ag/Ni 反應偶生成的Ni3Sn4的相的成長速率會很接近於Sn/Ni反應偶系統,添加58wt%的鉍至錫,會使錫濃度由0.0613降至0.0310 mol/cm3。錫濃度會影響錫系銲料與Ni基材反應所生成的Ni3Sn4相的成長速率,不同的添加合金元素會改變界面平衡常數k,亦會影響Ni3Sn4相的成長速率。四種銲料Sn、Sn-Ag、Sn-Pb及 Sn-Bi的視活化能分別為28.7、30.1、 35.8、32.7 KJmol-1。與文獻值及本文四種銲料的視活化能相互比較,發現皆只有在實驗誤差內的很小差異,這顯示四種銲料的平衡常數活化能的值很小。四種銲料的視活化能很相似,顯示Sn擴散通過IMC為反應速率決定步驟,由於四種銲料具有相同的反應機構,本質擴散係數及的kD的視活化能皆相同,添加合金元素的效應會影響到平衡常數的前指數常數,其會影響到靠近Sn的IMC表面的錫濃度。


    The isothermal section of the Sn-Sb-Ag ternary system at 400℃, 260℃, and 150℃ has been determined in this study by experimental examination. Experimental results show no existence of ternary compounds in the Sn-Sb-Ag system. Two extensive regions of mutual solubility have been determined. The one located between the two binary isomorphous phases, Ag3Sn and Ag3Sb, is labeled as ε and the other one located between the two binary isomorphous phases, Ag4Sn and Ag4Sb, is labeled asζ. The ε phase is a very stable phase and is in equilibrium with ζ, Sb, SbSn, Sb2Sn3, and liquid Sn phases. Each of the Sb and SbSn phases has a limited solubility of Ag. Only one stoichiometric compound, Sb2Sn3, exists. Besides phase equilibria determination, the interfacial reactions between the Sn-Sb alloys and the Ag substrate were investigated at 260℃. It was found that the phase formations in the Sn-Sb/Ag couples are very similar to those in the Sn/Ag couples.
    The isothermal section of the Sn-Sb-Cu ternary system at 260℃,150℃ has been determined in this study by experimental examination. Experimental results show no existence of ternary compounds in the Sn-Sb-Cu system at both temperatures. An extensive region of mutual solubility existing between the two binary isomorphous phases, Cu3Sn and Cu4Sb, was determined and labeled as δ. Intermetallic compounds (IMCs) Cu2Sb, SbSn, and Cu6Sn5 are in equilibrium with the δ solid solution. Up to about 6.5 at.%Sb can dissolve in the Cu6Sn5 phase, and the solubility of Sn in the Cu2Sb is approximately 6.2at%. Each of the Sb and SbSn phases has a limited solubility of Cu. Only one stoichiometric compound, Sb2Sn3, exists. Besides phase equilibria determination, the interfacial reactions between the Sn-Sb alloys and Cu substrates were investigated at 260℃. Sb was observed present in the Cu6Sn5 and δ phases, and Sb did not form Sn-Sb IMCs in the interfacial reactions. Moreover, the addition of up to 7wt% of Sb into Sn does not significantly affect the total thickness of IMC layers. It was found that the phase formations in the Sn-Sb/Cu couples are very similar to those in the Sn/Cu couples.
    The effect of non-reactive alloying elements on the growth kinetics of the intermetallic compound formed between liquid Sn-based eutectic solders and Ni substrates at 250℃-280℃ was studied, with Ag, Pb and Bi as the alloying elements. Experimental results showed that only the intermetallic compound (IMC) Ni3Sn4 was present as the reaction product. Based on the diffusion controlled reaction mechanism, a parabolic kinetic equation in which both Sn concentration and alloying element effects were quantified, was derived and verified by comparing the kinetic data obtained by using four different solders with different Sn concentrations and alloying elements. The apparent activation energies for pure Sn and eutectic Sn-Ag, Sn-Pb and Bi-Sn solders reacting with Ni, the substrate, are in the range of 28.7-32.7kJmol-1, which indicates slight variations in activation energy. The similarity between the activation energies of these four solders suggests that the diffusion of Sn atoms through the IMC is the rate controlling step. The effect of non-reactive alloying elements exerted on the pre-exponential factor of the equilibrium constant which multiplied by the bulk concentration of Sn in solder gives the surface concentration of Sn in Ni3Sn4

    第一章、前 言 1 1.1 電子構裝技術 1 1-2 無鉛銲料的源起 2 1-3 無鉛銲接的表面處理 5 1-4 具潛力的無鉛銲料 6 第二章、文獻回顧 10 2-1 界面反應 10 2-1-2 Sn-Sb/Cu 界面反應 13 2-1-3 Sn系銲料/Ni 界面反應 14 2-1-4 Ni、Cu顆粒強化Sn-3.5wt%Ag 複合銲料 16 2-2. 相平衡 19 2-2-1 Sn-Sb二元系統相平衡圖 22 2-2-2 Sn-Ag二元系統相平衡圖 23 2-2-3 Sn-Cu二元系統相平衡圖 24 2-2-4 Sb-Cu二元系統相平衡圖 25 2-2-5 Ag-Sb二元系統相平衡圖 26 2-2-6 Sn-Sb-Ag三元相平衡圖 27 2-2-7 Sn-Sb-Cu三元系統相平衡圖 31 2-2-8 Sn-Bi-Ni三元系統相平衡圖 31 2-2-9 Sn-Ag-Ni三元系統相平衡圖 32 2.3 研究目的與實驗規劃 33 第三章、實驗方法 35 3-1 Sn-Sb-Ag 三元系統相平衡 35 3-2 Sn-Sb/Ag 界面反應 35 3-3 Sn-Sb-Cu三元系統相平衡 36 3-4 Sn-Sb/Cu 界面反應 37 3-5 錫系銲料/鎳反應 38 3-6 錫系銲料/鎳粉反應 38 第四章、結果與討論 42 4-1 150℃ Sn-Sb-Ag三元系相圖與界面反應 42 4-2 260℃ Sn-Sb-Ag三元系相圖與界面反應 56 4-3 400℃ Sn-Sb-Ag三元系相圖及Sn-Sb/Ag界面反應 78 4-4 260℃ Sn-Sb-Cu三元系相圖與界面反應 94 4-5 150℃Sn-Sb-Cu三元系相圖與Sn-Sb/Cu界面反應 117 4-6 錫系銲料與鎳基材之界面反應 139 4-7 錫系銲料與鎳顆粒強化物之界面反應 155 第五章、結論 170 第六章、參考文獻 173

    1. Abtew,M., Selvaduray,G.Mater. Sci. Enig. R,27(2000)95.
    2. 田民波、顏怡文,半導體電子元件構裝技術,五南圖書(2005).
    3. A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E.J. Cotts, Journal of Electronic Materials 30 (2001) 1157-1163.
    4. 白蓉生,電路板會刊,第22期。
    5. N. C. Lee, Soldering and Surface Mount Tech., 6 (1997)65.
    6. N. C. Lee,“1998先進電子封裝技術趨勢研討會”講義,新竹,(1998) 8/1-8/8.
    7. S. K. Kang and A. K. Sarkhel, Journal of Electronic Materials 23 (1994)701-707.
    8. S. Jin, JOM, 45 (1993)13-19.
    9. C. Melton, JOM, 45(1993)33-35.
    10. McCormack and S. Jin, JOM, 45(1993)36-40.
    11. S. W. Chen, Materials Chemistry and Physics 33 (1993)271-276.
    12. P. Nash, M. F. Singleton, and J. L. Murray, in “ASM Handbook Vol.3 Alloy Phase Diagrams”, ed. by H. Baker, ASM International, Materials Park, Ohio (1992).
    13. S.R.Shatynski, J.P.Hirth, R.A. Rapp, Acta Metall.24(1976)1071.
    14. G.V.Kidson,Journal of Nuclear Materials 3,1(1961) 21.
    15. C.M.Chen and S.W.Chen , Journal of Electronic Materials 28 (1999) 902.
    16. W. Bader, Welding J. 48(1969) 551.
    17. S.Sen, A.Ghorai, K. Bandyopadhyay, Thin Solid Films 155(1987)243.
    18. A. Rolland, D. Roux, Scripta Metall. Mater. 24 (1990)2253.
    19. J. Gong, C. Liu, P.P. Conway, V. V. Silberschmidt, Materials Science and Engineering A 427(2006) 60-68.
    20. M. Bigas, E. Cabruja, Microelectronics Journal 37 (2006) 308-316.
    21. S.W.Chen, P. Y. Chen, C.H. Wang, Journal of Electronic Materials,35 (2006)1982.
    22. K.N. Tu, R.D. Thompson, Acta Metall.30(1982)947.
    23. R.A.Hagstrom, R.N.Wild, in Proceedings of the Technical Programe International NEPCON, Brighton, (1969)271.
    24. P.W.Dehaven, IBM Internal Report IBM-EF-52 (1984)
    25. S.W. Chen and Y.W. Yen, Journal of Electronic Materials 28 (1999)1203-1208.
    26. T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa and K. Sakamoto, Materials Science and Engineering A 396 (2005) 115-123.
    27. A.Hayashi, C.R.Kao, Y.A.Chang,Scripta Materialia,37(1997)393.
    28. Rober A. Gagliano, Morris E.Fine, JOM,June (2001)33.
    29. T.H.Chung, H.M.Wu, M.D. Cheng, S.Y.Chang, S.F.Yen, Journal of Electronic Materials33 (2004)22.
    30. D.Q. Yu, C.M.L.Wu, C.M.T.Law, L. Wang, J.K.L. Lai, Journal of Alloys and Compounds 392(2005) 192.
    31. Rober A. Gagliano, Morris E.Fine, Journal of Electronic Materials 32 (2003) 1441.
    32. W. Jang, P. G. Kim, K. N. Tu, Michael Lee, Journal of Materials Research 14 (1999)3895.
    33. D. Gur and M. Bamberger, Acta Meter., 46 (1998) 4917.
    34. J. A. van Beek, S. A. Stolk and F. J. J. van Loo, Z Metallkde, 73 (1982)441.
    35. S.K. Kang, R.S.Rai, Purushothaman, Journal of Electronic Materials 25 (1996) 1113.
    36. M. He, Z. Chen, G. Qi, Acta Materialia 52 (2004) 2047.
    37. H. F. Hsu, S.W. Chen, Acta Materialia 52 (2004) 2541.
    38. J.Wang, H.S. Liu, L.B. Liu, Z.P. Jin, Journal of Electronic Materials 35 (2006) 1842.
    39. J. I. Lee, S. W. Chen, H.Y. Chang, C. M. Chen, Journal of Electronic Materials 32 (2003) 117.
    40. J. H. Kim, S.W. Jeong, H. D. Kim, and H. M. Lee, Journal of Electronic Materials 32 (2003) 1228.
    41. P. G. Kim, J.W. Jang, T.Y. Lee, K.N. Tu, Journal of Applied Physics 86 (1999) 6746.
    42. S. K. Kang, R.S. Rai, Purushothaman, Journal of Electronic Materials 25 (1996) 1113.
    43. K. N. Tu, K. Zeng, Materials Science and Engineering R 34 (2001) 1.
    44. A. Sharif, Y.C. Chan, M.N. Islam, M.J. Rizvi, Journal of Alloys and Compounds 388 (2005) 75.
    45. K. S. Kim, J. M. Yang, C.H. Yu, I.O. Jung, H.H. Kim, Journal of Alloys and Compounds 379 (2004) 314.
    46. K. J. Ferguson, A. Telang, J. G. Lee, K. N. Subramanian, Journal of Materials science: Materials in Electronics 14 (2003) 157.
    47. J.G. Lee, F. Guo, K.N. Subramanian, and J.P. Lucas, Soldering and Surface Mount Technolog. 14 (2002) 11.
    48. F. Guo, J. Lee, S. Choi, J.P. Lucas, T.R. Bieler, and K.N. Subramanian, Journal of Electronic Materials30 (2001) 1073.
    49. J.G. Lee, K.C. Chen, and K.N. Subramanian, Journal of Electronic Materials 32 (2003) 1240.
    50. H. T. Lee, Y. H. Lee, Science and Technology of Welding and Joining 10 (2005) 353.
    51. W.K. Choi, H.M. Lee, Journal of Electronic Materials 28 (1999) 1251.
    52. Y. Wu, J.A. Sees, C. Pouraghabagher, L. Annfoster, J.L. Marshall, E.G. Jacobs, and R.F. Pinizzotto, Journal of Electronic Materials 22 (1993) 769.
    53. F. Guo, S. Choi, J.P. Lucas, and K.N. Subramanian, Journal of Electronic Materials 29 (2000) 1241.
    54. J.P. Liu, F. Guo, Y.F. Yan, W.B. Wang, and Y.W. Shi, Journal of Electronic Materials 33 (2004) 958.
    55. T.Laurila, V. Vuorinen, J.K. Kivilahti, Materials Science and Engineering R 49 (2005) 1.
    56. 蕭憲明,國立台灣科技大學材料科技所碩士論文(2005)。
    57. T. B. Massalski, Binary Alloy Phase Diagrams. ASM Int., Materials Park, Ohio, 1990.
    58. I. Karakaya and W. T. Thompson, Binary Alloy Phase Diagrams, 1 (1991) 94-97.
    59. N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase Diagrams, 11 (1990) 278-287
    60. C.S. Chen and Y.L. Lee, Journal of National Science People’s University North-East China (1957)33.
    61. D.B. Masson and B.K. Kirkpatrick, Journal of Electronic Materials 15 (1986) 349.
    62. P.J.T.L. Oberndorff, A.A. Kodentsov, V. Vuorinen, J.K. Kivilahti, and F.J.J. van Loo, Ber. Bunsenges Physical Chemistry 102 (1998) 1321.
    63. Z. Moser, W. Gasior, J. Pstrus, S. Ishihara, X.J. Liu, I. Ohnuma, R. Kainuma, and K.Ishida, Materials Transactions 45 (2004) 652.
    64. J.J. Lee, B.J. Kim, W.S. Min, Journal of Alloys and Compounds 202 (1993)237.
    65. B. D. Cullity and S. R. Stock,”Elements of x-ray diffraction”, 3rd ed., Prentice Hall, Upper Saddle River, N. J. (2001).
    66. S.Y. Hwang, J.W. Lee, and Z.H. Lee, Journal of Electronic Materials 31 (2002) 1304.
    67. G. Ghosh, Journal of Applied Physics 88 (2000) 6887.
    68. D. Gur, M. Bamberger, Acta Materialia 46 (1998) 4917.
    69. 余昭倫,國立台灣大學材料所博士論文(2002)。
    70. 張子欽,國立中興大學材料所博士論文(2004)。

    QR CODE