簡易檢索 / 詳目顯示

研究生: 林悅蘋
Yueh-ping Lin
論文名稱: 奈米級及次微米級核殼型橡膠添加劑、矽烷接枝之蒙特納石黏土及官能基化之脫層石墨烯奈米層板對不飽和聚酯及乙烯基酯樹脂之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響研究
Effects of nano-scale and submicron-scale core-shell rubber additives, silane-grafted montmorillonite, and functionalized exfoliated graphene nanoplatelet on the cure kinetics, glass transition temperatures, and X-ray scattering characteristics for unsaturated polyester, and vinyl ester resins.
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 邱文英
Wen-Yen Chiu
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 210
中文關鍵詞: 核殼型橡膠蒙特納石黏土不飽和聚酯乙烯基酯樹脂固化反應動力玻璃轉移溫度環動半徑
外文關鍵詞: Core-Shell Rubber, Montmorillonite, unsaturated polyester, vinyl ester resin, curing kinetics, glass transition, radius of gyration
相關次數: 點閱:447下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文目的為探討三種特用添加劑,分別為(1)奈米級及次微米級核殼型橡膠(Core-Shell Rubber, CSR)(2)矽烷接枝之蒙特納石黏土(Montimrillonite clay, MMT)(3)官能基化之脫層石墨烯奈米層板(functionalized exfoliated grapheme nanoplatelet),其對苯乙烯(St)/不飽和聚酯(UP)樹脂或乙烯基酯樹脂(VER)系統之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響。
      本研究也利用小角度X光散射儀(Small-angle X-ray scattering, SAXS)測定UP及VER之稀薄苯乙烯溶液之散射強度,根據Guinier Law計算不同濃度下之環動半徑(Radius of Gyration, Rg),可用於瞭解UP或VER分子擴散至MMT層間的長廊空間之難易程度。並利用廣角度X光散射儀(Wide-angle X-ray scattering, WAXS)測定St/UP(或VER)/矽烷接枝蒙特納石黏土(MPS-MMT)三成份系統之固化試片,瞭解MPS-MMT層間距離之變化及在基材中的分散程度。
      另外,分別使用差式掃描卡計(DSC)及傅立業轉換紅外線光譜儀(FTIR)測量St/UP(或VER)/添加劑之三成份系統在聚合固化過程中的反應動力。最後使用動態機械分析儀(DMA)測量固化後樣品之玻璃轉移溫度。


    The effects of three additives, including (1) nano-scale and submicron-scale core-shell rubber additive, (2) silane-grafted montmorillonite and (3) functionalized exfoliated grapheme nanoplatelet, on the cure kinetics, glass transition temperature and X-ray scattering characteristics for the Styrene(St)/Unsaturated polyester (or Vinyl ester resin)/additives ternary systems after the cure have been investigated.
    The scattering intensity of vinyl ester resin (VER) and unsaturated polyester (UP) with different structure in dilute styrene solution was measured by the method of small angle X-ray scattering (SAXS), and the radius of gyration of VER and the UP molecule can then be calculated by using the Guinier law. And measured the cured specimens for St/UP (or VER)/silane-grafted MMT ternary system by using wide angle X-ray scattering (WAXS), investigate the change of d-spacing and the degree of dispersion of the substrate of silane-grafted MMT .
    The reaction kinetics for the St/UP (or VER)/additive ternary system during the cure was measured by differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR). Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for St/UP/additive ternary system has been measured by dynamic mechanical analysis (DMA).

    摘 要 I Abstract II 致 謝 III 目 錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1 不飽和聚酯樹脂(UP Resin) 1 1-2 乙烯基酯樹脂(Vinyl Ester Resin, VER) 2 1-3 增韌劑 3 1-4 抗體積收縮劑 4 1-5 蒙特納石黏土及其高分子奈米複合材料 5 1-6 石墨烯/高分子奈米複合材料 6 1-7 研究範疇 11 第二章 文獻回顧 12 2-1 自由基聚合反應 12 2-2 不飽和聚酯(UP)樹脂之合成 14 2-3 不飽和聚酯(UP)樹脂與苯乙烯(St)之交聯共聚合反應 15 2-4 苯乙烯(St) /不飽和聚酯(UP) /抗收縮劑(LPA)三成份系統之相溶性研究 17 2-5 不飽和聚酯(UP)樹脂之聚合固化後微觀結構之研究 18 2-6 不飽和聚酯(UP)樹脂之抗收縮補償機構 19 2-7 不飽和聚酯樹脂(UP)之反應動力學模式之研究 21 2-8 核殼型橡膠(CSR)增韌劑 25 2-9 蒙特納石黏土-不飽和聚酯高分子奈米複合材料研究 27 2-10 高分子稀薄溶液之環動半徑研究 30 2-11 不飽和聚酯(UP)樹脂玻璃轉移溫度之研究 33 2-12 石墨烯/高分子奈米複合材料之研究 34 2-13 氧化石墨(GO)及熱還原氧化石墨(TRGO)的製備 35 第三章 實驗方法與設備 36 3-1 實驗原料 36 3-1-1 不飽和聚酯樹脂(UP Resin) 36 3-1-2 乙烯基酯樹脂(VER) 38 3-1-3 蒙特納石黏土(MMT) 39 3-1-4 核殼型橡膠(CSR) 40 3-1-5 實驗藥品 42 3-2 實驗儀器 45 3-3 實驗步驟 47 3-3-1 蒙特納石黏土(MMT)之鈉活化處理[30] 47 3-3-2 Silane-treated MMT(MPS-MMT)製備[30] 47 3-3-3 Alkylammonium-MMT(AMMT)製備 47 3-3-4 St/UP (or VER)雙成份系統溶液製備 48 3-3-5 St/UP (or VER)/MPS-MMT三成份系統溶液製備 49 3-3-6 St/ VER(n=0.11)/AMMT三成份系統溶液製備 49 3-3-7 St/ VER(n=2)/CSR三成份系統溶液製備 50 3-3-8 動態機械分析儀(DMA)固化試片製備 50 3-3-9 小角度X-ray散射儀(SAXS)測定環動半徑 51 3-3-10 以廣角X-ray散射儀(WAXS)鑑定有機化改質MMT 52 3-3-11 廣角X-ray散射儀(WAXS)固化試片製備及測定 52 3-3-12 微分掃描卡計(DSC)反應動力測定 53 3-3-13 傅立業紅外線光譜儀(FTIR)校正曲線測定 53 3-3-14 傅立業紅外線光譜儀(FTIR)反應動力測定 54 3-4 性質測定與分析方法 55 3-4-1 微分掃描卡計(DSC)熱分析 55 3-4-2 動態機械分析儀(DMA)理論 56 3-4-3 傅立業紅外線光譜儀(FTIR)測定反應動力之理論與分析 57 3-4-4 X-ray散射儀之相關理論 62 3-4-5 利用SAXS測環動半徑 (Radius of gyration , Rg) 65 第四章 結果與討論 67 4-1 高分子稀薄溶液之環動半徑(Rg) 67 4-1-1 聚苯乙烯(polystyrene)之環動半徑 67 4-1-2 不飽和聚酯樹脂(UP)之環動半徑 74 4-1-3 乙烯基酯樹脂(VER)之環動半徑 106 4-2 以廣角X-ray散射儀(WAXS)鑑定有機化改質MMT 121 4-3 DSC反應動力 123 4-3-1 不同莫耳比St/MA-PA-PG(AN=30)雙成份系統 123 4-3-2 不同莫耳比St/MA-PA-PG(AN=20)雙成份系統 127 4-3-3 不同莫耳比St/VER(n=0.11)雙成份系統 130 4-3-4 不同莫耳比St/VER(n=2)雙成份系統 133 4-3-5 St/MA-PA-PG(AN=30、20)/MPS-MMT三成份系統 136 4-3-6 St/VER(n=0.11、2)/MPS-MMT三成份系統 142 4-3-7 St/VER(n=0.11)/AMMT三成份系統 148 4-3-8 St/VER(n=2)/CSR(MMA-G3-480)三成份系統 151 4-3-9 St/VER(n=2)/CSR(MA-Gx-30)三成份系統 154 4-4 FTIR鑑定 160 4-4-1 二氯甲烷 160 4-4-2 環氧樹脂及甲基丙烯酸甲酯(MMA) 161 4-5 FTIR校正曲線測定 164 4-6 FTIR 反應動力 175 4-6-1 St/MA-PA-PG(AN=30)雙成份系統 175 4-6-2 St/MA-PA-PG(AN=20)雙成份系統 178 4-6-3 St/MA-PG(AN=30)雙成份系統 181 4-6-4 St/MA-PA-PG(AN=30)/MPS-MMT三成份系統 184 4-7 玻璃轉移溫度(Tg)測定 194 4-7-1 St/MA-PA-PG(AN=30)/MPS-MMT三成份系統 194 4-8 WAXS鑑定固化試片 196 4-8-1 St/MA-PA-PG(AN=30、20)/MPS-MMT三成份系統 196 4-8-2 St/MA -PG(AN=30、20)/MPS-MMT三成份系統 198 4-8-3 St/VER(n=0.11、2)/MPS-MMT三成份系統 200 第五章 結論 202 第六章 建議與未來工作 204 第七章 參考文獻 205

    1.R.B. Burn, Polyester Molding Compounds,Marcel Dekker, Inc, New York, 1982.
    2.R.E. Young, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976.
    3.M.E. Kelly, in “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P370.
    4.F. Fekete, “Unsaturated Polyester Technology,“ ed. P.F. Bruins, Gordon and Breach Science Publishers, 1976, P28.
    5.E. Martuscelli, P. Musto, G.. Ragosta, G. Scarinzi, and E. Bertotti, J.Polym.Sci., Part B:Polym.Phys., 1993, 31, 619.
    6.S.B. Pandit and V.M. Nadkarni, Ind. Eng. Chem Res., 1994, 33, 2778.
    7.The B.F. Goodrich Co. WO93/21274 Oct. 28,1993.
    8.Crc for Polymers Pty. Ltd., WO97/43339 Nov. 20,1997.
    9.吳嘉鴻, 碩士論文,台灣科技大學, 2003.
    10.黃俊翰, 碩士論文,台灣科技大學, 2009.
    11.戴孟祥, 碩士論文, 台灣科技大學, 2010.
    12.陳曉蘭, 碩士論文,台灣科技大學, 2010.
    13.許毓倫, 碩士論文,台灣科技大學, 2011.
    14.E.J. Bartkus and C.H Kroekel, Appl.Polym.Symp., 1970, 15, 113.
    15.K.E.Atkins, in”Sheet Molding Compound :Science and Technology”Ed., H.G. Kia, Hanser Publishers, 1993. Ch4.
    16.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1974.
    17.V.A. Pattison, R.R. Hindersinn, and W.T. Schwartz,J. , Appl.Polym.Sci., 1975, 19, 3045.
    18.L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 1991, 32, 1593.
    19.Y. J. Huang and C. M. Liang, Polymer, 1996, 37, 401.
    20.L. J. Lee, W. Li, and K.H. Hsu, Polymer, 2000, 41, 711.
    21.C.B. Bucknall, I.K. Partridge, and M.J. Phillips, Polymer, 1991, 32, 636.
    22.Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 2003, 89, 3336.
    23.J.P. Dong , J.H. Lee , D.H. Lai, and Y. J. Huang, Appl. Polym.Sci., 2005, 98, 264.
    24.C.P. Hsu, M. Kinkelaar, P. Hu, and L.J. Lee., Polym.Eng.Sci., 1991, 31, 1450.
    25.Y.J. Huang, C.J. Chu, and J.P. Dong, J. Appl. Polym. Sci., 2000, 78, 543.
    26.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995, 55, 323.
    27.J.P. Dong, J.G. Huang, F.H. Lee, J.W. Roan and Y.J. Huang, J.Appl.Polym.Sci., 2004, 91, 3388.
    28.Y.J. Huang and W.C. Jiang, Polymer, 1998, 39, 6631.
    29.B. M. Novak, Adv. Mater., 1993, 5, 422.
    30.X. Kornmann, L. A. Berghund, J. Sterte, and E. P. Giannelis, Polym. Eng. Sci., 1998, 38, 1351.
    31.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and Kamigaito, J.Polym.Sci. Part A: Polym.Chem, 1993. 31, 983.
    32.E. P. Giannelis, Adv. Mater., 1996, 8, 29.
    33.A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 1993, 8, 1179.
    34.P. B. Messersmith and E. P. Giannelis, Chem. Mater., 1994, 6, 1719.
    35.W. Gilman and T. Kashiwagi, SAMPE Journal, 1997, 33, 42.
    36.H. Kim, A.A. Abdada, and C.W. Macosko, Macromolecules, 43, 6515 (2010)
    37.R.J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York, 2000. Ch5.
    38.J. Als-Nielsen and D. McMorrow, ”Elements of Modern X-ray Physics”, 2nd Ed., Wiley, New York, 2011, P14.
    39.盧天智, 碩士論文,台灣科技大學, 1991.
    40.H.R. Allcock and F.W. Lampe, ”Contemporary Polymer Chemistry”, 2nd Ed., Prentice Hall, Englewood Cliffs, 1990, 50.
    41.Y.S. Yang and L.J. Lee, Polymer, 1988, 29, 1793.
    42.K. Horie, I. Mita, and H. Kambe, J.Polym.Sci.PartA-1:Polym. Chem., 1969, 7, 2561.
    43.江文慶, 碩士論文,台灣科技大學, 1996.
    44.Y.J. Huang and C.C. Su, J. Appl. Polym. Sci., 1995, 55, 305.
    45.Y.J. Huang and J.C. Horng, Polymer, 1998, 39, 3683.
    46.Y.J. Huang and L.D. Chen, Polymer, 1998, 39, 7049.
    47.Y.J. Huang and C.C. Su, Polymer, 1994, 35, 2397.
    48.蘇進成, 碩士論文,台灣科技大學, 1992.
    49.林立翔, 碩士論文,台灣科技大學, 1992.
    50.M.R. Kamal, S. Slurour.,and M. Ryan, SPE. ANTEC Papers. 19, 1973, 187.
    51.S.Y. Pusatcioglu, A.L.Fricke., and J.C. Hasseler, J. Appl. Polym. Sci., 1979, 24, 937.
    52.C. D. Han, and K. W. Lem, J. Appl. Polym. Sci., 1983, 28, 749.
    53.J. F. Stevenson, Polym. Eng. Sci., 1989, 26(11), 746.
    54.J. F. Stevenson, SPE. ANTEC. Papers, 1980, 26, 452.
    55.L. J. Lee, Polym. Eng. Sci.,1981, 21, 483.
    56.Y. J. Huang, and L. J. Lee, AIChE. J., 1985, 31, 1585.
    57.C. D. Han, and D. S. Lee, J. Appl. Polym. Sci., 1987, 37, 2859.
    58.C. S. Chern, and D. C. Sundberg, ACS. Polym. PREP, 1985, 26(1), 296.
    59.G. L. Batch, and C. W. Mocosko, SPE. ANTEC Paper, 1987, 974.
    60.Y. J. Huang, J. D. Fan, and L. J. Lee, Polym. Eng. Sci., 1990, 30(11), 684.
    61.D.S. Kim, K. Cho, J.H. An, and C.E. Park, J. Mater. Sci., 1994, 29, 1854.
    62.J.S. Ullett and R.P. Chartoff, Polym. Eng. Sci., 1995, 35, 1086.
    63.M. Abbate, E. Martuscelli, P. Musto, G. Ragosta, and G. Scarinzi, J.Appl. Polym. Sci., 1995, 58, 1825.
    64.M.L.L. Maspochand and A.B. Matinez, Polym.Eng. Sci., 1998, 38, 290.
    65.N. A. Miller and C. D. Stirling, Polym. Comps., 2001, 9, 31.
    66.K. F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 1998, 69, 2069.
    67.K.F. Lin and Y.D. Shieh, J. Appl. Polym. Sci., 1998, 70, 2313.
    68.P. Hazot, C. Pichot, and A. Maazouz,, Macromol Chem. Phys., 2000. 201, 632.
    69.B.J.P. Jansen, S. Rastogi, H.E.H. Meijer, and P.J.Lemstra, Macromolecules, 2001, 34, 3998.
    70.H.J. Sue, E.I. Garciameitin, and D.M. Picklman, in Polymer Toughening, Ch. 5, ed., C.B. Arends, Marcel Dekker, 1996.
    71.The Dow Chemical Company US Patent 4,778,851 Oct. 18 1998.
    72.J.Y. Qian, R.A.Pearson, V.L. Dimonie, and M.S. El-Aasser, J. Appl. Polym. Sci., 1995, 58, 439.
    73.D. J. Suh, Y. T. Lim, and O. O. Park, Polymer, 2000, 41, 8557.
    74.R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fun, A. Chavira, and A. K. Thompsor, Polymer, 2002, 43, 3669.
    75.The Dow Chemical Company US Patent 6, 287, 922 Sep.11, 2001.
    76.A. Al-khanabashi, M. El-Gamal, and A. Moet, J. Appl. Polym. Sci., 2005, 98, 767.
    77.梁繼文, 礦物學(下), 1984.
    78.T. Lan and T.J Dinnavaia, Chem. Mater, 1994. 6, 2216.
    79.K. Ishizu, K. I. Tsubaki and T. Ono, Polymer, 1998, 39, 2935.
    80.T. J. Prosa, B. J. Bauer, E. J. Amis, D. A. Tomalia, R. Scherrenberg, J. Polym. Sci. : Part B: Polymer Physics, 1997, 35, 2913.
    81.T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, and H. Yamakawa, Macromolecules, 1990, 23, 290.
    82.L.H. Sperling, “Introduction to Physical Polymer Science,” 3rd Ed. Wiley, New York, 2001, P.85~90.
    83.M. Osa, T. Yoshizaki, and H. Yamakawa, Macromolecules 2000, 33, 4828.
    84.W. D. Cook and O. Delaycki, J. Polym. Sci., Part B: Polym. Phys., 1974, 12, 2111
    85.J. C. Lucas, J. Borrajo and R. J. J. Williams, Polymer, 1993, 34, 3216.
    86.C. B. Bucknall, I. K. Partridge and M. J. Phillips, Polymer, 1991, 32, 786.
    87.P. W. K. Lam, Polym. Eng. Sci., 1989, 29,609.
    88.H. Kim, Y. Miura, and C.W. Macosko, Chem. Mater., 22, 3441 (2010).
    89.H. Kim and C.W. Macosko, Macromolecules, 41, 3317 (2008).
    90.W. Huang, X. Ouyang, and L.J. Lee, ACS Nano, 6, 10178 (2012).
    91.J.Z. Xu, C. Chen, Y. Wang, H. Tang, Z.M. Li, and B.S. Hsiao, Macromolecules, 44, 2808 (2011).
    92.J.R. Potts, O. Shankar, L. Du, and R.S. Ruoff, Macromolecules, 45, 6045 (2012).
    93.S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and . Dean, Macromolecules, 42, 5251 (2009).
    94.S. Ganguli, A.K. Roy, D.P. Anderson, Carbon, 46, 806 (2008).
    95.M. Martin-Gallego, R. Verdejo, M.A. Lopez-Manchado, and M. Sangermanno, Polymer, 52, 4664 (2011).
    96.S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon, 45, 1558 (2007).
    97.W.S. Hummers, and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
    98.H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrere-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, R.A. Savile, and I.A. Aksay, J. Phys. Chem. B, 110, 8535 (2006).
    99.Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H,. Zhao, Langmuir, 25, 11808 (2009).
    100.F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt, Macromolecules, 45, 7083 (2012).
    101.鍾孟儒, 碩士論文,台灣科技大學, 2014.
    102.Patrick W. K. Lam, Polym. Eng. Sci., 1989., 29(10), 690-698.
    103.江昆達, 碩士論文, 台灣科技大學, 2008.
    104.S. L. Rosen, Fundamental Principles of Polymeric Materials, 2ed, Wiley, New York, 1993, 321-337.
    105.J. Als-Nielsen and D. McMorrow, Elements of Modern X-ray Physics,2nd Ed., Wiley, New York, 2011.
    106.T. Konishi, T. Yoshizaki, T. Saito, Y. Einage, and H. Yamakawa, Macromolecules, 1990, 23, 290.
    107.劉伊姍, 碩士論文,台灣科技大學, 2013.

    QR CODE