簡易檢索 / 詳目顯示

研究生: 徐語彤
Yu-Tung Hsu
論文名稱: 評估包覆四環黴素之漂浮顆粒對培養於胃部模擬環境中幽門桿菌之抑制效果
Evaluation of the inhibitory effect of Tetracycline- Alginate floating beads on the growth of H. pylori in a simulated gastric environment
指導教授: 高震宇
Chen-Yu Kao
口試委員: 何明樺
Ming-Hua Ho
葉平萍
Peng-Peng Ip
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 四環黴素幽門桿菌海藻酸漂浮顆粒胃癌
外文關鍵詞: Tetracycline, H. pylori, Alginate floating beads, gastric cancer
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幽門螺旋桿菌( H. pylori )為一彎曲桿狀的革蘭氏陰性微好氧菌,主要寄居 在胃黏膜的上皮細胞,也是目前發現唯一能在人胃中存活的細菌,感染後 容易引起胃炎、胃十二指腸潰瘍、胃癌與胃黏膜相關淋巴癌的危險因 子,而胃 癌是全球第五大常見癌症。目前常見治療幽門螺旋桿菌的方法是利用質子幫浦 阻斷劑和服用 clarithromycin 與 amoxicillin 所組成之標準三合一療法與質子幫 浦阻斷劑、鉍劑 tetracycline 與 metronidazole 組成的標準四合一療法;然而這 兩種療法的滅菌成功率不一,且藥物於胃內滯留時間短,造成藥物並未達到抑 制幽門螺旋桿菌的有效濃度就排出體外。因此,本研究第一部分製備了搭載四 環素之海藻酸漂浮顆粒以幫助改善藥物在體內快速吸收帶來的副作用,並將藥 物以載體包覆,可對藥物的釋放進行控制,達到緩釋作用,並對顆粒進行表面 評估和體外測試。第二部分則為幽門螺旋桿菌體外試驗,將幽門螺旋桿菌培養 於胃部模擬 3D 模型中,並觀察於不同條件下其體外生長情形。
    研究結果顯示,搭載四環素之海藻酸漂浮顆粒表面具有微小孔洞,且顆粒 可漂浮於介質上;緩釋效果則顯示出在顆粒中添加 HPMC 者具有較高的累積釋 放率;包埋率實驗顯示,添加幾丁聚醣之顆粒其藥物包埋率較高。幽門螺旋桿 菌體外試驗結果顯示,幽門螺旋桿菌於 5% 胃黏膜下具有最佳的生長情形;當 加入不同 pH 時可觀察到,幽門螺旋桿菌無法在 pH1~2 中存活,若改變胃黏膜 之添加量則可使少量的幽門螺旋桿菌可存活於 pH 2 的環境下。
    在未來的實驗中我們將會把這兩部份結合,測試搭載四環素之海藻酸漂浮 顆粒對培養於胃部模擬 3D 模型之幽門螺旋桿菌抑制的效果,以期能發展出一 個符合臨床需求的藥物傳輸系統。


    Helicobacter pylori (H. pylori) is a gram-negative microaerophile bacteria that has curved-rod shape. H. pylori is the only kind of bacterium discovered to survive in the human stomach, where they live in the epithelial cell of the gastric mucosa. An H. pylori infection may put people into the higher risk of gastritis, gastric and duodenal ulcers, gastric cancer and gastric mucosa related lymphoma among other conditions. Gastric cancer is currently among the top five most common cancers in the world. At present, the most common treatments of H. pylori infection are the standard triple therapy with proton pump inhibitor, clarithromycin and amoxicillin the other way is the standard quadruple therapy with proton pump inhibitor, bismuth salt, tetracycline, and metronidazole. However, the bactericidal-success-rate of these two standard therapies isn’t consistent. Furthermore, the ephemeral time of residence of the drugs in the stomach cause that is easily eliminated before reaching the concentration level that can effectively inhibit H. pylori. Therefore, the first part of this study was designed to reduce the side effects caused by the fast absorption of the drugs in vivo using the prepared Tetracycline-Alginate floating beads and wrapping the drugs with vectors that control drug release as slowly release. We also carried out the assessment of the beads surface and in vitro tests. In the second part of this study, we performed the in vitro experiments of H. pylori by culturing H. pylori in a simulated 3D model of a gastric environment and then observed and recorded the in vitro growth of the bacteria under different conditions.
    As shown by our results, the surface of the Tetracycline-Alginate floating beads
    that floated on the medium is full of microspores; the slowly release effects were reflected by the higher accumulated release rate of the beads with the addition of HPMC. Regarding the encapsulation efficiency, the results showed that the beads with chitosan had higher drug encapsulation efficiency. According to the in vitro study results, H. pylori grew best in 5% gastric mucin but cannot survive in the environment of pH value of 1~2. If the quantities of mucin added into the medium that was changed, a trace- amounts of H. pylori may survive even in an environment with a pH value of 2.
    In the future experiments, we will further study the inhibitory effect of Tetracycline-Alginate floating beads on the growth of H. pylori in a simulated gastric environment. We anticipate these finding might enhance the clinical success and generate a new therapeutic strategy for treating H. pylori infection.

    摘要........................................................................................................................... II Abstract ....................................................................................................................III 致謝........................................................................................................................... V 目錄.......................................................................................................................... VI 圖目錄........................................................................................................................ X 表目錄...................................................................................................................... XII 縮寫表......................................................................................................................XIII 第一章 緒論..................................................................................................................1 第二章 文獻回顧...........................................................................................................3 2.1 癌症........................................................................................................................3 2.1.1 胃癌..................................................................................................................... 3 2.2 幽門螺旋桿菌( Helicobacter pylori, H. pylori ) ...................................................... 5 2.3 藥物傳輸系統( Drug Delivery System, DDS ) ........................................................ 8 2.3.1 藥物胃內滯留型控釋製劑..................................................................................... 9 2.3.2 聚合物載體..........................................................................................................11 2.4 海藻酸( Sodium Alginate, SA ) ............................................................................. 13 2.4.1 海藻酸的單體結構............................................................................................... 15 2.4.2 海藻酸的高分子結構........................................................................................... 16 2.4.3 海藻酸交聯反應.................................................................................................. 17 2.5 幾丁聚醣( Chitosan ) ............................................................................................ 18 2.6 羥丙基甲基纖維素( HPMC ) .................................................................................. 20 2.7 四環黴素( Tetracycline, TCs ) ............................................................................... 21 2.7.1 四環黴素的抑菌作用機轉..................................................................................... 22 第三章 實驗材料與方法.................................................................................................24 3.1 研究設計.................................................................................................................24 3.1.1 實驗設計.............................................................................................................. 25 3.1.2 實驗架構............................................................................................................. 26 3.2 實驗器材藥品與設備...............................................................................................28 3.2.1 實驗器材藥品...................................................................................................... 28 3.2.2 實驗分析儀器設備............................................................................................... 29 3.3 Tetracycline-Alginate 漂浮顆粒的製備 ................................................................. 30 3.3.1 海藻酸漂浮顆粒製備參數..................................................................................... 30 3.3.2 製備 Tetracycline-Alginate 空白漂浮顆粒........................................................... 31 3.3.3 製備 Tetracycline-Alginate 漂浮顆粒.................................................................. 32 3.4 Tetracycline-Alginate 漂浮顆粒特性分析 .............................................................. 33 3.4.1 表面型態觀察...................................................................................................... 33 3.4.2 Tetracycline-Alginate 漂浮顆粒粒徑大小測量..................................................... 33 3.4.3 Tetracycline-Alginate 漂浮顆粒膨潤率測量........................................................ 34 3.4.4 Tetracycline-Alginate 漂浮顆粒漂浮率測試........................................................ 34 3.4.5 Tetracycline-Alginate 漂浮顆粒體外試驗評估..................................................... 35 3.5 幽門螺旋桿菌體外試驗............................................................................................37 3.5.1 幽門螺旋桿菌( H. pylori )的培養........................................................................... 38 3.5.2 幽門螺旋桿菌原液製作......................................................................................... 38 3.5.3 不同濃度 Mucin 對 H. pylori 的生長影響.............................................................. 39 3.5.4 不同添加量 Mucin 對 H. pylori 的生長影響.......................................................... 39 3.5.5 不同 pH 值對 H. pylori 的生長影響 ...................................................................... 40 3.5.6 改變 Mucin 添加量與 pH 值後 H. pylori 的生長情形............................................. 40 3.5.7 添加尿素對 H. pylori 在不同 pH 值下的生長情形 ................................................. 41 3.5.8 改變 H. pylori 生存環境之 pH 值測試 .................................................................. 42 3.5.9 以簡易裝置結合漂浮顆粒與培養 H. pylori 兩項實驗 ............................................. 42 第四章 結果...................................................................................................................43 4.1 海藻酸漂浮顆粒特性評估..........................................................................................43 4.1.1 顆粒表面型態分析................................................................................................. 43 4.1.2 顆粒粒徑大小分析................................................................................................ 49 4.1.3 顆粒膨潤率評估................................................................................................... 49 4.1.4 顆粒漂浮率評估................................................................................................... 52 4.1.5 體外釋放及包覆效果評估..................................................................................... 54 4.2 H. pylori 培養之體外試驗....................................................................................... 58 4.2.1 不同濃度 Mucin 對 H. pylori 的生長影響評估....................................................... 58 4.2.2 不同添加量 Mucin 對 H. pylori 的生長影響評估 .................................................. 59 4.2.3 不同 pH 值對 H. pylori 的生長評估 ..................................................................... 64 4.2.4 評估改變 Mucin 添加量與不同 pH 值下 H. pylori 的生長情形 .............................. 65 4.2.5 評估添加尿素對 H. pylori 在不同 pH 值中的生長情形........................................... 66 4.2.6 改變 H. pylori 生存條件之 pH 值測試結果 ........................................................... 67 4.2.7 以簡易裝置結合漂浮顆粒與培養 H. pylori 之實驗結果 ......................................... 68 第五章 討論...................................................................................................................71 5.1 漂浮顆粒之物化性探討.............................................................................................71 5.2 H. pylori 於不同條件下之生長情形探討 .................................................................. 74 第六章 結論...................................................................................................................76 未來展望.......................................................................................................................77 參考文獻.......................................................................................................................78

    1. 呂適任, Preparation and Verification of Liposomes Suitable for Ultrasound Drug Delivery
    System. 國立台灣大學電機工程學研究所, 2003.
    2. George, M. and T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein
    drugs: alginate and chitosan--a review. J Control Release, 2006. 114(1): p. 1-14.
    3. Wu, J.Y., et al., Tetracycline-resistant clinical Helicobacter pylori isolates with and without
    mutations in 16S rRNA-encoding genes. Antimicrob Agents Chemother, 2005. 49(2): p. 578-
    83.
    4. Zevit, N., et al., Antibiotic resistance of Helicobacter pylori in Israeli children. Scand J
    Gastroenterol, 2010. 45(5): p. 550-5.
    5. Jason M. Pogue, M.N.D., Ambika Eranki, Keith S. Kaye, Tetracyclines and Chloramphenicol.
    Infectious Diseases (Fourth Edition), 2017. 2: p. 1256–1260.
    6. 行政院衛生福利部國民健康署, 104 年癌症登記年報. 2017.
    7. Khazaei, S., et al., Global Incidence and Mortality Rates of Stomach Cancer and the Human
    Development Index: an Ecological Study. Asian Pac J Cancer Prev, 2016. 17(4): p. 1701-4.
    8. Rugge, M., et al., Gastric Cancer as Preventable Disease. Clin Gastroenterol Hepatol, 2017.
    15(12): p. 1833-1843.
    9. Krueger, S., A. Roessner, and D. Kuester, Murine models of H. pylori-induced gastritis and
    gastric adenocarcinoma. Pathol Res Pract, 2011. 207(10): p. 599-607.
    10. Barreto-Zuniga, R., et al., Significance of Helicobacter pylori infection as a risk factor in
    gastric cancer: serological and histological studies. J Gastroenterol,1997. 32(3): p. 289-94.
    11. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer Statistics, 2017. CA Cancer J Clin, 2017. 67(1):
    p. 7-30.
    12. 國家衛生研究院, 胃癌臨床診療指引. 2012.
    13. Burkitt, M.D., et al., Helicobacter pylori-induced gastric pathology: insights from in vivo and
    ex vivo models. Dis Model Mech, 2017. 10(2): p. 89-104.
    14. Morgner A, B.E., Neubauer A, et al., Gastric MALT Lymphoma and Its Relationship to
    Helicobacter pylori Infection- Management and Pathogenesis of the Disease. MICROSCOPY
    RESEARCH AND TECHNIQUE 2000. 48: p.349–356.
    15. Chey, W.D., et al., ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Am J
    Gastroenterol, 2017. 112(2): p. 212-239.
    16. McColl, K.E., Helicobacter pylori and oesophageal cancer--not always protective. Gut, 2007.
    56(4): p. 457-9.
    17. C.StewartGoodwin, DUODENAL ULCER, CAMPYLOBACTER PYLORI, AND THE "LEAKING
    ROOF" CONCEPT. The Lancet, 1988. 332(8626-8627): p.1467-1469.
    18. Kusters, J.G., A.H. van Vliet, and E.J. Kuipers, Pathogenesis of Helicobacter pylori infection.
    Clin Microbiol Rev, 2006. 19(3): p. 449-90.
    19. Graham, D.Y., Helicobacter pylori update: gastric cancer, reliable therapy,and possible
    benefits. Gastroenterology, 2015. 148(4): p. 719-31 e3.
    20. Bansil, R., et al., The Influence of Mucus Microstructure and Rheology in Helicobacter pylori
    Infection. Front Immunol, 2013. 4: p. 310.
    21. 譚健民, 幽門螺旋桿菌導致胃黏膜傷害的免疫致病機轉-由細菌毒力因子 (Virulence Factor)談起.
    台灣醫界, 2008. 51(1).
    22. N. Sivagangi Reddy, K.S.V.K.R., Polymeric Hydrogels: Recent Advances in Toxic Metal Ion
    Removal and Anticancer Drug Delivery Applications. Indian Journal of Advances in Chemical
    Science, 2016. 4(2): p. 214-234.
    23. Steve I. Shen, B.R.J., and Xiaoling Li, DESIGN OF CONTROLLED-RELEASE DRUG DELIVERY
    SYSTEMS. Biomedical Engineering and Design Handbook, 2003.
    24. Hoffman, A.S., Drug Delivery Systems, in Biomaterials Science (Third Edition). 2013: p.
    1024-1027.
    25. Allen, T.M. and P.R. Cullis, Drug delivery systems: entering the mainstream. Science, 2004.
    303(5665): p. 1818-22.
    26. Patel, S.S., S. Ray, and R.S. Thakur, Formualtion and evaluation of floating drug delivery
    system containing clarithromycin for Helicobacter pylori. Acta Pol Pharm, 2006. 63(1): p. 53-
    61.
    27. Amit Kumar Nayak *, R.M., Biswarup Das Gastroretentive drug delivery systems: a review.
    REVIEW ARTICLE, 2010. 3(1).
    28. 蕭雯萱, 膨脹型胃滯留傳遞系統的開發與特性探討. 2006.
    29. Deshpande, A.A., et al., Development of a novel controlled-release system for gastric
    retention. Pharm Res, 1997. 14(6): p. 815-9.
    30. Waleed S.W.Shalaby., W.E.B., KinamPark, In vitro and in vivo studies of enzyme-digestible
    hydrogels for oral drug delivery. Journal of Controlled Release, 1992. 19(1-3): p. 131-144.
    31. Arora, S., et al., Floating drug delivery systems: a review. AAPS PharmSciTech, 2005. 6(3): p.
    E372-90.
    32. Santosh Shep, S.D., Sandeep Lahoti, Rahul Mayee, Swelling System: A Novel Approach
    Towards Gastroretentive Drug Delivery System. Indo-Global Journal of Pharmaceutical
    Sciences, 2011. 1(3): p. 234-242.
    33. Mamajek,Ronald C., M.E.S., Drug-dispensing device and method. United States Patent,
    1980.
    34. 趙璽,李連闖,馬慧琳,黄金洋,魏巳琪,劉鋮琳, 胃滞留型给藥系统的 研究進展. 综合醫學-養生
    保健指南, 2017. 39: p. 213.
    35. Muhammad Shahidul Islam, K.R.A., Jakir Ahmed Chowdury, Md Selim Reza, Comparison of
    Gastro Retention Time and in vitro Release Profile studies of Ciprofloxacin HCl from Co-
    matrix Tablets of Hydrophilic Polymers. Dhaka University Journal of Pharmaceutical
    Sciences, 2009. 8(1): p. 67-73.
    36. Jalil, R. and J.R. Nixon, Biodegradable poly(lactic acid) and poly(lactide-co- glycolide)
    microcapsules: problems associated with preparative techniques and release properties. J
    Microencapsul, 1990. 7(3): p. 297-325.
    37. Sinha, V.R. and A. Trehan, Biodegradable microspheres for protein delivery. J Control
    Release, 2003. 90(3): p. 261-80.
    38. Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv
    Rev, 2006. 58(15): p. 1655-70.
    39. Angelova, N. and D. Hunkeler, Rationalizing the design of polymeric biomaterials. Trends
    Biotechnol, 1999. 17(10): p. 409-21.
    40. Chambers, E. and S. Mitragotri, Prolonged circulation of large polymeric nanoparticles by
    non-covalent adsorption on erythrocytes. J Control Release, 2004. 100(1): p. 111-9.
    41. 何小維,黄强, 澱粉基生物降解材料. 中國輕工業出版社出版圖書, 2008.
    42. 翟頤華,鄒國林, 高分子聚合物在藥物上的應用. 中國生化藥物雜誌,1996. 17(6): p. 51-59.
    43. Apurva Srivastava, T.Y., Soumya Sharma, Anjali Nayak, Akanksha Kumari, Nidhi Mishra,
    Polymers in Drug Delivery. Journal of Biosciences and Medicines, 2016. 4: p. 69-84.
    44. Mahajan, A.a.A., G., Smart Polymers: Innovations in Novel Drug Delivery. International
    Journal of Drug Development & Research, 2011. 3(16-30).
    45. Ching, S.H., N. Bansal, and B. Bhandari, Alginate gel particles-A review of production
    techniques and physical properties. Crit Rev Food Sci Nutr, 2017. 57(6): p. 1133-1152.
    46. 秦益民, 海藻酸. 中國輕工業出版社, 2008.6.
    47. Handbook of water-soluble gums and resins / Robert L. Davidson, e.i.c., Alginate. Davidson
    R T, editor, Handbook of water-soluble gums and resins 1980: p. 2-1-2-43.
    48. Kong, H.J., et al., Controlling Degradation of Hydrogels via the Size of Cross- Linked
    Junctions. Adv Mater, 2004. 16(21): p. 1917-1921.
    49. Gaserod, O., O. Smidsrod, and G. Skjak-Braek, Microcapsules of alginate- chitosan--I. A
    quantitative study of the interaction between alginate and chitosan. Biomaterials, 1998.
    19(20): p. 1815-25.
    50. Rowley, J.A., G. Madlambayan, and D.J. Mooney, Alginate hydrogels as synthetic
    extracellular matrix materials. Biomaterials, 1999. 20(1): p. 45-53.
    51. Chapman, V.J.C.J., Algin and Alginates. 1980: p. 194-225.
    52. Schoubben, A., et al., Development of a scalable procedure for fine calcium alginate particle
    preparation. Chemical Engineering Journal, 2010. 160(1): p.363-369.
    53. Garcia-Cruz, A.N.d.S.a.C.H., Biopolymers by Azotobacter Vinelandii. 2010: p.414.
    54. Lee, B.-J., Min, G-H., Kim, T.-W., Preparation and in vitro release of melatonin-loaded
    multivalent cationic alginate beads. Archives of Pharmacal Research, 1996. 19(4): p. 280-
    2285.
    55. Isabelle Braccini, a.S.P., Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins:
    The Egg-Box Model Revisited. Biomacromolecules, 2001. 2(4): p. 1089-1096.
    56. Paques, J.P., et al., Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci,
    2014. 209: p. 163-71. 81
    57. Kashima, K. and M. Imai, Advanced Membrane Material from Marine Biological Polymer and
    Sensitive Molecular-Size Recognition for Promising Separation Technology, in Advancing
    Desalination. 2012.
    58. Anitha, A., et al., Chitin and chitosan in selected biomedical applications. Progress in
    Polymer Science, 2014. 39(9): p. 1644-1667.
    59. Jeuniaux, C., Advanced Chitin. Sci 1, 1996. 1.
    60. Zuber, M., K.M. Zia, and M. Barikani, Chitin and Chitosan Based Blends, Composites and
    Nanocomposites, in Advances in Natural Polymers. 2013. p.55-119.
    61. Rinaudo, M., Chitin and chitosan: Properties and applications. Progress in Polymer Science,
    2006. 31(7): p. 603-632.
    62. Domard, A.; Rinaudo, M. Int J Biol Macromol. 1983. 5(49).
    63. Muzzarelli, R.A.A., Chitin; Pergamon: Oxford. 1977.
    64. 溫淑珍,陳芝瑜,韓維剛,陳奕村,李瑞生,李商和, 幾丁聚醣/嫘縈混紡紗線及其止血效果之研
    究. 中山科學研究院,財團法人紡織產業綜合研究所, 2016. 12.
    65. Jayasuriya, A.C., Production of micro and nanoscale chitosan particles for biomedical
    applications, in Chitosan Based Biomaterials Volume 1. 2017. p.185-209.
    66. Bilal, M., et al., Development of silver nanoparticles loaded chitosan-alginate constructs
    with biomedical potentialities. Int J Biol Macromol, 2017. 105(1): p.393-400.
    67. Iqbal, H.M.N., et al., Recent Trends in Nanotechnology-Based Drugs and Formulations for
    Targeted Therapeutic Delivery. Recent Pat Inflamm Allergy Drug Discov, 2017. 10(2): p. 86-
    93.
    68. Iwasaki, N., et al., Feasibility of polysaccharide hybrid materials for scaffolds in cartilage
    tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared
    from alginate and chitosan. Biomacromolecules, 2004. 5(3): p. 828-33.
    69. 羥丙基甲基纖維素. 102 年 9 月 2 日部授食字第 1021950267 號公告.
    70. van der Gronde, T., et al., Systematic review of the mechanisms and evidence behind the
    hypocholesterolaemic effects of HPMC, pectin and chitosan in animal trials. Food Chem,
    2016. 199: p. 746-59. 82
    71. Burdock, G.A., Safety assessment of hydroxypropyl methylcellulose as a food ingredient.
    Food Chem Toxicol, 2007. 45(12): p. 2341-51.
    72. Hung, S.C., et al., Effect of hydroxypropyl methylcellulose on obesity and glucose
    metabolism in a diet-induced obesity mouse model. J Diabetes, 2011. 3(2): p. 158-67.
    73. Martins, B.F., P.V. de Toledo, and D.F. Petri, Hydroxypropyl methylcellulose based aerogels:
    Synthesis, characterization and application as adsorbents for wastewater pollutants.
    Carbohydr Polym, 2017. 155: p. 173-181.
    74. Chopra, I. and M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular
    biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 2001. 65(2): p.
    232-60 ; second page, table of contents.
    75. Ng, K. and S.W. Linder, HPLC separation of tetracycline analogues: comparison study of l
    laser-based polarimetric detection with UV detection. J Chromatogr Sci, 2003. 41(9): p.
    460-6.
    76. Yang, W., et al., TetX is a flavin-dependent monooxygenase conferring resistance to
    tetracycline antibiotics. J Biol Chem, 2004. 279(50): p. 52346-52.
    77. Juvakoski, T., et al., One-week treatment of chlamydia-positive urethritis with doxycycline
    and tetracycline chloride in males. Acta Derm Venereol, 1981. 61(3): p. 273-5.
    78. E. Michalova, P.N., J. Schlegelova, Tetracyclines in veterinary medicine and bacterial
    resistance to them. Vet. Med. – Czech, 2004. 49(3): p. 79-100.
    79. Biggs, H.M., et al., Diagnosis and Management of Tickborne Rickettsial Diseases: Rocky
    Mountain Spotted Fever and Other Spotted Fever Group Rickettsioses, Ehrlichioses, and
    Anaplasmosis - United States. MMWR Recomm Rep, 2016. 65(2): p. 1-44.
    80. I D Farrell, P.M.H., L Robertson, Sensitivity of Brucella spp to tetracycline and its analogues.
    J Clin Pathol, 1976. 29(12): p. 1097-1100.
    81. Sébastien Briolant, T.F., Christophe Rogier and Bruno Pradines, Tetracycline Antibiotics in
    Malaria. The Open Tropical Medicine Journal, 2008. 1: p. 31-46.
    82. McGlannan, A., The Treatment of Anthrax Infections. Ann Surg, 1923. 77(3): p. 263-6.
    83. Boulanger, L.L., et al., Gentamicin and tetracyclines for the treatment of human plague:
    review of 75 cases in new Mexico, 1985-1999. Clin Infect Dis, 2004. 38(5): p. 663-9.
    84. Yoshida, S., et al., Effects of tetracyclines on experimental Legionella pneumophila infection
    in guinea-pigs. J Antimicrob Chemother, 1985. 16(2): p. 199-204.
    85. Rebecca A.Buckler, M.M.P., Jason C.Gallagher, Beta-Lactams and Tetracyclines Side Effects
    of Drugs Annual, 2017. 39: p. 217-227.
    86. Singh, S.B., K. Young, and L.L. Silver, What is an "ideal" antibiotic? Discovery challenges and
    path forward. Biochem Pharmacol, 2017. 133: p. 63-73.
    87. Brown, D., Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery
    void? Nat Rev Drug Discov, 2015. 14(12): p. 821-32.
    88. Chopra, I., Tetracycline analogs whose primary target is not the bacterial
    ribosome. Antimicrob Agents Chemother, 1994. 38(4): p. 637-40.
    89. Chopra, I., Mode of Action of the Tetracyclines and the Nature of Bacterial
    Resistance to Them. the tetracyclines, 1985. 78: p. 317-329.
    90. Chopra, I., P.M. Hawkey, and M. Hinton, Tetracyclines, molecular and clinical
    aspects. J Antimicrob Chemother, 1992. 29(3): p. 245-77.
    91. Koltai, T., TETRACYCLINES AGAINST CANCER. A REVIEW. 2015.
    92. C.IgathinathaneL.O.PordesimoE.P.ColumbusW.D.BatchelorS.R.Methuku,
    Shape identification and particles size distribution from basic shape parameters using ImageJ. Computers and Electronics in Agriculture, 2008. 63(2): p. 168- 182.
    93. Nayak, A.K., D. Pal, and K. Santra, Swelling and drug release behavior of metformin HCl-loaded tamarind seed polysaccharide-alginate beads. Int J Biol Macromol, 2016. 82: p. 1023-7.
    94. Gunter, E.A., et al., Swelling and morphology of calcium pectinate gel beads obtained from Silene vulgaris callus modified pectins. Carbohydr Polym, 2014. 103: p. 550-7.
    95. Jain, S.K., et al., Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: preparation and in vitro characterization. J Control Release, 2005. 107(2): p. 300-9.
    96. Amatya, S., et al., Drug release testing methods of polymeric particulate drug formulations. Journal of Pharmaceutical Investigation, 2013. 43(4): p. 259-266.
    97. Wang, S.B., et al., Effect of drug-loading methods on drug load, encapsulation efficiency and release properties of alginate/poly-L-arginine/chitosan ternary
    complex microcapsules. Macromol Biosci, 2004. 4(1): p. 27-30. 84

    98. O. Tadjrobehkar, H.A., Survival and Chemotactic Behavior of H pylori at Different Media pH. Original Article, 2004. 29(2).
    99. Tadjrobehkar, O. and H. Abdollahi, Survival and chemotactic behavior of H pylori at different media pH. Iranian Journal of Medical Sciences, 2015. 29(2): p. 81-84.
    100. Nayak, A., S.K. Jain, and R.S. Pandey, Controlling release of metformin HCl through incorporation into stomach specific floating alginate beads. Mol Pharm, 2011. 8(6): p. 2273-81.
    101. Huang, Y., et al., Adhesion and Invasion of Gastric Mucosa Epithelial Cells by Helicobacter pylori. Front Cell Infect Microbiol, 2016. 6: p. 159.
    102. Celli, J.P., et al., Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc Natl Acad Sci U S A, 2009. 106(34): p. 14321-6.
    103. Cole, S.P., et al., Characterization of monospecies biofilm formation by Helicobacter pylori. J Bacteriol, 2004. 186(10): p. 3124-32.
    104. Jiang, X. and M.P. Doyle, Growth supplements for Helicobacter pylori. J Clin Microbiol, 2000. 38(5): p. 1984-7.

    QR CODE