簡易檢索 / 詳目顯示

研究生: 王建升
Jian-Sheng Wang
論文名稱: 基於工業機器手臂之復健機器人研究
Research on a rehabilitation robot using industrial robot arm
指導教授: 陳亮光
Liang-Kuang Chen
口試委員: 鄧昭瑞
Geo-Ry Tang
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 復健式機器人工業型機械手臂順應性系統
外文關鍵詞: Rehabilitation robot, industrial robot arm, compliance system
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在醫療體系人員不足的情況下,逐漸開始使用自動化設備的輔助來降低醫事人員的負擔。以復健而言,傳統常由醫生主觀判定的運動機能復健,也可以被自動化設備來取代。本文以工業型機械手臂搭配廠商提供的部分開放功能,探討即時修正的運動控制,並將此架構應用到做為復健的輔具。當病患在復健的過程中推動機械手臂,進行伸展與屈伸等往復動作時,機械手臂根據感測器所量測的力量資訊、搭配復健訓練模式的規劃,執行相對的順應移動與速度,達到復健師所規劃之治療。
    本研究所規劃的復健機器人其架構是一套提供適應性輔助功能的訓練系統,可以根據目前患者的使用狀況,切換至不同狀態需要之模式。根據機器人介入的程度,分成三種不同的訓練模式,以配合三種不同狀態之病患使用。本文提供了三種模式的控制策略設計,以及模式間的切換進行操作。
    最後將設計順應性運動控制系統進行實驗,藉由控制器作業的實驗結果與參考文獻進行功能比對,並透過多位操作者的實驗測試,來驗證本文建立之復健式機械人的可行性。實驗結果顯示,在實驗中所測出之差異性,經過與文獻的功能比對,和對量測的數據進行評估,都符合當初開發此復健機器人的功能,在於訓練模式和控制器的配搭,並使用切換的機制,使該系統在於順應性和安全性方面考量上都是能正常運作。


    In the case of insufficient medical system personnel, the use of automation equipment is gradually used to reduce the burden on medical personnel. In terms of rehabilitation, usually diagnosed by a doctor and given rehabilitation training, that can be replaced by automated equipment. This thesis will establish some of the open functions provided by the manufacturer, the industrial robot arm with this function, the motion control for immediate correction, and apply this structure to the auxiliary device for rehabilitation. The patient pushes the robot arm during the rehabilitation process. Reciprocating movements such as stretching and flexion and extension, the robot arm performs relative compliance movement and speed according to the strength information measured by the sensor and the planning of the rehabilitation training mode, and achieves the treatment planned by the rehabilitation teacher.
    This system uses a set of aid-based training systems that can be switched to different state-required modes based on current patient use, and are divided into three different training modes depending on the level of robotic intervention to accommodate patients in three different states. This paper provides three modes of control strategy design, as well as switching between modes to operate.
    Finally, the design of the compliant motion control system will be carried out. The experimental results of the controller operation will be compared with the reference literature, and the experimental results of multiple operators will be used to verify the feasibility of the rehabilitation robot established in this paper.

    目錄 摘 要 I ABSTRACT II 誌 謝 III 目錄 IV 圖 索 引 VI 表 索 引 VIII 第一章 緒論 1 1.1 前言與研究目標 1 1.2 文獻回顧 3 1.2.1 EGM模組應用 3 1.2.2 復健式機器人 4 1.2.3 順應性力量控制 6 1.3 研究目的 7 1.4 論文架構 7 第二章 系統架構 9 2.1 機械手臂背景說明 10 2.2 通訊設備介紹 10 2.2.1 軟體測試與接收 12 2.3 外部引導運動控制 13 2.3.1 通訊設定 14 2.3.2 EGM基本使用法 16 2.4 位置回饋 19 2.5 力覺感測 19 2.5.1 力量感知器 19 2.5.2 力量感知器的通訊方式 20 2.5.3 RS-485訊號例外排除 21 2.5.4 手把治具 21 2.5.5 力量與機械手臂座標的轉換 22 2.6 人機介面 23 第三章 復健模式與控制器設計 24 3.1 順應性輔助訓練模式 24 3.2 順應性復健系統三個子模式之控制器設計 25 3.2.1 移動現象之演算設計 26 3.2.2 建立EGM控制器模型 28 3.3 控制架構 34 3.3.1 1-C主動模式 34 3.3.2 1-B 輔助模式 34 3.3.3 1-A 被動模式 35 3.3.4 切換判斷 35 3.3.5 系統控制流程 38 第四章 實驗設計與結果 39 4.1 實驗設計 39 4.2 第一組實驗結果 40 4.3 第二組實驗結果 41 4.4 第三組實驗結果 45 4.5 實驗分析與討論 47 4.5.1 第一組實驗結果分析 48 4.5.2 第二組實驗結果分析 50 4.5.3 第三組實驗結果分析 54 4.5.4 結果討論 56 第五章 結論與未來展望 58 參考文獻 59 附錄A 1 附錄 B 3 附錄 C 5

    參考文獻
    [1] Noritsugu, T. & Tanaka, T. (1997, December). Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Transactions On Mechatronics, 2(4), 259-267.
    [2] Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B. & Amirabdollahian, F. (2014, July). Training modalities in robot-mediated upper limb rehabilitation in stroke: A framework for classification based on a systematic review. Journal of Neuroeng. Rehabil, 11(1), 111-125.
    [3] Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P., Mesanza, A. B. & Jung, J. H. (2019, April). Inclusive and seamless control framework for safe robot-mediated therapy for upper limbs rehabilitation. The International Journal of Mechatronics, 58, 70-79.
    [4] Stadelmann, L., Sandy, T., Thoma, A. & Buchli, J. (2019, April). End-effector pose correction for versatile large-scale multi-robotic systems. IEEE Robotics and Automation Letters, 4(2), 546-553.
    [5] Gao, J. M. (2016, June). Industrial robot motion control for joint tracking in laser welding. Master's Thesis of Department of Mechanical Engineering. Sweden, University West, 37.
    [6] Zhang, Q., Yang, S., Liu, H., Xie, C., Cao, Y. & Wang, Y. (2018, January). Real-time implementation of a joint tracking system in robotic laser welding based on optical camera. Transactions on Intelligent Welding Manufacturing, 1(3), 99-111.
    [7] Karlsson, M., Carlson, F. B., Backer, J. D., Holmstrand, M., Robertsson, A. & Johansson, R. (2016, January). Robotic seam tracking for friction stir welding under large contact forces. In 7th Swedish Production Symposium (SPS).
    [8] Chen, S. & Wen, J. T. (2019, February). Industrial robot trajectory tracking using multi-layer neural networks trained by iterative learning control. arXiv:1903.00082.
    [9] Ørjan, M. (2016, June). Following moving objects using externally guided motion (EGM). Master's thesis in Cybernetics and signal processing. Norway, University of Stavanger, 80.
    [10] Choi, J. H., Kwak, J. H., An, J. & Oh, S. (2017, July). Force sensorless multi-functional impedance control for rehabilitation robot. IFAC-PapersOnLine, 50(1), 12077-12082.
    [11] Mancisidor, A., Asier, Z., Cabanes, I., Bengoa, P. & Jung, J. H. (2018, February). Kinematical and dynamical modeling of a multipurpose upper limbs rehabilitation robot. Robotics and Computer-Integrated Manufacturing, 49, 374-387.
    [12] Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M. & Van der Loos, M. (2002, July). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of physical medicine and rehabilitation, 83(7), 952-959.
    [13] Frick, E. M. & Alberts, J. L. (2006, October). Combined use of repetitive task practice and an assistive robotic device in a patient with subacute stroke. Physical therapy, 86(10), 1378-1386.
    [14] Reinkensmeyer, D. J., Emken, J. L. & Cramer, S. C. (2004, August). Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng., 6, 497-525.
    [15] Riener, R., Nef, T. & Colombo, G. (2005, February). Robot-aided neurorehabilitation of the upper extremities. Medical and biological engineering and computing, 43(1), 2-10.
    [16] Kwakkel, G., Wagenaar, R. C., Koelman, T. W., Lankhorst, G. J. & Koetsier, J. C. (1997, August). Effects of intensity of rehabilitation after stroke. Stroke, 28(8), 1550-1556.
    [17] Ju, M. S., Lin, C. C., Lin, D. H., Hwang, I. S. & Chen, S. M. (2005, September). A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 349-358.
    [18] Yang, Y., Wang, L., Tong, J. & Zhang, L. (2006, December). Arm rehabilitation robot impedance control and experimentation. In Robotics and Biomimetics, 2006. ROBIO'06. IEEE International Conference on, IEEE, (pp. 914-918).
    [19] Hogan, N., Krebs, H. I., Sharon, A. & Charnnarong, J. (1995). Interactive robotic therapist. U.S. Patent No. 5,466,213. Washington, DC: U.S. Patent and Trademark Office.
    [20] Reinkensmeyer, D. J., Schmit, B. D. & Rymer, W. Z. (1999, November). Assessment of active and passive restraint during guided reaching after chronic brain injury. Annals of biomedical engineering, 27(6), 805-814.
    [21] Burgar, C. G., Lum, P. S., Shor, P. C. & Van der Loos, H. M. (2000, November/December). Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. Journal of rehabilitation research and development, 37(6), 663-674.
    [22] Nef, T., Guidali, M. & Riener, R. (2009, February). ARMin III-arm therapy exoskeleton with an ergonomic shoulder actuation. Appl Bio Biomech. 6(2), 127–42.
    [23] Nef, T., Klamroth-Marganska, V., Keller, U. & Riener, R. (2016, August). Three-dimensional multi-degree-of-freedom arm therapy robot (ARMin). In Neurorehabilitation Technology (pp. 351-374). Springer International Publishing.
    [24] 簡立宇,「應用交互作用扭矩觀測器於外骨骼上肢復健機器人之控制」,國立臺灣大學,電機工程學研究所,碩士論文,民國106年。
    [25] Denève, A., Moughamir, S., Afilal, L. & Zaytoon, J. (2008, February). Control system design of a 3-DOF upper limbs rehabilitation robot. Computer Methods and Programs in Biomedicine, 89(2), 202-214.
    [26] Proietti, T., Crocher, V., Roby-Brami, A. & Jarrasse, N. (2016, April). Upper-limb robotic exoskeletons for neurorehabilitation: A review on control strategies. IEEE Rev. Biomed. Eng, 9, 4-14.
    [27] Whitney, D. E. & Rourke, J. M. (1986, July). Mechanical behavior and design equations for elastomer shear pad remote center compliances. Journal of Dynamic Systems, Measurement, and Control. 108 (3), 223-232.
    [28] Wang, W., Loh, R. N. & Ang, M. H. (1997, July). Passive compliance of flexible link robots: (I) A new computation method. IEEE ICAR’ 97:209–214 Yang Zuxiao, (1999) Transmission stiffness model for ball Screws drive. Machining Technique & Machine Tool 7:12–14
    [29] Xu, Y. & Paul, R. P. (1990, May). A robot compliant wrist system for automated assembly. in Robotics and Automation, Proceedings. 1990 IEEE International Conference on (pp. 1750-1755).
    [30] Hogan, N. (1985). Impedance control: An approach to manipulation: Part II—Implementation. ASME Journal of Dynamic Systems, Measurement, and Control, 107(1), 8-16.
    [31] GarcÍa, J. G., Robertsson, A., Ortega, J. G. & Johansson, R. (2008, April). Sensor fusion for compliant robot motion control. IEEE Transactions on Robotics, 24(2), 430-441.
    [32] Lawrence, D. (1988, April) Impedance control stability properties in common implementations. IEEE Int Conf on Robot and Auto, 2, 1185–1190.
    [33] Yang, Y., Wang, L. & Zhang, L. X. (2006, December). Arm rehabilitation robot impedance control and experimentation. IEEE International Conference on Robotics and Biomimetics, 914-918.
    [34] Paul, R. & Shimano, B. (1976, July). Compliance and control. Proc. of Joint Automation Control Conference, New York, 694-699.
    [35] Mason, M. T. (1981, June). Compliance and force control for computer controlled manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 11(6), 418-432.
    [36] Raibert, M. H. & Craig, J. J. (1981, June). Hybrid position/force control of manipulators. Journal of Dynamic Systems, Measurement, and Control, 102 (127), 126-133.
    [37] 許傑巽,「一種機械手臂順應性控制與安全設計」,國立交通大學,電控工程研究所,碩士,民國99年。
    [38] 吳秉昇,「混合位置/力量控制應用於機械手臂自動化打蠟之研究」,國立台灣科技大學,材料科學與工程系,碩士,民國106年。
    [39] Ju, M. S., Lin, C. K., Lin, D. H., Hwang, I. S. & Chen, S. M. (2005, September). A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 349-358.
    [40] Xu, G., Song, A. & Li, H. (2011, June). Adaptive impedance control for upper-limb rehabilitation robot using evolutionary dynamic recurrent fuzzy neural network. Intell Robot Syst, 62(3-4), 501-525.
    [41] ABB(2016)。Product manual IRB 1200。
    [42] ABB(2018)。Application manual DeviceNet Master/Slave。
    [43] ICP DAS(2016)。I-7565-DNM USB / DeviceNet Master Converter User’s Manual。
    [44] ABB(2018)。Application manual Controller software IRC5。
    [45] ROBOTIQ(2016)。Robotiq Force Torque Sensor FT 150/300 Instruction Manual。

    無法下載圖示 全文公開日期 2024/07/31 (校內網路)
    全文公開日期 2024/07/31 (校外網路)
    全文公開日期 2024/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE