簡易檢索 / 詳目顯示

研究生: 吳孟修
Meng-hsiu Wu
論文名稱: 海藻酸與幾丁聚醣之複合芯殼電紡纖維應用於傷口敷材
Electrospun core-shell fibers of alginate and chitosan for wound dressing
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 蘇清淵
Ching-Iuan Su
于大光
Da-guang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 129
中文關鍵詞: 傷口癒合透明質酸幾丁聚醣海藻酸靜電紡絲
外文關鍵詞: wound healing, hyaluronic acid, chitosan, alginate, electrospun
相關次數: 點閱:286下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用靜電紡絲技術與特殊電紡方式的改良,製備出具有芯殼結構之海藻酸與幾丁聚醣複合纖維膜,接著將此薄膜透過浸潤加工使其外表包覆一層透明質酸。利用混摻過甘油的海藻酸進行靜電紡絲大大增加了電紡的可行性。另外結合幾丁聚醣及透明質酸本身於水溶液中之聚電解質特性成功製備具有三層結構之聚電解質複合材。透過物性分析、材料穩定度測試、生物相容性分析,評估其對於應用於傷口敷材之可行性。
    經實驗數據發現,靜電紡絲參數的控制是成功紡出複合聚電解質薄膜的重要關鍵。經由纖維平均直徑的計算,除了可以歸納出理想電紡操作參數值,更可以證明靜電紡絲薄膜之高比表面積、高孔隙度特性。本研究以幾丁聚醣做為靜電紡絲之凝固液,薄膜成型後亦有效提升其機械性質。薄膜透過浸潤加工透明質酸後其細胞相容性有效提升,在模擬傷口癒合之細胞測試結果,本研究所製備之海藻酸-幾丁聚醣、海藻酸-幾丁聚醣-透明質酸複合膜更能有效促進細胞的遷移。


    In this study, we combined electrospinning technique and the coagulating bath method to prepeare alginate (AL) and chitosan (CS) composite fibers with core-shell structure, followed by coating the resulting mats with a layer of hyaluronic acid (HA). The property of glycerol-containing AL enhanced the spinnablilty. Because of the polyelectrolytic nature of AL, CS and HA, a three-layer structure was formed. Through characterization of physical properties, stability testing, and biocompatibility, the feasibility of these layered mats for wound dressing was evaluated.
    The electrospinning parameters were varied to reach the suitable for preparing AL-CS composite fibers. The average fiber diameter was used as the index for evaluating the electrospinning parameters, and exhibiting the high surface area and the high porosity of electrospun mats. The results showed that the CS can coagulate AL fiber with enhanced mechanical properties. The coating of HA can also enhance the cytocompatibility. The results of the simulated wound healing assay test showed that AL-CS and AL-CS-HA composite mats would be more effective in promoting the cell migration than conventional calcium-coagulated AL fibers.

    中文摘要I 英文摘要 (Abstract)II 誌謝 (Appreciation)III 總目錄 (Catalogs)IV 圖目錄 (Catalog of figures)VIII 表目錄 (Catalog of table)X 第壹章 緒論 (Introduction)1 1.1 研究背景 (Background)1 1.2 研究目的 (Purpose)1 第貳章 文獻回顧 (Literature review)3 2.1 靜電紡絲介紹 (Introduction of electrospinning)3 2.1.1 靜電紡絲發展歷史 (History of electrospinning)3 2.1.2 靜電紡絲運作原理 (The theory of electrospinning)4 2.1.3 電紡裝置架設類型 (Type of electrospinning setup)5 2.1.4 電紡成絲性之因素 (Factors of spinnibility)7 2.1.4.1 操作參數 (operating parameters)7 2.1.4.1.1 直流高電壓大小與工作距離 (voltage / working distance)7 2.1.4.1.2 高分子溶液流速 (Flow rate)9 2.1.4.2 高分子溶液特性 (Solution properties)9 2.1.4.2.1 溶劑的選擇 (Solvent)9 2.1.4.2.2 電導度 (Conductivity)10 2.1.4.2.3 表面張力 (Surface tension)11 2.1.4.2.4 溶液黏度 (Viscosity)12 2.1.4.2.5 流變學 (Rheology)13 2.1.4.3 工作環境因素 (Ambient parameters)14 2.1.4.3.1 工作環境溫、濕度控制14 2.1.4.3.2 相對溼度 (Relative humidity)14 2.2 靜電紡絲應用領域 (Appilcations)15 2.2.2 安全防護 (Defense & security)18 2.2.3 環境工程 (Environmental engineering)19 2.2.4 能源應用 (Energy)20 2.3 皮膚 (Skin)21 2.3.1 傷口癒合 (Wound healing)22 2.3.1.1 傷口的種類22 2.3.1.2 傷口癒合的順序22 2.3.1.3 理想的傷口敷材23 2.4 實驗材料與應用 (Applications of material)24 2.4.1 海藻酸鈉與其應用 (Applications of alginate)25 2.4.2 幾丁聚醣與其應用 (Applications of chitosan)28 2.4.3 透明質酸與其應用 (Applications of Hyaluronic acid)30 2.4.4 聚電解質材料 (Polyelectrolyte)31 2.4.5 靜電紡絲海藻酸實例 (Electrospinning of alginate)34 2.4.6 海藻酸鈉與幾丁聚醣混摻應用 (complex of AL and CS)36 第參章 實驗材料與方法 (Expermential)37 3.1 實驗材料 (Materials)37 3.2 實驗設備 (Equipments)39 3.3 實驗項目流程圖 (Experimental procedures)41 3.4 實驗原理及方法 (Principles and methods)42 3.4.1 靜電紡絲製程 (Electrospinning process)42 3.4.2 溶液的配製 (Preparation of solutions)43 3.4.3 電紡膜的製備 (Preparation of electrospinning films)45 3.4.4 溶液性質測試 (Property of solutions)46 3.4.4.1 流變學特性測試 (Rheology)46 3.4.4.2 黏度 (Viscosity)47 3.4.4.2.1 極限黏度 (Intrisinc viscosity)48 3.4.4.3 電導率 (Electric Conductivity)49 3.4.4.4 表面張力 (Surface tension)50 3.4.4.5 電紡液與凝固液之比重 (Specific gravity)51 3.4.5 物性分析 (Physical analysis)52 3.4.5.1 表面型態觀察 (Morphology observed)52 3.4.5.1.1掃描試電子顯微鏡與能量散譜元素分析 (SEM & EDX)52 3.4.5.1.2 螢光接枝纖維微細觀察 (Fluorescence microscope.)53 3.4.5.2 纖維平均直徑 (Average of diameter, AFD)54 3.4.5.3 膨潤度測試 (Swelling ratio)55 3.4.5.4 質量損失 (Mass loss)56 3.4.5.5 水蒸氣穿透速率 (Water Vapor Transmission Rate)57 3.4.5.6 接觸角測試 (Contact angle measurement)58 3.4.5.7 動態熱機械性質分析 (Dynamic Mechanical Analysis)59 3.4.6 生物相容性 (Biocompatibility)60 3.4.6.1 血液常規測試 (Complete Blood Count, CBC)60 3.4.6.2 蛋白質吸附 (Protein adsorption)61 3.4.6.3 細胞培養 (Cell culture)63 3.4.6.4 細胞存活率 (MTT Assay)64 3.4.6.5 細胞毒性 (In-vitro cytotoxicity)65 3.4.6.6 細胞增生 (Cell proliferation)67 3.4.6.7 傷口癒合 (Wound healing in vitro. Scratch assay)68 3.4.6.8 抑菌性 (Antibacterial activity)70 第肆章 結果與討論 (Results and discussion)71 4.1 溶液參數討論 (Properties of solutions)71 4.1.1流變性質分析 (Rheological properties)71 4.1.2黏度結果分析 (Viscosity)75 4.1.3 電導率 (Conductivity)78 4.1.4表面張力 (Surface tension)79 4.1.5 電紡液 / 凝固液 比重 (Specific gravity)82 4.2掃描試電子顯微鏡與能量散譜元素分析(SEM & EDX)83 4.2.1 電紡條件參數探討 (Parameters of electrospun)83 4.2.2 能量散譜元素分析 (EDX)86 4.3 纖維螢光側面結構 (Cross-sectional structure of fibers)88 4.4 穩定度分析 (The stablity of materials)90 4.4.1 纖維平均直徑 (AFD)90 4.4.2 電紡參數與纖維平均直徑(Parameters of e-spinning /AFD)92 4.4.3 膨潤度 (Swelling ratio)100 4.4.4 質量損失 (Mass loss)101 4.4.5 水蒸氣穿透速率測試 (WVTR)103 4.4.6 接觸角 (Contact angle)105 4.4.7 動態熱機械性質分析 (Dynamic mechanical analysis, DMA)106 4.5 血液常規測試 (Complete blood count, CBC)107 4.6 蛋白質吸附 (Protein adsorption)108 4.7 細胞實驗 (Cytocompatibility)109 4.7.1 細胞毒性 (In-vitro cytotoxicity)109 4.7.2 細胞增生 (Cell proliferation)111 4.7.3 傷口癒合 (Wound healing)112 4.8 抑菌性 (Antibacterial activity)114 第伍章 結論 (Conclusion)115 第陸章 參考文獻 (Reference)118 作者簡介 (Author profile)128

    [1]S. Agarwal, J. H. Wendorff, and A. Greiner "Use of electrospinning technique for biomedical applications," Polymer, vol. 49, pp. 5603-5621, 2008.
    [2]S. Salmieri and M. Lacroix, "Physicochemical Properties of Alginate/Polycaprolactone-Based Films Containing Essential Oils," Journal of Agricultural and Food Chemistry, vol. 54, pp. 10205-10214, 2006.
    [3]H.-R. Nie, A.-H. He, J.-F. Zheng, S.-S. Xu, J.-X. Li, and C. C. Han, "Effects of Chain Conformation and Entanglement on the Electrospinning of Pure Alginate," Biomacromolecules, vol. 9, pp. 1362-1365, 2008.
    [4]P. Sikorski, F. Mo, G. Skjak-Brak, and B. T. Stokke, "Evidence for Egg-Box-Compatible Interactions in Calcium−Alginate Gels from Fiber X-ray Diffraction," Biomacromolecules, vol. 8, pp. 2098-2103, 2007.
    [5]J. F. Cooley, "Apparatus for electrically dispersing fluids," United States Patent 692,631, 1902.
    [6]W. J. Morton, "Method of dispersing fluids," United States Patent 705,691, 1902.
    [7]J. Zeleny, "The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surfaces," Physical Review, vol. 3, p. 69, 1914.
    [8]A. Formhals, "Process and apparatus for preparing artificial threads," United States Patent 1,975,504, 1934.
    [9]A. Formhals, "Method and apparatus for spinning," United States Patent 2,160,962, 1939.
    [10]G. Taylor, "Disintegration of Water Drops in an Electric Field," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, pp. 383-397, July 28, 1964 1964.
    [11]G. Taylor, "The Force Exerted by an Electric Field on a Long Cylindrical Conductor," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 291, pp. 145-158, April 5, 1966 1966.
    [12]G. Taylor, "Electrically Driven Jets," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, vol. 313, pp. 453-475, December 2, 1969 1969.
    [13]H. L. Simons, "Process and apparatus for producing patterned non-woven fabrics," United States Patent 3,280,229, 1966.
    [14]J. Doshi and D. H. Reneker, "Electrospinning process and applications of electrospun fibers," Journal of Electrostatics, vol. 35, pp. 151-160, 1995.
    [15]N. Bhardwaj and S. C. Kundu, "Electrospinning: A fascinating fiber fabrication technique," Biotechnology Advances, vol. 28, pp. 325-347, 2010.
    [16]V. Beachley and X. J. Wen, "Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions," Progress in Polymer Science, vol. 35, pp. 868-892, 2010.
    [17]G. E. Martin and I. D. Cockshott, "Fibrillar product of electrostatically spun organic material," United States Patent 4,043,331, 1977.
    [18]Z. E. Theron A., Yarin A. L., "Electrostatic field-assisted alignment of electrospun nanofibres," Nanotechnology, vol. 12, pp. 90-384, 2001.
    [19]A. Bornat, "Electrostatic spinning of tubular products," United States Patent 4,323,525, 1982.
    [20]S. I. Jeong, M. D. Krebs, C. A. Bonino, S. A. Khan, and E. Alsberg, "Electrospun Alginate Nanofibers with Controlled Cell Adhesion for Tissue Engineeringa," Macromolecular Bioscience, vol. 10, pp. 934-943, 2010.
    [21]S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process," Polymer, vol. 46, pp. 6128-6134, 2005.
    [22]S. Tripatanasuwan and D. H. Reneker, "Corona discharge from electrospinning jet of poly(ethylene oxide) solution," Polymer, vol. 50, pp. 1835-1837, 2009.
    [23]G. H. Kim, Y. S. Cho, and W. D. Kim, "Stability analysis for multi-jets electrospinning process modified with a cylindrical electrode," European Polymer Journal, vol. 42, pp. 2031-2038, 2006.
    [24]Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, "Experimental characterization of electrospinning: the electrically forced jet and instabilities," Polymer, vol. 42, pp. 09955-09967, 2001.
    [25]P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers," Journal of Colloid and Interface Science, vol. 36, pp. 71-79, 1971.
    [26]D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning," Journal of Applied Physics, vol. 87, pp. 4531-4547, 2000.
    [27]Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, "Electrospinning: A whipping fluid jet generates submicron polymer fibers," Applied Physics Letters, vol. 78, pp. 1149-1151, 2001.
    [28]N. M. Thoppey, J. R. Bochinski, L. I. Clarke, and R. E. Gorga, "Unconfined fluid electrospun into high quality nanofibers from a plate edge," Polymer, vol. 51, pp. 4928-4936, 2010.
    [29]Y. Wu, J.-Y. Yu, J.-H. He, and Y.-Q. Wan, "Controlling stability of the electrospun fiber by magnetic field," Chaos, Solitons & Fractals, vol. 32, pp. 5-7, 2007.
    [30]J.-H. He, Y.-Q. Wan, and J.-Y. Yu, "Scaling law in electrospinning: relationship between electric current and solution flow rate," Polymer, vol. 46, pp. 2799-2801, 2005.
    [31]D.-W. Fang, Y. Liu, S. Jiang, J. Nie, and G.-P. Ma, "Effect of intermolecular interaction on electrospinning of sodium alginate," Carbohydrate Polymers, vol. 85, pp. 276-279, 2011.
    [32]X.-Y. Geng, O.-H. Kwon, and J.-H. Jang, "Electrospinning of chitosan dissolved in concentrated acetic acid solution," Biomaterials, vol. 26, pp. 5427-5432, 2005.
    [33]L. Van der Schueren, B. De Schoenmaker, O. I. Kalaoglu, and K. De Clerck, "An alternative solvent system for the steady state electrospinning of polycaprolactone," European Polymer Journal, vol. 47, pp. 1256-1263, 2011.
    [34]S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, "Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit," Polymer, vol. 46, pp. 3372-3384, 2005.
    [35]T. Uyar and F. Besenbacher, "Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity," Polymer, vol. 49, pp. 5336-5343, 2008.
    [36]W. Keun Son, J. Ho Youk, T. Seung Lee, and W. H. Park, "Effect of pH on electrospinning of poly(vinyl alcohol)," Materials Letters, vol. 59, pp. 1571-1575, 2005.
    [37]P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, "Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent," Polymer, vol. 46, pp. 4799-4810, 2005.
    [38]H. Fong, I. Chun, and D. H. Reneker, "Beaded nanofibers formed during electrospinning," Polymer, vol. 40, pp. 4585-4592, 1999.
    [39]H.-R. Nie, A.-H. He, W.-L. Wu, J.-F. Zheng, S.-S. Xu, J.-X. Li, and C. C. Han, "Effect of poly(ethylene oxide) with different molecular weights on the electrospinnability of sodium alginate," Polymer, vol. 50, pp. 4926-4934, 2009.
    [40]H. Zhou, T. B. Green, and Y. L. Joo, "The thermal effects on electrospinning of polylactic acid melts," Polymer, vol. 47, pp. 7497-7505, 2006.
    [41]C. Wang, H.-S. Chien, C.-H. Hsu, Y.-C. Wang, C.-T. Wang, and H.-A. Lu, "Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures," Macromolecules, vol. 40, pp. 7973-7983, 2007.
    [42]S. Tripatanasuwan, Z. Zhong, and D. H. Reneker, "Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution," Polymer, vol. 48, pp. 5742-5746, 2007.
    [43]P. X. Ma and R. Zhang, "Synthetic nano-scale fibrous extracellular matrix," Journal of Biomedical Materials Research, vol. 46, pp. 60-72, 1999.
    [44]M.-Y. Li, M. J. Mondrinos, M. R. Gandhi, F. K. Ko, A. S. Weiss, and P. I. Lelkes, "Electrospun protein fibers as matrices for tissue engineering," Biomaterials, vol. 26, pp. 5999-6008, 2005.
    [45]S. Heydarkhan-Hagvall, K. Schenke-Layland, A. P. Dhanasopon, F. Rofail, H. Smith, B. M. Wu, R. Shemin, R. E. Beygui, and W. R. MacLellan, "Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering," Biomaterials, vol. 29, pp. 2907-2914, 2008.
    [46]E.-R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, and G. E. Wnek, "Processing of polymer nanofibers through electrospinning as drug delivery systems," Materials Chemistry and Physics, vol. 113, pp. 296-302, 2009.
    [47]T. J. Sill and H. A. von Recum, "Electrospinning: Applications in drug delivery and tissue engineering," Biomaterials, vol. 29, pp. 1989-2006, 2008.
    [48]A. Fertala, W. B. Han, and F. K. Ko, "Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials," Journal of Biomedical Materials Research, vol. 57, pp. 48-58, 2001.
    [49]C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden, and J. A. Cooper Jr, "Tissue engineering: Orthopedic applications," ed, 1999, pp. 19-46.
    [50]S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, "Electrospun nanofibers: solving global issues," Materials Today, vol. 9, pp. 40-50, 2006.
    [51]S. W. Choi, S. M. Jo, W. S. Lee, and Y. R. Kim, "An Electrospun Poly(vinylidene fluoride) Nanofibrous Membrane and Its Battery Applications," Advanced Materials, vol. 15, pp. 2027-2032, 2003.
    [52]P. W. Gibson, H. L. Schreuder-Gibson, and D. Rivin, "Electrospun fiber mats: Transport properties," AIChE Journal, vol. 45, pp. 190-195, 1999.
    [53]P. Gibson, H. Schreuder-Gibson, and C. Pentheny, "Electrospinning technology: Direct application of tailorable ultrathin membranes," Journal of Coated Fabrics, vol. 28, pp. 63-72, 1998.
    [54]M. J. Mccreery, "Topical skin protectants," United States Patent 5,607,979, 1997.
    [55]T. Kowalczyk, A. Nowicka, D. Elbaum, and T. A. Kowalewski, "Electrospinning of Bovine Serum Albumin. Optimization and the Use for Production of Biosensors," Biomacromolecules, vol. 9, pp. 2087-2090, 2008.
    [56]P. Gibson, H. Schreuder-Gibson, and D. Rivin, "Transport properties of porous membranes based on electrospun nanofibers," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 187-188, pp. 469-481, 2001.
    [57]I. Shabani, M. M. Hasani-Sadrabadi, V. Haddadi-Asl, and M. Soleimani, "Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications," Journal of Membrane Science, vol. 368, pp. 233-240, 2011.
    [58]J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, "Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries," Electrochimica Acta, vol. 50, pp. 69-75, 2004.
    [59]S. S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K. S. Han, "Electrospun PVDF nanofiber web as polymer electrolyte or separator," Electrochimica Acta, vol. 50, pp. 339-343, 2004.
    [60]M.-Y. Song, D.-K. Kim, K.-J. Ihn, S.-M. Jo, and D.-Y. Kim, "New application of electrospun TiO2 electrode to solid-state dye-sensitized solar cells," Synthetic Metals, vol. 153, pp. 77-80, 2005.
    [61]M.-Y. Song, D.-K. Kim, K.-J. Ihn, S.-M. Jo, and D.-Y. Kim, "Electrospun TiO2 electrodes for dye-sensitized solar cells," Nanotechnology, vol. 15, pp. 1861-1865, 2004.
    [62]M.-Y. Song, Y.-R. Ahn, S.-M. Jo, D.-Y. Kim, and J.-P. Ahn, "TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells," Applied Physics Letters vol. 87, p. 113113, 2005.
    [63]游朝慶, "抗菌敷料主要競爭廠商之專利分析," 碩士, 商管專業學院, 雲林科技大學, 雲林縣, 2009.
    [64]K. V. Harish Prashanth and R. N. Tharanathan, "Chitin/chitosan: modifications and their unlimited application potential--an overview," Trends in Food Science & Technology, vol. 18, pp. 117-131, 2007.
    [65]G. D. Winter, "Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig," Nature, vol. 193, pp. 293-294, 1962.
    [66]S.-Y. Gu, Z.-M. Wang, J. Ren, and C.-Y. Zhang, "Electrospinning of gelatin and gelatin/poly(l-lactide) blend and its characteristics for wound dressing," Materials Science and Engineering: C, vol. 29, pp. 1822-1828, 2009.
    [67]C. G. Conant, J. T. Nevill, M. Schwartz, and C. Ionescu-Zanetti, "Wound Healing Assays in Well Plate-Coupled Microfluidic Devices with Controlled Parallel Flow," Journal of the Association for Laboratory Automation, vol. 15, pp. 52-57, 2010.
    [68]J. S. L. Choi, Kam W. and H. S. Yoo, "In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF)," Biomaterials, vol. 29, pp. 587-596, 2008.
    [69]A. K. Haghi and M. Akbari, "Trends in electrospinning of natural nanofibers," Physica Status Solidi (A), vol. 204, pp. 1830-1834, 2007.
    [70]M. M. Stevens and J. H. George, "Exploring and Engineering the Cell Surface Interface," Science, vol. 310, pp. 1135-1138, November 18, 2005 2005.
    [71]M. D. Pierschbacher and E. Ruoslahti, "Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule," Nature, vol. 309, pp. 30-33, 1984.
    [72]S. A. Sell, M. J. McClure, K. Garg, P. S. Wolfe, and G. L. Bowlin, "Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering," Advanced Drug Delivery Reviews, vol. 61, pp. 1007-1019, 2009.
    [73]J.-X. Li, A.-H. He, J.-F. Zheng, and C. C. Han, "Gelatin and Gelatin−Hyaluronic Acid Nanofibrous Membranes Produced by Electrospinning of Their Aqueous Solutions," Biomacromolecules, vol. 7, pp. 2243-2247, 2006.
    [74]C.-M. Li, C. Vepari, H.-J. Jin, H.-J. Kim, and D. L. Kaplan, "Electrospun silk-BMP-2 scaffolds for bone tissue engineering," Biomaterials, vol. 27, pp. 3115-3124, 2006.
    [75]M. C. McManus, E. D. Boland, D. G. Simpson, C. P. Barnes, and G. L. Bowlin, "Electrospun fibrinogen: Feasibility as a tissue engineering scaffold in a rat cell culture model," Journal of Biomedical Materials Research Part A, vol. 81A, pp. 299-309, 2007.
    [76]D. Han and P.-I. Gouma, "Electrospun bioscaffolds that mimic the topology of extracellular matrix," Nanomedicine: Nanotechnology, Biology and Medicine, vol. 2, pp. 37-41, 2006.
    [77]R. Jayakumar, M. Prabaharan, S. V. Nair, and H. Tamura, "Novel chitin and chitosan nanofibers in biomedical applications," Biotechnology Advances, vol. 28, pp. 142-150, 2010.
    [78]C. K. S. Pillai, W. Paul, and C. P. Sharma, "Chitin and chitosan polymers: Chemistry, solubility and fiber formation," Progress in Polymer Science, vol. 34, pp. 641-678, 2009.
    [79]N. Bhattarai and M. Zhang, "Controlled synthesis and structural stability of alginate-based nanofibers," Nanotechnology, vol. 18, p. 455601, 2007.
    [80]E. K. Brenner, J. D. Schiffman, E. A. Thompson, L. J. Toth, and C. L. Schauer, "Electrospinning of Hyaluronic Acid Nanofibers from Aqueous Ammonium Solutions," Carbohydrate Polymers, vol. In Press, Accepted Manuscript, 2011.
    [81]Y. Ji, K. Ghosh, X. Z. Shu, B. Li, J. C. Sokolov, G. D. Prestwich, R. A. F. Clark, and M. H. Rafailovich, "Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds," Biomaterials, vol. 27, pp. 3782-3792, 2006.
    [82]H. W. Kim, J. H. Song, and H. E. Kim, "Nanofiber Generation of Gelatin–Hydroxyapatite Biomimetics for Guided Tissue Regeneration," Advanced Functional Materials, vol. 15, pp. 1988-1994, 2005.
    [83]J.-S. Yang, Y.-J. Xie, and W. He, "Research progress on chemical modification of alginate: A review," Carbohydrate Polymers, vol. 84, pp. 33-39, 2011.
    [84]W. Mackie, S. Perez, R. Rizzo, F. Taravel, and M. Vignon, "Aspects of the conformation of polyguluronate in the solid state and in solution," International Journal of Biological Macromolecules, vol. 5, pp. 329-341, 1983.
    [85]D. L. French, K. J. Himmelstein, and J. W. Mauger, "Physicochemical aspects of controlled release of substituted benzoic and naphthoic acids from CarbopolR gels," Journal of Controlled Release, vol. 37, pp. 281-289, 1995.
    [86]J. L. Drury, R. G. Dennis, and D. J. Mooney, "The tensile properties of alginate hydrogels," Biomaterials, vol. 25, pp. 3187-3199, 2004.
    [87]W. R. Gombotz and S. F. Wee, "Protein release from alginate matrices," Advanced Drug Delivery Reviews, vol. 31, pp. 267-285, 1998.
    [88]A. D. Augst, H. J. Kong, and D. J. Mooney, "Alginate Hydrogels as Biomaterials," Macromolecular Bioscience, vol. 6, pp. 623-633, 2006.
    [89]T. D. Rathke and S. M. Hudson, "Review of Chitin and Chitosan as Fiber and Film Formers," Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 34, pp. 375-437, 1994/08/01 1994.
    [90]A. Baxter, M. Dillon, K. D. Anthony Taylor, and G. A. F. Roberts, "Improved method for i.r. determination of the degree of N-acetylation of chitosan," International Journal of Biological Macromolecules, vol. 14, pp. 166-169, 1992.
    [91]A. Pourjavadi, M. Samadi, and H. Ghasemzadeh, "Temperature Sensitive Superabsorbent Hydrogels from Poly(N-t-butyl acrylamide-co-acrylamide) Grafted on Sodium Alginate," Macromolecular Symposia, vol. 274, pp. 177-183, 2008.
    [92]M. N. V. Ravi Kumar, "A review of chitin and chitosan applications," Reactive and Functional Polymers, vol. 46, pp. 1-27, 2000.
    [93]F.-L. Mi, S.-S. Shyu, Y.-B. Wu, S.-T. Lee, J.-Y. Shyong, and R.-N. Huang, "Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing," Biomaterials, vol. 22, pp. 165-173, 2001.
    [94]S. Kobayashi, H. Sato, S. Nishihara, and S. Shoda, "Synthesis of telechelic poly(tetrahydrofuran) having a carboxyl group by using an anion of diethyl malonate or hydroxy esters as terminator," Macromolecules, vol. 23, pp. 2861-2865, 1990.
    [95]M. Terbojevich, C. Carraro, A. Cosani, B. Focher, A. M. Naggi, and G. Torri, "Solution studies of chitosan 6-O-sulfate," Die Makromolekulare Chemie, vol. 190, pp. 2847-2855, 1989.
    [96]G. K. Moore and G. A. F. Roberts, "Reactions of chitosan: 4. Preparation of organosoluble derivatives of chitosan," International Journal of Biological Macromolecules, vol. 4, pp. 246-249, 1982.
    [97]S.-I. Aiba, M. Izume, N. Minoura, and Y. Fujiwara, "Studies on chitin. 2. Preparation and properties of chitin membranes," Carbohydrate Polymers, vol. 5, pp. 285-295, 1985.
    [98]D. Thacharodi and K. P. Rao, "Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride," Biomaterials, vol. 16, pp. 145-148, 1995.
    [99]M. Ballauff, "Spherical polyelectrolyte brushes," Progress in Polymer Science, vol. 32, pp. 1135-1151, 2007.
    [100]H. J. Kwon and J. P. Gong, "Negatively charged polyelectrolyte gels as bio-tissue model system and for biomedical application," Current Opinion in Colloid & Interface Science, vol. 11, pp. 345-350, 2006.
    [101]J. Han, Z. Y. Zhou, R. X. Yin, D. Z. Yang, and J. Nie, "Alginate-chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization," International Journal of Biological Macromolecules, vol. 46, pp. 199-205, 2010.
    [102]Y.-F. Ma and Q.-L. Feng, "Alginate hydrogel-mediated crystallization of calcium carbonate," Journal of Solid State Chemistry, vol. 184, pp. 1008-1015, 2011.
    [103]R. D. Price, M. G. Berry, and H. A. Navsaria, "Hyaluronic acid: the scientific and clinical evidence," Journal of Plastic, Reconstructive & Aesthetic Surgery, vol. 60, pp. 1110-1119, 2007.
    [104]K. Ikeda, D. Yamauchi, N. Osamura, N. Hagiwara, and K. Tomita, "Hyaluronic acid prevents peripheral nerve adhesion," British Journal of Plastic Surgery, vol. 56, pp. 342-347, 2003.
    [105]T. Kangesu, H. A. Navsaria, S. Manek, P. R. Fryer, I. M. Leigh, and C. J. Green, "Kerato-dermal grafts: the importance of dermis for thein vivo growth of cultured keratinocytes," British Journal of Plastic Surgery, vol. 46, pp. 401-409, 1993.
    [106]J. A. McGrath, O. M. V. Schofield, A. Ishida-Yamamoto, A. O'Grady, B. J. Mayou, H. Navsaria, I. M. Leigh, and R. A. J. Eady, "Cultured keratinocyte allografts and wound healing in severe recessive dystrophic epidermolysis bullosa," Journal of the American Academy of Dermatology, vol. 29, pp. 407-419, 1993.
    [107]C. L. Cooper, P. L. Dubin, A. B. Kayitmazer, and S. Turksen, "Polyelectrolyte-protein complexes," Current Opinion in Colloid & Interface Science, vol. 10, pp. 52-78, 2005.
    [108]M. Davidovich-Pinhas and H. Bianco-Peled, "A quantitative analysis of alginate swelling," Carbohydrate Polymers, vol. 79, pp. 1020-1027, 2010.
    [109]Y. Okamoto, R. Yano, K. Miyatake, I. Tomohiro, Y. Shigemasa, and S. Minami, "Effects of chitin and chitosan on blood coagulation," Carbohydrate Polymers, vol. 53, pp. 337-342, 2003.
    [110]T.-C. Chou, E. Fu, C.-J. Wu, and J.-H. Yeh, "Chitosan enhances platelet adhesion and aggregation," Biochemical and Biophysical Research Communications, vol. 302, pp. 480-483, 2003.
    [111]M. B. Perrau, I. Iliopoulos, and R. Audebert, "Phase separation of polyelectrolyte/nonionic polymer systems in aqueous solution: effects of salt and charge density," Polymer, vol. 30, pp. 2112-2117, 1989.
    [112]X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao, and B. Chu, "Structure and process relationship of electrospun bioabsorbable nanofiber membranes," Polymer, vol. 43, pp. 4403-4412, 2002.
