簡易檢索 / 詳目顯示

研究生: 陳心傑
Hsin-Chieh Chen
論文名稱: 混摻對聚偏二氟乙烯奈米纖維物性與生物相容性之影響
Characterization and Biocompatibility of Electrospun PVDF Blending Mats
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 李振綱
none
于大光
none
蘇清淵
none
楊禎明
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 98
中文關鍵詞: 靜電紡絲(電紡)聚乳酸聚偏二氟乙烯Pluronic F127共溶劑生物相容性延伸性細胞增生
外文關鍵詞: Electrospinning, Poly(vinylidene fluoride) (PVDF), Polylactide (PLA), Pluronic F127, Co-solvent, Biocompatibility, Elongation, Cell proliferation
相關次數: 點閱:322下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於藉由靜電紡絲(電紡, Electrospinning)技術探討聚偏二氟乙烯(Polyvinylidene fluoride, PVDF)及混掺聚乳酸(Polylactide, PLA)、Pluronic F127 混合奈米纖維膜其最佳成型參數、表面特性、機械特性、熱穩定性與生物相容性。期望能藉由掺合電紡改良PVDF的延伸性、親水性與生物相容性,開發出具奈米尺寸之混掺PVDF纖維薄膜,此一材料未來將可應用在多方面,如生物組織基材、過濾膜材、或電池隔離膜。
    第一部分首先探討單溶劑二甲基甲醯胺(N,N-dimethylformamide, DMF)與共溶劑系統DMF/丙酮(acetone)作為溶劑時,不同比例條件下對PVDF電紡製程的影響,藉由SEM觀察纖維尺寸與分佈情況並以變異係數(coefficient of variation, CV)評估奈米纖維膜均勻度,結果顯示溶劑在重量百分比例為90:10條件下所得的電紡纖維膜均勻度最高(184nm, CV=0.40),並且利用此一最佳比例進行下一階段試驗。
    第二部分探討製程條件對混摻電紡PVDF/PLA的影響。從SEM發現PVDF與PLA具有不同纖維直徑分佈;10%PVDF/5%PLA奈米纖維薄膜可以得到最佳奈米纖維膜平均尺寸為215nm,CV=0.27。從FTIR與DSC分析可知,相較於塗佈法所得之非極性α相PVDF/PLA奈米纖維膜,以電紡法製備的PVDF/PLA奈米纖維膜屬於具有極性之β相;雖然混摻PLA會降低整體結晶度,但是對熱穩定性並無影響。在接觸角分析方面,電紡製程所產生的奈米纖維膜會使PLA的接觸角提高,有類似蓮花效應的疏水效果。在生物相容性評估方面,電紡PVDF/PLA奈米纖維膜所造成的表面孔洞小於純PVDF與PLA所形成的奈米纖維膜,也小於血小板尺寸(1~5μm),此一微小孔洞所造成的介面效應導致血小板吸附量少,,也抑制凝血酵素的活性達到抗凝血效果。除此之外,纖維母細胞(L929)培養也顯示PVDF/PLA混摻奈米纖維膜是良好的細胞增生基材。
    在第三部分延伸研究方面,為了改變PVDF奈米纖維膜的疏水特性,利用混掺Pluronic F127改善電紡PVDF奈米纖維膜的疏水性,探討最佳參數條件下製成PVDF/F127親水奈米纖維膜。從SEM-EDX及FTIR的結果顯示F127成功地分佈於PVDF奈米纖維膜上,5% F127混掺即可使純電紡PVDF的接觸角從125°大幅降低至54.7°,雖然奈米纖維膜的平均纖維直徑增加為372nm,另一方面F127亦扮演連結電紡PVDF奈米纖維的角色,其抗拉強度與斷裂延伸率都因此上升。在生物相容性評估方面,F127的PPO觸手效應使得血小板不易吸附,而產生抗凝血作用;同時纖維母細胞L929在PVDF/F127電紡纖維膜的細胞增生表現優於純PVDF與PVDF/PLA,顯示此一混摻奈米結構可應用在生物支架與組織修復領域。


    The objectives of this study are to optimize the parameters of electrospinning (ES) poly(vinylidene fluoride) (PVDF) using a co-solvent system of N,N-dimethylformamide(DMF) and acetone, and to blend with polylactide (PLA) and Pluronic F127 to spin into nanoscale nonwoven mats which may improve the elongation, hydrophilicity, and biocompatibility of PVDF for applying in biomatrix, filter, or battery seperation.
    The physical properties of the resulting mats were subjected to characterization including scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), capillary flow porometer, contact angle, tensile test, and the biocompatibility based on blood coagulation time (APTT&PT) and cell proliferation of L929 fibroblast.
    In the first section, using a co-solvent system of DMF/acetone at a ratio of 90:10, the average fiber diameter of PVDF mat achieved 184 nm without beads and CV=0.40. Thus these parameters were applied to the following sections.
    In the second section, PLA was mixed with PVDF and spun into nonwoven mats via electrospinning technique using DMF/acetone as the co-solvent. The viscosity of the solution was measured, and the average fiber diameter achievable without beads for PLA, PVDF/PLA, and PVDF mats were 191 nm, 215 nm, and 184 nm, respectively. Infrared (IR) spectra showed that electrospinning can induce β phase crystallization of PVDF. From the results of DSC, the PVDF/PLA mats exhibited higher melting temperature but lower crystallinity than both PLA and PVDF. The tensile strength of PVDF/PLA was lower than those of PLA and PVDF. By stretching during eletrospinning, the ratio of strength in machine direction (MD) to that in cross direction (CD) was increased to 2. In addition, electrospun PVDF/PLA mats exhibited higher cell proliferation for L929 fibroblasts than both PLA and PVDF mats.
    In the final section, PVDF was blended with Pluronic F127 and spun into nanofibers via electrospinning (ES) process using a co-solvent of DMF and acetone with a ratio of 90/10. The average diameters of the resulting PVDF/F127 nanofibers ranged from 300 to 500nm (avg. dia=372nm, CV=0.30). The embedding of F127 in PVDF matrix was evidenced by EDX, IR spectra. The blending of F127 not only improved the hydrophilicity of PVDF nanofiber (contact angle was decreased from 125° to 54.7°) but also reduced the pore size. In addition, F127 can serve as the binding agent for the electrospun nanofibers to improve its tensile strength and breaking elongation. Furthermore, L929 fibroblasts proliferated on the electrospun PVDF/F127 mats. These results indicate that the electrospun PVDF/F127 nanofiber is a potential substrate for tissue engineering scaffolds.

    中文摘要……………………………………………………………Ⅲ ABSTRACT……………………………………………………...…Ⅴ 誌謝…………………………………………………………………Ⅶ 目錄…………………………………………………………………Ⅷ 表目錄……………………………………………………………ⅩⅢ 圖目錄……………………………………………………………ⅩⅣ 符號說明…………………………………………………………ⅩⅦ 第一章 緒論……………………………………………………1 1-1 研究背景…………………………………………………...1 1-2 研究目的…………………………………………………...1 第二章 文獻回顧………………………………………………4 2-1 奈米材料…………………………………………………...4 2-2 奈米纖維…………………………………………………...4 2-3 靜電紡絲…………………………………………………...4 2-3-1 靜電紡絲的基本原理…………………………………….6 2-3-2 靜電紡絲裝置…………………………………………….7 2-3-3 靜電紡絲材料…………………………………………..10 2-3-4 影響靜電紡絲的參數…………………………………..12 2-3-4-1分子量與黏度………………………………………...14 2-3-4-2 表面張力…………………………………………....14 2-3-4-3 溶液導電度…………………………………………..15 2-3-4-4 溶劑影響………………………………………...….15 2-3-5 靜電紡絲纖維的應用…………………………………..15 2-3-5-1 藥物控制釋放系統……………………………….….16 2-3-5-2 組織工程………………………………………….….17 2-3-5-3 創傷敷材………………………………………….….17 2-4 實驗材料……………………………………………….….19 2-4-1聚偏二氟乙烯…………………………………………...19 2-4-2聚乳酸及其合成………………………………………….19 2-4-3 Pluronic F127………………………………………….24 2-5 生醫材料…………………………………………………..27 2-5-1 生物相容性……………………………………………..27 2-5-2 血液相容性……………………………………………..28 2-5-3 界面相容性……………………………………………..29 2-5-4 力學相容性……………………………………………..30 2-6 血液的組成………………………………………………..31 2-7 止血機制…………………………………………………..31 2-7-1 血小板的型態和構造…………………………………..31 2-7-2 一期止血和二期止血…………………………………..32 2-7-3 凝血因子的種類………………………………………..32 2-7-4 凝血反應的機制………………………………………..33 2-7-5 血液凝固檢查-活化部分凝血活酶時間……………….39 2-7-6 血液凝固檢查-凝血酶時間…………………………….40 第三章 實驗流程與製備方法………………………………….41 3-1 實驗材料………………………………………….……….41 3-2 實驗儀器………………………………………….……….42 3-3 製備流程………………………………………….……….43 3-3-1 PVDF/DMF/Acetone…………………………….……….44 3-3-2混掺PVDF/DMF/Acetone……………………….……....44 3-4 黏度測定…………………………………………….…….45 3-5奈米纖維膜製備.…………………………………….…….45 3-6 掃描式電子顯微鏡和能量散譜分析……………….…….45 3-7 接觸角測定………………………………………….…….46 3-8 孔徑大小測定……………………………………….…….46 3-9 熱性質分析………………………………………….…….47 3-10 血液相容性………………………………………….…..47 3-10-1 活化部份凝血時間…………………………………….47 3-10-2 凝血酶原時間………………………………………….47 3-10-3 血小板吸附…………………………………………….48 3-10-4 蛋白質吸附…………………………………………….48 3-11 生物相容性試驗評估…………………………………...49 3-12 力學特性………………………………………………….50 第四章 實驗結果與討論……………………………………….51 4-1黏度測定…………………………………………….……..51 4-2 掃描式電子顯微鏡分析…………………………….…….52 4-2-1溶劑對PVDF/DMF/Acetone的影響………….….….…..54 4-2-2 電壓的影響……………………………………….…….54 4-2-3 紡絲距離的影響………………………………….…….62 4-2-4電紡PVDF/DMF/Acetone的熱穩定性.………….….…..63 4-2-5 結論一…………………………………………….…….64 4-3 混摻PVDF/PLA電紡奈米纖維膜……….……...……....64 4-3-1溶劑對電紡PLA的影響…………………………….…...64 4-3-2電紡PVDF/PLA最佳製程參數……………………….....65 4-3-3電紡PVDF/PLA奈米纖維膜之FTIR圖譜………….....…68 4-3-4 接觸角測定……………………………………………..69 4-3-5電紡PVDF/PLA之DSC結晶度分析…………………......69 4-3-6 PVDF/PLA凝血時間測試……………………..………..72 4-3-7 細胞增生測試…………………………………….…...73 4-3-8 奈米纖維膜力學測試…………………………………..74 4-4 混摻PVDF/F127電紡奈米纖維膜…………………….…..77 4-4-1 電紡PVDF/F127最佳製程參數………………………...77 4-4-2 能量散射光譜(EDX)…………………………………...79 4-4-3電紡PVDF/F127奈米纖維膜之FTIR圖譜……………....80 4-4-4接觸角與孔隙度分析………………………………….…81 4-4-5電紡PVDF/F127之DSC結晶度分析………………….....83 4-4-6 PVDF/F127凝血時間測試……………,………………..83 4-4-7 蛋白質吸附……………………………………….…….85 4-4-8 血小板吸附……………………………………….…….86 4-4-9 細胞毒性測試………..…………………………….….87 4-4-10 細胞增生測試…………………………………….…..90 4-4-11 奈米纖維膜力學測試………………………………….91 第五章 結論…………………………………………………...92 第六章 參考文獻 ……………………………………………..94

    [1] 周森,複合材料,全成圖書股份有限公司(2004)
    [2] Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S, Compos Sci Technol 63 : 2223(2003).
    [3] Wong SC, Baji A, Leng S, Polymer 49: 4713(2008).
    [4] Chen M, Patra PK, Warner SB, Bhowmick S, Tissue Eng. 13(3), 579(2007).
    [5] Gregorio R Jr, J Appl Polym Sci 100: 3272(2006).
    [6] Chen MH, Hsu YH, Lin CP, Chen YJ, Young TH, J Biomed Mater Res 74: 254(2005).
    [7] Rodrigues MT, Gomes ME, Mano JF, Reis RL, Materials Science Forum 72: 587(2008).
    [8] 李寶玉、顧寧、魏于全、張勁燕,奈米生醫材料,五南出版社(2006)。
    [9] National Textile Center, NTC (Project F03-MD15, annual report, Sankha Bhowmick, Harvard Medical School(2006).
    [10] Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ, Biomaterials 29: 1422(2008).
    [11] Mao C, Liang CX, Mao YQ, Li Li, Hou XM, Shen J, Colloids Surf. B: Biointerf. 74: 362(2009).
    [12] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,奈米科技導論,全華科技圖書(2003)。
    [13] Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS, J. Appl. Polym. Sci. 96: 557(2005).
    [14] http://en.wikipedia.org/wiki/Electrospinning
    [15] Cooley JF, U.S. Patent 692,631 (1902).
    [16] Morton WJ, U.S. Patent 0,705,691 (1902).
    [17] Formhals A, US Patent 1975504 (1934).
    [18] Formhals A, US Patent, 2,160,962 (1939).
    [19] Formhals A, US Patent, 2,187, 306 (1940).
    [20] Norton CL, U.S. Patent 2,048,651 (1936).
    [21] Taylor, G. I. Proc Roy Soc London, A313, 453(1969).
    [22] Baumgarten PK, J. Colloid Interface Sci. 36: 71(1971).
    [23] Hayati I, Bailey AI, Tadros TF, J. Colloid Interface Sci. 117: 205(1987).
    [24] Doshi J, Reneker DH, J. Electrostatics 35: 151(1995).
    [25] Frenot A, Chronakis IS, Current Opinion in Colloid and Interface Sci. 8: 64(2003).
    [26] http://en.wikipedia.org/wiki/Taylor_cone
    [27] Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z, An introduction to Electrospinning and Nanofibers, World Scientific Publishing Co. Pte. Ltd.(2005)
    [28] 朱政崑、李仁雄,微奈米纖維不織布過濾材過濾性質研究,57,紡織工程學會會訊(2010)。
    [29] Rutledge G, Fridrikh S, Texcomp 6, Philadephia, PA, September (2002).
    [30] Gogotsi Y, Nanomaterials handbook, Taylor & Francis(2006).
    [31] Buchko CJ, Chen LC, Shen Y, Martin DC, Polymer 40: 7397(1999).
    [32] Shenoy SL, Frisch HL, Bates WD, Wnek GE, Polymer 46: 3372(2005).
    [33] 吳其章,奈米纖維發展趨勢分析,紡織產業綜合研究所(2009)。
    [34] Vaughn TH, Suter HR, Lunsted LG, Kramer MG, Am. Oil Chemists. Soc. Meeting, San Francisco (1950).
    [35] Vaughn TH, Suter HR, Lunsted LG, Kramer MG, J. Am. Oil Chemists. Soc. 28: 294(1951).
    [36] Jeremy L, Biochemistry, J. Undergraduate Sci., Jus. Vol. 5, Issue 2: 17-24 (1998).
    [37] Mortensen B, Jeonga, SW, Kimb YH, Baeb, Adv. Drug Delivery Rev. 54, 37(2002).
    [38] Pedersen K. and Pedersen JS, Macromolecules 26: 805 (1993).
    [39] Rassing J., McKenna WP, Bandyopadhyay S, Eyring E, J. Mol. Liq. 27: 165(1984).
    [40] Balazs AC, et al, Langmuir 8, 9: 22959(1992).
    [41] Halperin A, Europhys. Lett. 4, 4: 439(1987).
    [42] Xie H, Liu Y, Polymer 34, 1: 182 (1993).
    [43] Hernandez BJ, Hunkeler DJ, Polymeric Materical and Engineering 69: 259(1993).
    [44] Gref R, et al, Science 263, 5153: 1600(1994).
    [45] Johnston PT, Miller SC, J. Parenter, Sci. Technol. 39, 83:(1985).
    [46] Henry RL, Schmolka IR., Crit. Rev. Biocompatibility 5: 207(1989).
    [47] Hurter PN, Hatton TA, Langmuir 8: 1291(1992).
    [48] Desai SD, Blanchard J., J. Pharm. Sci. 87: 226(1998).
    [49] Lin HR, Sung KC, J. Controlled Release 69: 379(2000).
    [50] Morishita M., Barichello JM, Takayama K, Chiba Y, Tokwa S, Nagai T, Int. J. Pharm. 212: 289(2001).
    [51] Barichello JM, Morishita M, Takayama K, Nagai T, Int. J. Pharm. 184: 189(1999).
    [52] Castier Y, Chemla E, Nierat J, Heudes D, Vasseur MA, Rajnoch C, Bruneval P, Carpentier A, Fabaini JN, J. Cardiovasc. Surg. 39: 1 (1998).
    [53] Wolf MG, Jang Y, Lincoff AM, Cohen JL, Labhasetwar V, Poptic EJ, Forudi F, Guzman LA, DiCorleto PE, Levy RJ, Topol EJ, Ellis SG, Am. Heart J. 133: 329(1997).
    [54] Johnston TP, Punjabi MA, Froelich CJ, Pharm. Res. 9: 425(1992).
    [55] DiBiase MD, Rhodes CT, Pharm. Acta Helv. 66: 165(1991).
    [56] Cho CW, Cho YS, Lee HK, Yeom YI, Park SN, Yoon DY, Biotechnol. degAppl. Biochem. 32: 21(2000).
    [57] Paavola A, Kilpelainen I, Yliruusi J, Rosenberg P, Int. J. Pharm. 199: 85(2000).
    [58] Paavola A, Tarkkila P, Xu M. Wahlstrom T, Yliruusi J, Rosenberg P, Pharm. Res. 15: 482(1998).
    [59] Clokie CM, Urist MR, Plast. Reconstr. Surg. 105: 628(2000).
    [60] Veyries ML, Couarraze G, Geiger S, Agnely F, Massias L, Kunzli B, Faurisson F, Rouveix B, Int. J. Pharm. 192: 183(1999).
    [61] Hom DB, Medhi K, Assefa G, Juhn SK, Johnston TP, Ann. Otol. Rhinol. Laryngol. 105: 109(1996).
    [62] 馬光輝,蘇志國,新型高分子材料,曉園出版社(2006)。
    [63] 蔡晟豪,靜電紡絲PVDF混摻F127複合膜作為生醫基材之探討,碩士論文,國立台灣科技大學(2008)。
    [64] 八幡義人,圖解血液,書泉出版社(2008)。
    [65] 何敏夫,血液學,合記書局有限公司(2008)。
    [66] Vacanti CA, Mikos AG, Tissue Eng., 1: 1(1995).
    [67] Fong H, Chun I, Reneker DH, Polymer 40: 4585(1999).
    [68] Zhao Z, Li J, Yuan X, Li X, Zhang Y, Sheng J, J. of Appl. Polym. Sci. 97: 466(2005).
    [69] Shin, YM, Hohman M, Brenner MP, Rutledge GC, Polymer 42: 9955(2001).
    [70] Chen Y, Kim H, Appl Surf Sci 255(15): 7073(2009).
    [71] Zheng Z, Gu Z, Huo R, Ye Y, Appl Surf Sci 255(16): 7263(2009).
    [72] You Y, Lee SW, Lee SJ, Park WH, Materials Lett. 60: 1331(2006).
    [73] Zhou H, Kim KW, Giannelis EP, Joo YL. In: Reneker DH, Fong H, editors. Polymeric nanofibers. ACS symposium series 918(2005).
    [74] Zeng J, Chen X, Liang Q, Xu X, Jing X. Macromol Biosci. 4: 1118(2004).
    [75] Inai R, Kotaki M, Ramakrishna M. J Polym Sci Part B Polym Phys; 43: 3205 (2005).
    [76] Yee WA, Kotaki M, Liu Y, Lu X, Polymer 48: 512 (2007).
    [77] Zheng J, Li A, Han CC; Macromol. Rapid Common. 28: 2159 (2007).
    [78] Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK, J. Mem. Sci. 325: 957 (2008).
    [79] Yoon K, Hsiao BS, Chu B, Polymer 50: 2893 (2009).
    [80] Nagahama K, Nishimura Y, Ohya Y, Ouchi T, Polymer 48: 2649 (2007).
    [81] 郭家維,以γ-聚麩胺酸交聯海藻酸並利用感溫性F127改良水膠性質之探討,碩士論文,國立台灣科技大學(2006)。

    QR CODE