簡易檢索 / 詳目顯示

研究生: 黃博軒
Bo-Syuan Huang
論文名稱: 靜電紡絲法製備高拉伸性與可自修復之微奈米纖維電極及其智慧衣應用
Fabrication of Stretchable and Self-Healing Fiber Electrode by Electrospinning and its Application in Smart Clothing
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱智瑋
Chih-Wei Chiu
邱顯堂
Hsien-Tang Chiu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 93
中文關鍵詞: 自修復性能石墨烯機能性紡織品心電圖肌電圖
外文關鍵詞: Self-healing, Graphene, Functional textiles, Electrocardiogram, Electromyography
相關次數: 點閱:310下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,可穿戴生理傳感器技術的發展引起了學術界和工業界的廣泛關注。紡織材料與電子元器件的結合已成為智能紡織領域的研究熱點。由於機械運動和與活體組織的長時間接觸可能會造成頻繁的損傷,因此在這些裝置中應用自修復材料就顯得尤為重要。然而,到目前為止,很少有團隊將靜電紡絲技術和自修復電極應用於智能可穿戴設備。本研究將靜電紡絲技術與熱塑性聚氨酯相結合,製備出微納米級纖維,使其具有高比表面積、高孔隙率、耐磨等特點。在 3,4-聚乙烯二氧噻吩:聚苯乙烯磺酸鹽(PEDOT: PSS)導電聚合物溶液中浸涂靜電紡絲纖維,該溶液與還原氧化石墨烯(rGO)和銀納米粒子(AgNPs)混合。PEDOT:PSS賦予導電溶液自修復特性,使纖維電極可以從損壞中恢復到原來的性能,rGO和AgNPs可以形成良好的三維結構和導電路徑,增加電極的導電性和機械強度纖維電極。 Triton X-100具有良好的還原和分散氧化石墨烯性能,此外還可以增強PEDOT:PSS的自修復性能和柔性,此研究所製備的纖維電極具有優異的物理性能(3000次疲勞試驗)、低片電阻 (1.3×101 Ω/sq)及經過200% 應變損壞後的自愈恢復率達到 (98.3%)。總結來說,我們採用系統性方法合成納米銀/碳基材料PEDOT:PSS溶液,並結合靜電紡絲技術,獲得良好的導電性和物理性能,用於智能服裝ECG和EMG測量。與商業電極 Ag/AgCl 信號相比,動態運動過程中產生的 ECG 和 EMG 的穩定性更穩定。可自修復纖維電極更適用於長效穿戴式智能服裝傳感器電極。


    In recent years, the development of wearable physiological sensing technology has attracted a lot of attention from academia and industry. The combination of textile materials and electronic components has become the focus of research in the field of smart textiles. Since mechanical movement and prolonged contact with living tissues may cause frequent damage, the application of self-healing materials in these devices is particularly important. However, until now few teams have applied electrospinning technology and self-healing electrode to smart wearable devices. This research combines electrospinning technology and thermoplastic polyurethane to prepare micro-nano-scale fibers and make them have the characteristics of high specific surface area, high porosity, and wear resistance. In this research we dip-coated the electrospinning fiber in 3,4-polyethylene dioxythiophene: polystyrene sulfonate (PEDOT: PSS) conductive polymer solution which mixed with reduced graphene oxide (rGO) and silver nanoparticles (AgNPs). The PEDOT: PSS gives the conductive solution a self-healing property to make the fiber electrode can recover from damage to the original performance, rGO and AgNPs can form a good three-dimensional structure and conductive path to increase the conductivity and mechanical strength of the fiber electrode. The Triton X-100 has a good performance to reduce graphene oxide and disperse it, in addition it can also enhance the self-healing performance and flexibility of PEDOT: PSS. Finally the prepared fiber electrode has excellent mechanical properties (3000-time fatigue tests)、conductivity (1.3×101 Ω/sq) and the self-healing recovery rate after 200% strain reach (98.3%). In conclusion, we use a systematic method to synthesize nano-silver/carbon-based PEDOT: PSS solution and combine it with electrospinning technology to obtain good conductivity and mechanical properties for smart clothe ECG and EMG measurement. The stability of ECG and EMG generated during dynamics exercise are more stable compared to commercial electrodes Ag/AgCl signals. The self-healing fiber electrode is more suitable for long-term wearable smart clothing sensing electrodes.

    Table of Contents Abstract i Chinese Abstract iii Acknowledgment iv List of Figures viii List of Tables xv Chapter 1 Introduction 1 1.1 Background 1 1.2 Purpose of research 2 Chapter 2 Literature Review 3 2.1 Nano Conductive Materials 3 2.1.1 Nano Metal Materials 3 2.1.2 Nano Carbon Materials 5 2.1.3 Conductive Polymer Materials 8 2.1.4 Nanomaterial dispersant 10 2.1.5 Self-Healing Materials 12 2.2 Processing Technology 15 2.2.1 Electrospinning Technology 15 2.2.2 Coating Technology 20 2.3 Bio-signal Analysis 24 2.3.1 Smart Clothing 24 2.3.2 Electrocardiogram 26 2.3.3 Electromyography 27 Chapter 3 Experiment Section 30 3.1 Experiment materials and apparatus 30 3.1.1 Materials 30 3.1.2 Experiment Apparatus 31 3.2 Experimental Flow Chart 32 3.3 Experimental Procedures 32 3.3.1 Preparation of PEDOT: PSS/rGO/AgNPs conductive solution 32 3.3.2 Preparation of electrospinning solution 33 3.3.3 Electrospinning for the preparation of fiber films 34 3.3.4 Dip coating PEDOT: PSS/rGO/AgNPs fiber electrode 34 3.3.5 Combined with smart clothes to measure ECG and EMG 35 Chapter 4 Results and Discussion 37 4.1 Triton X-100 dispersant dispersibility evaluation 37 4.1.1 rGO/Triton X-100 Dispersion 38 4.1.2 Reduction of graphite oxide 42 4.2 rGO/AgNPs ratio and dispersibility 45 4.3 Fiber electrode characteristics 49 4.3.1 Fiber electrode structure 49 4.3.2 Electrical analysis 51 4.3.3 Mechanical property analysis 54 4.3.4 Self-healing characteristics 56 4.3.5 Perspiration resistance test 61 4.4 Biological signal sensing 63 4.4.1 ECG biological signal measurement and analysis 63 4.4.2 EMG biological signal measurement and analysis 65 Chapter 5 Conclusion 68 References 69  

    . Tian, S., Yang, W., Le Grange, J. M., Wang, P., Huang, W., & Ye, Z. Smart healthcare: making medical care more intelligent. Global Health Journal. 2019, 3(3), 62-65.
    . Abdel-Basset, M., El-Hoseny, M., Gamal, A., & Smarandache, F. A novel model for evaluation Hospital medical care systems based on plithogenic sets. Artificial Intelligence in Medicine. 2019, 100, 101710.
    . Souza, R. V. D., Sarmento, R. A., Almeida, J. C. D., & Canuto, R. The effect of shift work on eating habits: a systematic review. Scandinavian Journal of Work, Environment and Health. Helsinki. 2019, 45(1), 7-21.
    . Sogari, G., Velez-Argumedo, C., Gómez, M. I., & Mora, C. College students and eating habits: A study using an ecological model for healthy behavior. Nutrients, 2018, 10(12), 1823.
    . Scataglini, S., Moorhead, A. P., & Feletti, F. A Systematic Review of Smart Clothing in Sports: possible Applications to Extreme Sports. Muscles, Ligaments & Tendons Journal (MLTJ), 2020, 10(2),333-342.
    . Scataglini, S., Andreoni, G., & Gallant, J. Smart clothing design issues in military applications. Springer, Cham. In International Conference on Applied Human Factors and Ergonomics. 2018, 9(3),158-168.
    . Miao, Y., Wu, G., Liu, C., Hossain, M. S., & Muhammad, G. Green cognitive body sensor network: architecture, energy harvesting, and smart clothing-based applications. IEEE Sensors Journal. 2018, 19(19), 8371-8378.
    . Wasimuddin, M., Elleithy, K., Abuzneid, A. S., Faezipour, M., & Abuzaghleh, O. Stages-based ecg signal analysis from traditional signal processing to machine learning approaches: A survey. IEEE Access. 2020, 8, 177782-177803.
    . Bi, L., & Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration. Biomedical Signal Processing and Control. 2019, 51, 113-127.
    . Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies. 2017, 13, 18-23.
    . Eswaran, S. V. Water soluble nanocarbon materials: a panacea for all. Current Science, 2018, 114(9), 1846-1850.
    . Hamers, R. J. Flexible electronic futures. Nature. 2001, 412(6846), 489-490.
    . Liu, Y., He, K., Chen, G., Leow, W. R., & Chen, X. Nature-inspired structural materials for flexible electronic devices. Chemical Reviews. 2017, 117(20), 12893-12941.
    . Han, T. H., Kim, H., Kwon, S. J., & Lee, T. W. Graphene-based flexible electronic devices. Materials Science and Engineering: R: Reports. 2017, 118, 1-43.
    . Zhu, B., Wang, H., Leow, W. R., Cai, Y., Loh, X. J., Han, M. Y., & Chen, X. Silk fibroin for flexible electronic devices. Advanced Materials. 2016, 28(22), 4250-4265.
    . Brosteaux, D., Axisa, F., Gonzalez, M., & Vanfleteren, J. Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Letters. 2007, 28(7), 552-554.
    . Trung, T. Q., & Lee, N. E. Recent progress on stretchable electronic devices with intrinsically stretchable components. Advanced Materials. 2017, 29(3), 1603167.
    . Gonzalez, M., Axisa, F., Bulcke, M. V., Brosteaux, D., Vandevelde, B., & Vanfleteren, J. Design of metal interconnects for stretchable electronic circuits. Microelectronics Reliability. 2008, 48(6), 825-832.
    . Lai, Y. C., Huang, Y. C., Lin, T. Y., Wang, Y. X., Chang, C. Y., Li, Y., & Chen, Y. F.. Stretchable organic memory: toward learnable and digitized stretchable electronic applications. NPG Asia Materials. 2014, 6(2), 87.
    . Wen, L., Li, F., & Cheng, H. M. Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Advanced Materials. 2016, 28(22), 4306-4337.
    . Bhardwaj, N., & Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances. 2010, 28(3), 325-347.
    . Teo, W. E., & Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006, 17(14), 89.
    . Doughty, A. C., Hoover, A. R., Layton, E., Murray, C. K., Howard, E. W., & Chen, W. R. Nanomaterial applications in photothermal therapy for cancer. Materials. 2019, 12(5), 779.
    . Norhasri, M. M., Hamidah, M. S., & Fadzil, A. M. Applications of using nano material in concrete: A review. Construction and Building Materials. 2017, 133, 91-97.
    . Dong, C., Chen, D., Tanachutiwat, S., & Wang, W. Performance and power evaluation of a 3D CMOS/nanomaterial reconfigurable architecture. IEEE/ACM International Conference on Computer-Aided Design. 2007, 10(2), 758-764.
    . Justino, C. I., Rocha-Santos, T. A., Cardoso, S., & Duarte, A. C. Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrAC Trends in Analytical Chemistry. 2013, 47, 27-36.
    . Dodonov, V. G., Zakharov, Y. A., Pugachev, V. M., & Vasiljeva, O. V. Determination of the surface structure peculiarities of nanoscale metal particles via small-angle X-ray scattering. Inorganic Materials: Applied Research. 2016, 7(5), 804-814.
    . Abadias, G., Michel, A., Tromas, C., Jaouen, C., & Dub, S. N. Stress, interfacial effects and mechanical properties of nanoscale multilayered coatings. Surface and Coatings Technology. 2007, 202(4-7), 844-853.
    . Miller, D. R., Akbar, S. A., & Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sensors and Actuators B: Chemical. 2014, 204, 250-272.
    . Della Rocca, J., Liu, D., & Lin, W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Accounts of Chemical Research. 2011, 44(10), 957-968.
    . Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B. 2003, 107(3), 668-677.
    . Donnet, J. B. Fifty years of research and progress on carbon black. Carbon, 1994, 32(7), 1305-1310.
    . Donnet, J. B., Wang, W. D., Vidal, A., & Wang, M. J. Observation of plasma-treated carbon black surfaces by scanning tunnelling microscopy. Carbon, 1994, 32(2), 199-206.
    . Boehm, H. P. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 1994, 32(5), 759-769.
    . Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C., & Rao, A. M. Carbon nanotubes. Springer, Dordrecht. The Physics of Fullerene-Based and Fullerene-Related Materials. 2000, 9(4), 331-379.
    . Haddon, R. C. Carbon nanotubes. Accounts of Chemical Research. 2002, 35(12), 997-997.
    . Mohanta, D., Patnaik, S., Sood, S., & Das, N. Carbon nanotubes: Evaluation of toxicity at biointerfaces. Journal of Pharmaceutical Analysis. 2019, 9(5), 293-300.
    . Novoselov, K. S.; Jiang, D. Two-Dimensional Atomic Crystals. Proceedings of the National Academy of Sciences. 2005, 102, 10451-10453.
    . Nguyen, T. H.; Zhang, Z.; Mustapha, A.; Li, H.; Lin, M. Use of Graphene and Gold Nanorods As Substrates for The Detection of Pesticides by Surface Enhanced Raman Spectroscopy, Journal of Agricultural and Food Chemistry. 2014, 62(43), 10445-10451.
    . Geim, A. K.; Novoselov, K. S. The Rise of Graphene, in Nanoscience and technology, Catal. Sci. Ser. 2010, 45,11-19,.
    . Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., & Guo, Z. Electrically conductive polymer composites for smart flexible strain sensors: a critical review. Journal of Materials Chemistry C. 2018, 6(45), 12121-12141.
    . Chen, J., Yu, Q., Cui, X., Dong, M., Zhang, J., Wang, C., & Guo, Z. An overview of stretchable strain sensors from conductive polymer nanocomposites. Journal of Materials Chemistry C. 2019, 7(38), 11710-11730.
    . Oh, J. Y., Shin, M., Lee, J. B., Ahn, J. H., Baik, H. K., & Jeong, U. Effect of PEDOT nanofibril networks on the conductivity, flexibility, and coatability of PEDOT: PSS films. ACS Applied Materials & Interfaces. 2014, 6(9), 6954-6961.
    . Mohan, H., Bartkowski, M., & Giordani, S. Biocompatible Dispersants for Carbon Nanomaterials. Applied Sciences. 2021, 11(22), 10565.
    . Kim, J. S., Song, K. S., Lee, J. H., & Yu, I. J. Evaluation of biocompatible dispersants for carbon nanotube toxicity tests. Archives of Toxicology. 2011, 85(12), 1499-1508.
    . Zhao, Q., Yang, K., Zhang, S., Chefetz, B., Zhao, J., Mashayekhi, H., & Xing, B. Dispersant selection for nanomaterials: Insight into dispersing functionalized carbon nanotubes by small polar aromatic organic molecules. Carbon. 2015, 91, 494-505.
    . Luo, J., Duan, Z., & Li, H. The influence of surfactants on the processing of multi‐walled carbon nanotubes in reinforced cement matrix composites. Physica Status Solidi. 2009, 206(12), 2783-2790.
    . Wool, R. P. Self-healing materials: a review. Soft Matter. 2008, 4(3), 400-418.
    . Hager, M. D., Greil, P., Leyens, C., van der Zwaag, S., & Schubert, U. S. Self‐healing materials. Advanced Materials. 2010, 22(47), 5424-5430.
    . Bekas, D. G., Tsirka, K., Baltzis, D., & Paipetis, A. S. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques. Composites Part B: Engineering, 2016, 87, 92-119.
    . Ko, J., Wu, X., Surendran, A., Muhammad, B. T., & Leong, W. L. Self-Healable Organic Electrochemical Transistor with High Transconductance, Fast Response, and Long-Term Stability. ACS Applied Materials & Interfaces. 2020, 12(30), 33979-33988.
    . Kaur, N., Kumar, V., & Dhakate, S. R. Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning. SpringerPlus. 2016, 5(1), 1-7.
    . He, J. H., Liu, Y., & Xu, L. Apparatus for preparing electrospun nanofibres: a comparative review. Materials Science and Technology. 2010, 26(11), 1275-1287.
    . Taylor, G. I. Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 1964, 280(1382), 383-397.
    . Szentivanyi, A. L., Zernetsch, H., Menzel, H., & Glasmacher, B. A review of developments in electrospinning technology: New opportunities for the design of artificial tissue structures. The International Journal of Artificial Organs. 2011, 34(10), 986-997.
    . Wang, X., Drew, C., Lee, S. H., Senecal, K. J., Kumar, J., & Samuelson, L. A. Electrospinning technology: a novel approach to sensor application. Journal of Macromolecular Science, Part A. 2002, 39(10), 1251-1258.
    . Rahmati, M., Mills, D. K., Urbanska, A. M., Saeb, M. R., Venugopal, J. R., Ramakrishna, S., & Mozafari, M. Electrospinning for tissue engineering applications. Progress in Materials Science. 2021, 117, 100721.
    . Wu, R., Ma, L., Patil, A., Hou, C., Zhu, S., Fan, X., & Liu, X. Y. All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers.ACS Applied Materials & Interfaces. 2019,11(36), 33336-33346.
    . Li, Z.; Zhu, M.; Shen, J.; Qiu, Q.; Yu, J.; Ding, B. All‐Fiber Structured Electronic Skin with High Elasticity and Breathability. Advanced Functional Materials 2020, 30, 1908411.
    . Behzadi, S. S., Toegel, S., & Viernstein, H. Innovations in coating technology. Recent Patents on Drug Delivery & Formulation. 2008, 2(3), 209-230.
    . Nwaogu, U. C., & Tiedje, N. S. Foundry coating technology: a review. Materials Sciences and Applications. 2011, 2(8), 1143.
    . Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., & Dao, M. Cold spray coating: review of material systems and future perspectives. Surface Engineering. 2014, 30(6), 369-395.
    . Tang, X., & Yan, X. Dip-coating for fibrous materials: mechanism, methods and applications. Journal of Sol-Gel Science and Technology. 2017, 81(2), 378-404.
    . Church JS, Voda AS, Sutti A, George J, Fox BL, Magniez K A simple and effective method to ameliorate the inter-facial properties of cellulosic fibre based bio-composites using poly (ethylene glycol) based amphiphiles. Eur Poly J. 2015, 64, 70–78.
    . Ng, E. K., Lau, K. Y., Lee, H. K., Bakar, M. A., Kamil, Y. M., Omar, M. F., & Mahdi, M. A. Saturable absorber incorporating graphene oxide polymer composite through dip coating for mode-locked fiber laser. Optical Materials. 2020, 100, 109619.
    . Chen, M., Ma, Y., Song, J., Lai, C. F., & Hu, B. Smart clothing: Connecting human with clouds and big data for sustainable health monitoring. Mobile Networks and Applications. 2016, 21(5), 825-845.
    . Cho, G., Lee, S., & Cho, J. Review and reappraisal of smart clothing. International Journal of Human-Computer Interaction. 2009, 25(6), 582-617.
    . Geselowitz, D. B. On the theory of the electrocardiogram. Proceedings of the IEEE. 1989, 77(6), 857-876.
    . McSharry, P. E., Clifford, G. D., Tarassenko, L., & Smith, L. A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering. 2003, 50(3), 289-294.
    . Hussain, I., & Park, S. J. Big-Ecg: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access. 2021, 9, 123146-123164.
    . Mills, K. R. The basics of electromyography. Journal of Neurology, Neurosurgery & Psychiatry. 2005, 76, 32-35.
    . Türker, K. S. Electromyography: some methodological problems and issues. Physical Therapy. 1993, 73(10), 698-710.
    . Fang, C., He, B., Wang, Y., Cao, J., & Gao, S. EMG-centered multisensory based technologies for pattern recognition in rehabilitation: state of the art and challenges. Biosensors. 2020, 10(8), 85.
    . Kundu, A.S.; Mazumder, O.; Lenka, P.K.; Bhaumik, S. Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors. J. Intell. Robot. Syst. 2018, 91, 529–541.

    無法下載圖示 全文公開日期 2025/08/02 (校內網路)
    全文公開日期 2120/08/02 (校外網路)
    全文公開日期 2120/08/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE