簡易檢索 / 詳目顯示

研究生: 顏煒峻
Wei-chun Yen
論文名稱: 反應濺鍍法製備鎂摻雜氮化銦鎵薄膜及其特性分析
Processing and Property Characterization of Mg-Doped InGaN Thin Films Prepared by Reactive Sputtering
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 99
中文關鍵詞: 濺鍍鎂摻雜氮化銦鎵薄膜電特性p-n二極體
外文關鍵詞: Sputtering, p-type Mg-doped InGaN, Thin films, Electrical property, p-n juntion
相關次數: 點閱:210下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗成功的以RF反應式濺鍍法來製備p型Mg摻雜InGaN薄膜。並且也成功的將GaN薄膜與摻雜Mg的InGaN薄膜堆疊製作成二極體觀察其電特性。於本實驗中我們利用EDS、SEM、AFM、XRD、霍爾效應量測儀與UV等儀器來分析薄膜特性,所以本論文的研究主要可以分成三個部分。
    第一部分為利用RF反應式濺鍍法在Si基板上製備Mg-x InGaN薄膜(x = 0、0.1、0.15與0.2),使用靶材為Mg + In + Ga + GaN 陶金靶,沉積溫度為400 oC,並在濺鍍時固定氬氣與氮氣的流量,觀察Mg含量的改變對薄膜特性的影響。從XRD分析中可知Mg-x InGaN薄膜皆為纖維鋅礦結構,且其薄膜的成長優選方向為( )結晶平面。從霍爾效應量測結果可以得知當x = 0.1時,薄膜不需要經過退火程序即可從n型轉變為p型半導體薄膜,電洞濃度為5.5  1018 cm-3,載子遷移率為16 cm2∙V-1∙s-1。從UV吸收光譜計算Mg-x InGaN薄膜,當x從0 增加至0.2時,薄膜能隙則從2.97 eV下降至2.84 eV。
    第二部分為利用RF反應式濺鍍法在Si基板上製備Mg-InxGa1-xN薄膜(x = 0.025、0.05、0.075與0.1),使用靶材為Mg + In + Ga + GaN陶金靶,沉積溫度為400 oC,並在濺鍍時固定氬氣與氮氣的流量,觀察In含量的改變對薄膜特性的影響。XRD分析顯示Mg-InxGa1-xN薄膜皆為纖維鋅礦結構,且其薄膜的成長優選方向為( )結晶平面,而( )結晶平面的繞射峰會隨著薄膜內In含量增加而往低角度偏移。從霍爾效應量測結果可以得知當x = 0.1時,薄膜則從p型轉變為n型半導體薄膜,電子濃度為4.9  1018 cm-3,載子遷移率為6.3 cm2∙V-1∙s-1。利用UV吸收光譜計算Mg-InxGa1-xN薄膜的能隙,當x從0.025增加至0.1時,薄膜能隙則從2.91 eV下降至2.81 eV。
    第三部份則是利用RF反應式濺鍍法將GaN與Mg-InGaN薄膜在Pt/Si基板上製備成Mg-InGaN二極體,而Mg-0.15 InGaN之p-n二極體具有較良好的整流作用,此Mg-0.15 InGaN二極體的啟動電壓為1.8 V,而在- 1 V的漏電流則為2.64  10-6 A,且其崩潰電壓為- 6.8 V。並且利用熱電子發射理論中的標準二極體方程式計算出來理想因子為6.1,而能障高為0.53 eV。


    In this research, we successfully deposited p-type Mg-doped InGaN (Mg-InGaN) films by RF sputtering with single cermet targets. All the thin films were analysised by EDS, SEM, AFM, XRD, Hall Effect measurement, and UV. This study was divided into three parts.
    The first part is about Mg-x InGaN films (x = 0, 0.1, 0.15 and 0.2). The Mg-x InGaN films were deposited on Si (100) substrate by RF sputtering with single (Mg + In + Ga + GaN) cermet target in an Ar/N2 atmosphere. The cermet targets with a constant 5 % indium content were made by hot pressing. The deposition temperature was 400 oC. The Mg-InGaN films had a wurtzite structure with a preferential ( ) growth plane. As x value of the Mg-x InGaN increased to 0.1, the film was directly transformed into p–type conduction without a post-annealing process. It had high hole concentration of 5.5  1018 cm-3 and carrier mobility of 16 cm2V-1s-1. The energy bandgap of Mg-x InGaN films decreased from 2.97 to 2.84 eV, as x value increased from 0 to 0.2.
    The second part is about Mg-InxGa1-xN films (x = 0.025, 0.05, 0.075 and 0.1). The Mg-x InGaN films were deposited on Si (100) substrate by RF sputtering with single (Mg + In + Ga + GaN) cermet target in an Ar/N2 atmosphere. The cermet targets with a constant 15 % Magnesium content were made by hot pressing. The deposition temperature was 400 oC. The Mg-InGaN films had a wurtzite structure with a preferential ( ) growth plane. With increasing In content, the 2 peak position gradually shifted to lower angle. As x value of the Mg-InxGa1-xN increased to 0.1, the film was transformed into n–type conduction. It had high carrier concentration of 4.9  1018 cm-3 and electrical mobility of 6.3 cm2V-1s-1. The energy bandgap of Mg-InxGa1-xN films decreased from 2.91 to 2.81 eV, as x value increased from 0.025 to 0.1.
    The final part is about Mg-InGaN p-n diode. The p-n diode was made on Pt/Si substrate by RF sputtering. The current-voltage (I-V) curves of the p-n diode tested at room temperature. The I-V curve exhibited exllent rectifying behavior. For the forward bias, the turn-on voltage of ~1.8 eV. The leakage current of p-n iuntion diode was found to be 2.64  10-6 A under the reverse bias of -1 V. The ideality factors and the barrier heights were calculated by using equations based on the standard thermionic-emission mode. The ideality factors of the p-n diodes was 6.1. The barrier heights of the p-n diodes was 0.53 eV.

    摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第二章 文獻回顧與原理 7 2.1 氮化鎵 (Gallium nitride, GaN)介紹 7 2.2 氮化銦與氮化銦鎵 (Indium Nitride, InN, and Indium gallium nitride, InGaN)介紹 12 2.3 p型氮化銦鎵 (p-type Indium gallium nitride, p-type InGaN) 介紹 19 第三章 實驗方法與步驟 28 3.1 實驗材料及規格 28 3.2 實驗儀器說明 29 3.2.1 超音波震盪機 29 3.2.2 高溫真空管型爐系統 30 3.2.3 真空熱壓機 30 3.2.4 RF反應式濺鍍系統 30 3.3 實驗步驟 32 3.3.1 靶材粉末配置 32 3.3.2 熱壓靶材 33 3.3.3 基板裁切與清洗 34 3.3.4 薄膜濺鍍 35 3.3.5 製備元件 36 3.3.6 薄膜特性量測 37 3.4 分析儀器介紹及量測參數 38 3.4.1 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 38 3.4.2 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 40 3.4.3 原子力顯微鏡 (Atomic Force Microscope, AFM) 41 3.4.4 霍爾效應量測系統 (Hall Effect Measurement System) 42 3.4.5 紫外光、可見光/近紅外光分析儀(UV-Vis/NIR spectrophotometer, UV) 43 3.4.6 半導體裝置分析儀 (Semiconductor Device Parameter Analyzer) 44 第四章 結果與討論 45 4.1不同Mg摻雜量之Mg-x InGaN薄膜特性分析及探討 46 4.1.1 不同Mg摻雜量之Mg-x InGaN薄膜成分分析 46 4.1.2 不同Mg摻雜量之Mg-x InGaN薄膜SEM分析 50 4.1.3 不同Mg摻雜量之Mg-x InGaN薄膜AFM分析 53 4.1.4 不同Mg摻雜量之Mg-x InGaN薄膜XRD分析 56 4.1.5 不同Mg摻雜量之Mg-x InGaN薄膜之霍爾效應電性量測 59 4.1.6 不同Mg摻雜量之Mg-x InGaN薄膜光學性質分析 62 4.2不同In含量之Mg-InxGa1-xN薄膜特性分析及探討 64 4.2.1 不同In含量之Mg-InxGa1-xN薄膜成分分析 64 4.2.2 不同In含量之Mg-InxGa1-xN薄膜SEM分析 68 4.2.3 不同In含量之Mg-InxGa1-xN薄膜AFM分析 71 4.2.4 不同In含量之Mg-InxGa1-xN薄膜XRD分析 74 4.2.5 不同In含量之Mg-InxGa1-xN薄膜之霍爾效應電性量測 77 4.2.6 不同In含量之Mg-InxGa1-xN薄膜之光學性質分析 80 4.3 Mg-InGaN之二極體電性分析及探討 82 4.3.1 Mg-x InGaN之二極體電性分析 82 4.3.2 Mg-InxGa1-xN之二極體電性分析 86 第五章 結論 89 參考文獻 95

    [1] 郭浩中、賴芳儀、郭守義著,【LED原理與應用】,五南圖書出版公司,2009年。
    [2] S. C. Jain, M. Willander, J. Narayan, R. V. Overstraeten, J. Appl. Phys. 87 (2000) 965–1006.
    [3] S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys. 76, 8189 (1994).
    [4] S. Nakamura, M. Senoh, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. 35, L217 (1996).
    [5] I. Daumiller, C. Kirchner, M. Kamp, K. J. Ebeling, E. Kohn, IEEE Electron Dev. Lett. 20 (1999) 448–450.
    [6] S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, A. E. Wickenden, Solid-State Electron. 41 (1997) 177–180.
    [7] H. Morkoc, A. D. Carlo, and R. Cingolani, Solid-State Electron. 46 (2002) 157–202.
    [8] B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, F. Karouta, J. Cryst. Growth 241 (2002) 15–18.
    [9] P. M. Asbeck, E. T. Yu, S. S. Lau, W. Sun, X. Dang, C. Shi, Solid-State Electron. 44 (2000) 211–219.
    [10] B. F. Chu-Kung, M. Feng, G. Walter, N. Holonyak Jr., T. Chung, J. H. Ryou, J. Limb, D. Yoo, S. C. Shen, R. D. Dupuis, D. Keogh, P. M. Asbeck, Appl. Phys. Lett. 89 (2006) 082108.
    [11] J. T. Torvik, J. I. Pankove, B. V. Zeghbroeck, Solid-State Electron. 44 (2000) 1229–1233.
    [12] K. Kumakura, T. Makimoto, Appl. Phys. Lett. 92 (2008) 093504.
    [13] U. K. Mishra, P. Parikh, Y. F. Wu, Proc. IEEE 90 (2002) 1022–1031.
    [14] X. L. Wang, C. M. Wang, G. X. Hu, J. X. Wang, T. S. Chen, G. Jiao, J. P. Li, Y. P. Zeng, J. M. Li, Solid-State Electron. 49 (2005) 1387–1390.
    [15] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, N. Hara, IEEE Electron Dev. Lett. 31 (2010) 189–191.
    [16] C. S. Gallinat, G. Koblmuller, J. S. Brown, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, M. Wraback, Appl. Phys. Lett. 89 (2006) 032109.
    [17] T. Inushima, M. Higashiwaki, T. Matsui, Phys. Rev. B 68 (2003) 235204.
    [18] G. Shikata, S. Hirano, T. Inoue, M. Orihara, Y. Hijikata, H. Yaguchi, S. Yoshida, J. Cryst. Growth 301–302 (2007) 517–520.
    [19] H. Yamashita, K. Fukui, S. Misawa, S. Yoshida, J. Appl. Phys. 50 (1979) 896–898.
    [20] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, S. L. Gilbert, J. Appl. Phys. 44 (1973) 292–296.
    [21] 呂彥興,【氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用】,國立成功大學碩士論文,民國96年7月。
    [22] S. Yamasaki, S. Asami, N. Shibata, M. Koike, K. Manabe, T. Tanaka, H. Amano, and I. Akasaki, Appl. Phys. Lett. 66, 1112 (1995).
    [23] K. Kumakura, T. Makimoto, and N. Kobayashi, J. Appl. Phys. 93, 3370 (2003).
    [24] K. Kumakura, T. Makimoto, and N. Kobayashi, J. Cryst. Growth 221 (2000) 267–270.
    [25] T. C. Wen, W. I. Lee, J. K. Sheu, G. C. Chi, Solid-State Electronics 45 (2001) 427–430.
    [26] S. N. Lee, T. Sakong, W. Lee, H. Paek, J. Son, E. Yoon, O. Nam, and Y. Park, J. Cryst. Growth, 261, 249 (2004).
    [27] P. C. Chen, C. H. Chen, S. J. Chang, Y. K. Su, P. C. Chang, and B. R. Huang, Thin Solid Films, 498, 113 (2006).
    [28] C. A. Chang, T. Y. Tang, P. H. Chang, N. C. Chen, and C. T. Liang, Jpn. J. Appl. Phys. Vol. 46, No. 5A, 2007, pp. 2840–2843.
    [29] D. Iida, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Appl. Phys. Lett. 93, 182108 (2008).
    [30] B. N. Pantha, A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 95, 261904 (2009).
    [31] K. Sasamoto, T. Hotta, K. Sugita, A. G. Bhuiyan, A. Hashimoto, A. Yamamoto, K. Kinoshita, Y. Kohji, J. Cryst. Growth, 318 (2011) 492–495.
    [32] H. W. Kim, N. H. Kim, Appl. Surf. Sci. 236 (2004) 192–197.
    [33] Z. X. Zhang, X. J. Pan, T. Wang, E. Q. Xie, L. Jia, J. Alloys Compd. 467 (2009) 61–64.
    [34] Q. Guo, Y. Kusunoki, Y. Ding, T. Tanaka, M. Nishio, Jpn. J. Appl. Phys. 49 (2010) 081203.
    [35] W. C. Johnson, J. B. Parson, M. C. Crew, J. Phys. Chem. 36 (1932) 2651–2654.
    [36] H. P. Maruska, J. J. Tietjen, Appl. Phys. Lett. 15 (1969) 327–329.
    [37] Strategies Unlimited, Gallium Nitrde-Technology Status and Applications Analysis, March(1997).
    [38] Rudiger Quay, Gallium Nitride Electronics, Springer (2008) pp. 4.
    [39] S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett. 42 (1983) 427–429.
    [40] 蔡妙嬋,【氮化銦鎵藍光發光二極體極化效應之研究】,國立彰化師範大學碩士論文,民國97年6月。
    [41] T. Takayama, M. Yuri, K. Itoh, J. S. Harris, Jr., Appl. Phus. Lett. 90 (2001) 2358–2369.
    [42] 賴彥霖,【氮化銦鎵(類量子點)/氮化鎵多重量子井之微結構與光學性質之研究】,國立成功大學博士論文,民國95年12月。
    [43] M. Razeghi, M. Henini, Optoelectronic Devices: III-Nitrides, Kidlington, Oxford: Elsevier Ltd (2004) pp. 3.
    [44] J. Piprek, Nitride Semiconductor Devices: Principles and Simulation, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA (2007) pp. 7.
    [45] I. Vurgaftman, J. R. Meyer, J. Appl. Phys. 94 (2003) 3675–3696.
    [46] M. Higashiwaki, T. Matsui, J. Cryst. Growth 269 (2004) 162–166.
    [47] 唐慈淯,【鎂摻雜氮化銦鎵之成長及特性】,私立長庚大學碩士論文,民國95年7月。
    [48] R. Juza, H. Hahn, Z. Anorg. Allg. Chem. 239 (1938) 282–287.
    [49] A. Yamamoto, Y. Murakami, K. Koide, M. Adachi, and A. Hashimoto, Phys. Status Solidi B 228, 5 (2001).
    [50] V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
    [51] T. L. Tansley, C. P. Foley, Electron. Lett. 20 (1984) 1066–1068.
    [52] N. Saitoa, Y. Igasaki, Appl. Surf. Sci. 169–170 (2001) 349–352.
    [53] D. H. Kuo, C. H. Shih, Appl. Phys. Lett. 93 (2008) 164105.
    [54] S. Inoue, T. Namazu, T. Suda, K. Koterazawa, Vacuum 74 (2004) 443–448.
    [55] R. Dahal, B. Pantha, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phus. Lett. 94 (2009) 063505.
    [56] R. Singh, D. Doppalapudi, T. D. Moustakas, L. T. Romano, Appl. Phys. Lett. 70 (1997) 1089–1091.
    [57] W. C. Tsai, H. Lin, W. C. Ke, W. H. Chang, W. C. Chou, W. K. Chen, M. C. Lee, Phys. Stat. Sol. C 5 (2008) 1702–1705.
    [58] Y. Guo, X. L. Liu, H. P. Song, A. L. Yang, X. Q. Xu, G. L. Zheng, H. Y. Wei, S. Y. Yang, Q. S. Zhu, Z. G. Wang, Appl. Sur. Sci. 256 (2010) 3352–3356.
    [59] O. Tuna, W. M. Linhart, E. V. Lutsenko, M. V. Rzheutski, G. P. Yablonskii, T. D. Veal, C. F. McConville, C. Giesen, H. Kalisch, A. Vescan, M. Heuken, J. Cryst. Growth 358 (2012) 51–56.
    [60] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 28 (1989) 2112–2114.
    [61] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Jpn. J. Appl. Phys. 31 (1992) 139–142.
    [62] S. Fischer, C. Wetzel, E. E. Haller, and B. K. Meyer, Appl. Phys. Lett. 67 (9) (1995) 1298.
    [63] S. J. Pearton, J. W. Lee, C. Yuan, Appl. Phys. Lett. 68 (19) (1996) 2690.
    [64] 徐妙枝,同電子性銦摻雜對P型氮化鎵薄膜之影響,碩士論文,交通大學,電子物理系 (2001)。
    [65] S. N. Mohammad, A. E. Botchkarev, A. Salvador, W. Kim, O. Aktas, H. Morkoc, Philos. Magn. B 76 (1997) 131.
    [66] J. Neugebauer, C. G. Van de Walle, Mater. Res. Soc. Symp. Proc. 395 (1996) 645.
    [67] H. Nakayama, P. Hacke, M. R. H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 35 (Part 2)(1996) L282.
    [68] S. Yamasaki, S. Asami, N. Shibata, M. Koike, K. Manabe, T. Tanaka, H. Amano, and I. Akasaki, Appl. Phys. Lett. 66, 1112 (1995).
    [69] S. J. Chung, M. Senthil Kumar, Y. S. Lee, E. K. Suh, and M. H. An, J. Phys. D: Appl. Phys. 43 185101.
    [70] S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J. C. Tedenac, J. Alloys Compd. 462 (2008) 335–339.
    [71] S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34 (2012) 1946–1953.
    [72] S. Strite, H. Morkoc, J. Vac. Sci. Technol. B 10 (1992) 1237–1266.
    [73] K. Wang, R. R. Reeber, Appl. Phys. Lett. 79 (2011) 1602–1604.
    [74] J. Ran, X. Wang, G. Hu, J. Li, B. Wang, H. Xiao, J. Wang, Y. Zeng, J. Li, Z. Wang, J. Cryst. Growth 298 (2007) 235–238.
    [75] W. Lee, J. Limb, J. H. Ryou, D. Yoo, M. A. Ewing, Y. Korenblit, R. D. Dupuis, J. Display Technol. 3 (2007) 126–132.
    [76] W. Lee, J. Limb, J. H. Ryou, D. Yoo, T. Chung, R. D. Dupuis, J. Cryst. Growth 287 (2006) 577–581.
    [77] C. M. Balkasa, C. Basceria, R. F. Davis, Powder Diffr. 10 (1995) 266–268.
    [78] R. D. Shannon, C. T. Prewitt, Acta Cryst. B 25 (1969) 925–946.
    [79] K. Kumakura, T. Makimoto, and N. Kobayashi, J. Appl. Phys., Vol. 93, No. 6, 15 March 2003.
    [80] M. G. Ganchenkova, R. M. Nieminen, Phys. Rev. Lett. 96 (2006) 196402.
    [81] S. N. Lee, J. K. Son, T. Sakong, W. Lee, H. Paek, E. Yoon, J. Kim, Y. H. Choc, O. Nam, Y. Park, J. Cryst. Growth 272 (2004) 455–459.
    [82] C. R. Lee, K. W. Seol, J. M. Yeon, D. K. Choi, H. K. Ahn, Journal of Crystal Growth 222 (2001) 459–464.
    [83] R. K. Gupta, F. Yakuphanoglu, K. Ghosh, P. K. Kahol, Microelectron. Eng. 88 (2011) 3067–3069.
    [84] J. S. Jang, D. Kim, T. Y. Seong, J. Appl. Phys. 2006, 99, 073704.
    [85] M. L. Lee, J. K. Sheu, L. S. Yeh, M. S. Tsai, C. J. Kao, C. J. Tun, S. J. Chang, G. C. Chi, Solid-State Electron. 46 (2002) 2179–2183.

    QR CODE