    [113]I. Bajaj and R. Singhal, "Poly (glutamic acid) - An emerging biopolymer of commercial interest," Bioresource Technology, vol. 102, pp. 5551-5561, 2011.
    [114]J. K. Tobacman, "Review of Harmful Gastrointestinal Effects of Carrageenan in Animal Experiments," Environ Health Perspect, vol. 109, 2001.
    [115]Y. Kaneda, Y. Tsutsumi, Y. Yoshioka, H. Kamada, Y. Yamamoto, H. Kodaira, S.-I. Tsunoda, T. Okamoto, Y. Mukai, H. Shibata, S. Nakagawa, and T. Mayumi, "The use of PVP as a polymeric carrier to improve the plasma half-life of drugs," Biomaterials, vol. 25, pp. 3259-3266, 2004.
    [116]M. Nepal, I. D. Bucaloiu, G. Carnero, and E. R. Norfolk, "209: Hypernatremia in a Patient Treated With Sodium Polystyrene Sulfonate," American Journal of Kidney Diseases, vol. 55, pp. B84-B84, 2010.
    [117]W. Wang and A. Wang, "Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: Synthesis, characterization and properties," Carbohydrate Polymers, vol. 82, pp. 83-91, 2010.
    [118]O. Smidsrod, "Solution properties of alginate," Carbohydrate Research, vol. 13, pp. 359-372, 1970.
    [119]J.-W. Lu, Y.-L. Zhu, Z.-X. Guo, P. Hu, and J. Yu, "Electrospinning of sodium alginate with poly(ethylene oxide)," Polymer, vol. 47, pp. 8026-8031, 2006.
    [120]S. Safi, M. Morshed, S. A. Hosseini Ravandi, and M. Ghiaci, "Study of electrospinning of sodium alginate, blended solutions of sodium alginate/poly(vinyl alcohol) and sodium alginate/poly(ethylene oxide)," Journal of Applied Polymer Science, vol. 104, pp. 3245-3255, 2007.
    [121]P. Nalam, J. Clasohm, A. Mashaghi, and N. Spencer, "Macrotribological Studies of Poly(<i>L -lysine)-<i>graft -Poly(ethylene glycol) in Aqueous Glycerol Mixtures," Tribology Letters, vol. 37, pp. 541-552, 2010.
    [122]Z. R. Li, Hassna R. Hauch, Kip D. Xiao, Demin Zhang, Miqin, "Chitosan-alginate hybrid scaffolds for bone tissue engineering," Biomaterials, vol. 26, pp. 3919-3928, 2005.
    [123]H. V. Sather, H. K. Holme, G. Maurstad, O. Smidsrod, and B. T. Stokke, "Polyelectrolyte complex formation using alginate and chitosan," Carbohydrate Polymers, vol. 74, pp. 813-821, 2008.
    [124]C. Rulison. (2004). Rings are for Fingers - Plates are for Surface Tension. Available: http://www.kruss.de/newsletter/newsletter-archiv/2004/ausgabe-06/applikation/applikation-01.html
    [125]B. Balakrishnan, M. Mohanty, P. R. Umashankar, and A. Jayakrishnan, "Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin," Biomaterials, vol. 26, pp. 6335-6342, 2005.
    [126]D. Queen, J. D. S. Gaylor, J. H. Evans, J. M. Courtney, and W. H. Reid, "The preclinical evaluation of the water vapour transmission rate through burn wound dressings," Biomaterials, vol. 8, pp. 367-371, 1987.
    [127]Y. Ren, D. R. Picout, P. R. Ellis, and S. B. Ross-Murphy, "Solution Properties of the Xyloglucan Polymer from Afzelia africana†," Biomacromolecules, vol. 5, pp. 2384-2391, 2004/11/01 2004.
    [128]I. S. Chronakis and M. Ramzi, "Isotropic−Nematic Phase Equilibrium and Phase Separation of κ-Carrageenan in Aqueous Salt Solution:  Experimental and Theoretical Approaches," Biomacromolecules, vol. 3, pp. 793-804, 2002/07/01 2002.
    [129]Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. T. Lim, "Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering," Biomaterials, vol. 29, pp. 4314-4322, 2008.
    [130]D. Yang, Y. Jin, Y. Zhou, G. Ma, X. Chen, F. Lu, and J. Nie, "In Situ Mineralization of Hydroxyapatite on Electrospun Chitosan-Based Nanofibrous Scaffolds," Macromolecular Bioscience, vol. 8, pp. 239-246, 2008.
    [131]C. Chatelet, O. Damour, and A. Domard, "Influence of the degree of acetylation on some biological properties of chitosan films," Biomaterials, vol. 22, pp. 261-268, 2001.

    無法下載圖示 全文公開日期 2014/01/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE