簡易檢索 / 詳目顯示

研究生: 許妙如
Miao-Ju Hsu
論文名稱: 承重跑步機訓練之下肢外骨骼復健機器人滑動模式控制
Sliding Mode Control of a Lower-limb Exoskeleton Robot for Body-weight Support Treadmill Training
指導教授: 郭重顯
Chung-Hsien Kuo
口試委員: 黃漢邦
Han-Pang Huang
蘇順豐
Shun-Feng Su
彭昭暐
none
李明義
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 80
中文關鍵詞: 自適應滑動模式控制外骨骼復健運動訓練復健機器人
外文關鍵詞: adaptive sliding mode control, exoskeleton rehabilitation, locomotor training, rehabilitation robots
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著對醫療復健設備之需求增加以及機器人技術進步,下肢外骨骼復健機器人技術發展逐漸成熟;其不但可以提高復健之品質與有效性,也大幅改善物理治療師在為病患進行下肢復健之體力付出與負擔。有鑑於此,本文研發一具四自由度之下肢外骨骼復健機器人控制系統,此一控制系統可以結合承重系統以及動力跑步機,進行根據受測者所設計之下肢復健訓練軌跡控制。實務上,一般的比例-微分(Proportional-derivative)控制器可以應用於下肢外骨骼復健機器人之關節馬達伺服控制;然而,當使用於不同體重條件下之受測者時,PD控制器無法自動地調整控制參數,以達到理想的下肢復健軌跡追蹤,也不能對於受試者的體重變化產生相對應得適應性變化。為了解決上述問題,本文研發自適應滑動模式控制器來即時追蹤根據受測者所設計之下肢復健訓練軌跡,以降低不同受試者體重條件下控制效能之影響。根據模擬和實驗結果,本文所提出之自適應滑動模式控制器相較於一般之比例-微分控制器,其不但不需要針對不同受試者進行額外的控制調整參數,也具有更好的軌跡追蹤性能。


    .With the increasing demands of rehabilitation facilities and the advances of robotic technologies, lower-limb exoskeleton rehabilitation robots have been proposed to improve the quality and effectiveness of rehabilitation, as well as to reduce the effort and load of physiotherapists. In this thesis, a four-degrees-of-freedom lower-limb exoskeleton rehabilitation robot control system was developed to work with a body-weight support system and a power treadmill to perform subject specific locomotor training trajectories. Practically, conventional proportional-derivative(PD)control approach may be applied to the servo control of joint motors; However, it cannot adaptively deal with the subject's weight variations. To overcome this challenge, an adaptive sliding mode control approach was realized to track specific locomotor training trajectories with the considerations of different subjects' weights. According to the simulation and experiment results, the adaptive sliding mode controller represented better trajectory tracking performance than conventional PD controllers. Moreover, the adaptive sliding mode controller is capable of dealing with different subjects' conditions without extra adjusting operational control parameters.

    指導教授推薦書 ii 口試委員會審定書 iii 誌謝 iv 摘要 v Abstract vi 表目錄 ix 圖目錄 x 符號說明 xii 第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3論文架構 3 第二章 文獻回顧 4 2.1滑動模式控制 4 2.2下肢外骨骼機器人 5 2.3步態分析 6 第三章 下肢外骨骼復健機器人運動學與動力學分析 8 3.1運動學分析 8 3.1.1 D-H矩陣 8 3.1.2正向運動學 11 3.1.3逆向運動學 14 3.1.4賈可賓矩陣與逆賈可賓矩陣 16 3.2動力學分析 18 3.2.1動力學方程式推導 19 第四章 滑動模式控制器開發 23 4.1 滑動模式控制理論 23 4.2 自適應控制理論 26 4.3 自適應滑動模式控制器 29 第五章模擬與實驗結果討論 33 5.1 步態週期 34 5.2 傳統PD控制器 37 5.3 系統模擬 39 5.3.1 模擬架構 39 5.3.2 模擬結果 41 5.4實驗與討論 47 5.4.1 控制架構 47 5.4.2 機器人動作控制器 48 5.4.3 機器人致動器 49 5.4.4 實驗及結果分析 51 第六章 結論與未來研究規劃 62 參考文獻 64

    [1] G.P. Incremona, G.D. Felici, A. Ferrara, and E. Bassi, “A Supervisory Sliding Mode Control Approach for Cooperative Robotic System of Systems,” Systems Journal on IEEE, Vol. 9, pp. 263 - 272, 2015.
    [2] Q. Wu, X. Wang, F. Du, and Q. Zhu, “Fuzzy Sliding Mode Control of An Upper Limb Exoskeleton for Robot-Assisted Rehabilitation,” IEEE International Symposium. Medical Measurements and Applications. , pp. 451 - 456, May 2015.
    [3] Y. Liao, Z. Zhou, and Q. Wang, “BioKEX: A Bionic Knee Exoskeleton with Proxy-Based Sliding Mode Control.” IEEE International Conference on Industrial Technology, pp. 125 - 130, March 2015.
    [4] J. Yoon, B. Novandy, C.H. Yoon, and K.J. Park, “A 6-DOF Gait Rehabilitation Robot with Upper and Lower Limb Connections that Allows Walking Velocity Updates on Various Terrains,” IEEE/ASME Trans. Mechatronics., Vol. 15, pp. 201 - 215, 2010.
    [5] F. Cao, L. Yuanchun, and S. Jixia, “Adaptive Sliding Mode Impedance Control in Lower Limbs Rehabilitation Robotic,” Chinese Automation Congress, IEEE, pp. 310 - 315, 2013.
    [6] 鄧本賢,“Path Planning Analysis of A 6-DOF Serial Manipulator Based on PID and Sliding Mode Controllers,” ,碩士學位論文,國立台灣科技大學,民國103年。
    [7] A. Duschau-Wicke, T. Brunsch, L. Lünenburger, and R. Riener, “Adaptive Support for Patient-Cooperative Gait Rehabilitation with the Lokomat,” IEEE International Conference on Intelligent Robots and Systems, pp. 2375 - 2361, 2008.
    [8] L. Lunenburg, G. Colombo, R. Riener, and V. Dietz, “Biofeedback in Gait Training with The Robotic orthosis Lokomat,” International Conference of the IEEE on Engineering in Medicine and Biology Society, vol. 2, pp. 4888 - 4891, 2004.
    [9] A. Duschau-Wicke, J. Von Zitzewitz, A. Caprez, L. Lünenburger, and R. Riener, “Path Control: A method for Patient-Cooperative Robot-Aided Gait Rehabilitation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 18, pp. 38 - 48, 2010.
    [10] 劉佳玲,「適應性動作調整對活動下肢生理負荷之影響-以跑步機與橢圓軌道機為例」,碩士學位論文,朝陽科技大學,民國93年。
    [11] 程方,王人成,賈曉紅和王愛明,「減重步行訓練機器人的步態規劃方法」,中國康復醫學雜誌,民國97年。
    [12] 張立勳,趙凌燕和胡明茂,「下肢康復訓練機器人的重心軌跡控制研究」,應用科技,民國94年。
    [13] C. Kirtley, “CGA Normative Gait Database.” [Online]. Available: http://www.clinicalgaitanalysis.com/data/ (Access date: July 18, 2015)
    [14] G.V. Lakhekae, L.M. Waghmare, and P.S. Londhe, “Enhanced Dynamic Fuzzy Sliding Mode Controller for Autonomous Underwater Vehicles,” IEEE, Underwater Technology, pp. 1 - 7, 2015.
    [15] M.R. Soltanpour, P.O. Otadolajam, and M.K. Khooban, “Robust Control Strategy for Electrically Driven Robot Manipulators: Adaptive Fuzzy Sliding Mode,” IET, Measurement and Technology, Science, Vol. 9, pp. 322 - 334, 2015.
    [16] Y. Liao, Z. Zhou, and Q. Wang, “Neural Feedback Passivity of Unknown Nonlinear Systems via Sliding Mode Technique.” IEEE Transaction on Neural Networks and Learning Systems, Vol. 26, pp. 1560 - 1566, 2015.
    [17] L. Gui, Z. Yang, X. Yang, W. Gu, and Y. Zhang, “Design and Control Technique Research of Exoskeleton Suit,” IEEE International Conference on Automation and Logistics, pp. 541 - 546, 2007.
    [18] J.J. Slotine and W. Li, Applied nonlinear control. New Jersey: Prentice-Hall, pp. 402 - 406, 1991.
    [19] M. Spong and M. Vidyasagar, Robot dynamics and control. New York: John Wiley and Sons, pp. 50 - 52, 1989.
    [20] A.C. Huang and M.C. Chien, Adaptive Control of Robot Manipulators: A Unified Regressor-Free Approach. Singapore: World Scientific, pp. 89 - 90, 2010.
    [21] S.K. Agrawal, S.K. Banala, K. Mankala, V. Sangwan, J.P. Scholz, V. Krishnamoorthy, and W.L. Hsu, “Exoskeletons for Gait Assistance and Training of the MotorImpaired,” IEEE International Conference on Rehabilitation Robotics, pp.1108 - 1113, 2007.
    [22] S.K. Banala, S.K. Agrawal, S.H. Kim, and J.P. Scholz, “Novel Gait Adaptation and Neuromotor Training Results Using an Active Leg Exoskeleton,” IEEE/ASME Transactions on Mechatronics, Vol. 15, Issue. 2, pp. 216 - 225, 2010.
    [23] B.W. Stansfield, S.J. Hillman, M.E. Hazlewood, and J.E. Robb, “Regression analysis of gait parameters with speed in normal children walking at self-selected speeds,” Gait Posture, Vol. 23, Issue. 3, pp. 288 - 294, 2006.

    無法下載圖示 全文公開日期 2020/08/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE