簡易檢索 / 詳目顯示

研究生: 納維德艾哈邁德
Naveed Ahmad
論文名稱: 製備新型異質結基 g-C3N4-金屬氧化物通過光氧化還原催化和氣相吸附將 CO2 還原為有價值的燃料產品
Preparation of Novel Heterojunction-Based g-C3N4-Metal Oxides for Photoreduction of CO2 to Valuable Fuel Products via Gas-Phase Adsorption and Photoredox Catalysis
指導教授: 郭中豐
Chung-Feng jeffrey Kuo
口試委員: 張大鵬
Ta Peng Chang
張嘉德
Chia Der Chang
蘇德利
Te-Li Su
郭中豐
Chung-Feng Jeffrey Kuo
黃昌群
Chang-Chiun Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 148
中文關鍵詞: 基於半導體的光催化劑,2,4-二硝基酚,CO,基於氟喹諾酮的抗生素,環丙沙星,鹽酸四環黴素,可見光照射,光催化,溶劑熱法,電化學方法,
外文關鍵詞: Semiconductor-based photocatalysts,, 2,4-dinitrophenol,, CO,, fluoroquinolone based-antibiotics,, ciprofloxacin,, tetracycline-HCl,, visible light irradiations,, photocatalysis,, solvothermal,, electrochemical approaches,
相關次數: 點閱:355下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能轉化為化學能的高效轉換一直以來都引起了極大的關注,並且有望成為能源問題和環境修復的潛在解決方案。特別是利用光催化技術將二氧化碳還原為碳燃料和降解2,4-二硝基酚已成為可再生能源領域中熱門的話題。本研究通過煅燒和超聲處理的過程合成了二元NiAl2O4/g-C3N4 (NAO/g-CN)複合材料,這提高了從g-C3N4到NiAl2O4的光產生電子的轉移,使得在NiAl2O4的表面產生了更多的激發性還原電子。通過對制備的複合材料進行晶體學、電子顯微鏡、光電子能譜、電化學和光譜學表徵,可以深入瞭解其在CO2光還原和2,4-二硝基酚 (2,4-DNP) 光降解中的光催化活性。最活躍的光催化劑,40% NAO/g-CN,在可見光下產生了10.73 μmolg-1h-1的CO和99.29%的2,4-DNP降解率,有效消除了這些污染物。這種10.73 μmolg-1h-1的二氧化碳光催化轉化為CO的效率分別是NAO和g-CN的10倍和12倍。在恒定速率 (k) 值分別為15.52 x 10-3、5.33 x 10-3和6.27 x 10-3的情況下,40% NAO/g-CN的2,4-DNP降解量比裸g-CN多出1.58倍,比裸NAO多出1.81倍。
    最近在水生環境中發現了含有氟喹諾酮類抗生素的大量存在,引起了相當大的擔憂。為了應對這個問題,有必要設計一種具有優異光催化效率以消除抗生素的半導體光催化劑。異質結合是相關光催化劑效率可以增強的可能位置。本研究探討了MnNb2O6/g-C3N4 (MNO/g-CN)復合材料在環丙沙星和鹽酸四環黴素抗生素的光催化降解中的性能。發現MNO/g-CN的光催化活性增強歸因於MnNb2O6和g-C3N4納米片之間電子的轉移,這有助於產生光產生的e⁻/h⁺對。這表明存在一種低廢棄、高性能的材料可以從廢水中消除環丙沙星和鹽酸四環黴素。此外,利用光化學、物理化學和電化學方法描述了MNO/g-CN光催化劑的結構、光化學和光相互作用性質。合成的光催化劑由溶劑熱法和超聲處理製備,其特殊的效率歸功於其對環丙沙星和鹽酸四環黴素的光降解進行系統化的光解。最佳的15% MNO/g-CN複合材料顯示出最大的光催化效率,環丙沙星和鹽酸四環黴素的光降解率分別達到94.10%和98.50%,並且使用LC-MS光譜法研究了降解機制。適當的光催化活性歸因於e⁻/h⁺對的複合速率降低。掃描評估證明,在可見光區域下,h+和•O2−是在MNO/g-CN上實現環丙沙星和鹽酸四環黴素光降解的兩個主要光活性物種。我們的研究結果為通過開發二元異質結構準確調節光產生的電荷分離方向,從而實現CO2光還原、有毒有機化合物和抗生素的光催化降解提供了新的途徑。


    Immense interest has been expressed in the efficient conversion of solar to chemical energy using promising semiconductor-based photocatalysts, seen as a prospective solution for energy problems and environmental remediation. In particular, employing photocatalytic technology to reduce CO2 into carbon fuels and degrade 2,4-dinitrophenol has become a much-discussed topic in renewable energy. In this study, binary NiAl2O4/g-C3N4 (NAO/g-CN) composites were synthesized via a process of calcination followed by sonication, which enhanced the transfer of photogenerated electrons from g-C3N4 to NiAl2O4, creating a much greater excited reductive electron charge on the surface of NiAl2O4. The crystallographic, electron-microscopy, photoemission spectroscopy, electrochemical and spectroscopic characterizations of the prepared composites allowed insights into their photocatalytic activity in the photoreduction of CO2 and photodegradation of 2,4-dinitrophenol (2,4-DNP). The most active photocatalyst, 40% NAO/g-CN, produced 10.73 μmolg-1h-1 of CO and 99.29% degradation of 2,4-DNP, representing the effective elimination of these pollutants under visible light. This 10.73 μmolg-1h-1 photocatalytic conversion of CO2 into CO is 10- and 12-fold that of NAO and g-CN, respectively. The 40% NAO/g-CN produced 1.58 times more 2,4-DNP degradation than bare g-CN, and 1.81 times more than bare NAO, at constant rate (k) values of 15.52 x 10-3, 5.33 x 10-3, and 6.27 x 10-3, respectively.
    Fluoroquinolone based-antibiotics have been encountered in aquatic environments in quantities giving rise to significant concern recently. To cope with this problem, it is necessary to design a semiconductor photocatalyst having excellent photocatalytic efficiency to eliminate the antibiotics. The heterojunction is a likely situate where the efficiency of relevant photocatalyst can be strengthened. In this study, the performance of MnNb2O6/g-C3N4 (MNO/g-CN) composites in the photocatalytic degradation of ciprofloxacin and tetracycline-HCl antibiotics was explored. Enhanced photocatalytic activity of MNO/g-CN was found to be owing to electron’s shifting between the MnNb2O6, and g-C3N4 nanosheets, which promotes the formation of photo-generated e⁻/h⁺ pairs. This shows a low-waste, high-performance material exists to eradicate CIP and TCH from wastewater. Further, the structural, photochemical and light interacted properties of the MNO/g-CN photocatalyst, prepared by solvothermal method and sonication, were described using photochemical, physiochemical and electrochemical approaches. The synthesized photocatalyst owes its particular efficiency to its methodical photo-degradation of CIP and TC using visible light irradiations. The optimum composite 15% MNO/g-CN evinced the greatest photocatalytic efficiency with CIP and TCH photo-degradation of 94.10%, and 98.50%, respectively, and degradation mechanism were investigated using LC-MS spectroscopy. The suitable photocatalytic activity is ascribed to lower the recombination’s rate of e⁻/h⁺ pairs. The scavenging evaluations proved that the h+ and •O2− were two major photoactive species accomplishing the CIP and TCH photodegradation over MNO/g-CN under visible region. Our findings pave the way to accurately modifying photogenerated charge separation directions by developing binary heterostructures for CO2 photoreduction, toxic organic compound, antibiotic photocatalytic degradation for environmental remediations.

    Table of contents Content ………………………………………………………………………………... Pages 摘要 ……………………………………………………………………………………. ii Abstract ………………………………………………………………………………. iv Acknowledgments ……………………………………………………………………. vi Dedications……………………………………………………………………………. viii Table of Contents ……………………………………………………………………… ix List of Figures …………………………………………………………………………. xiii List of Tables …………………………………………………………………………… xviii List of abbreviation and nomenclature………………………………………………... xx Chapter 1 Introduction ……………………………………………………………… 1 1.1 Research motivation …………………………………………………………… 1 1.2 Background of the study ……………………………………………………… 1 1.3 Different bandgap positions ……………………………………………………. 6 1.4 Types of heterojunction photocatalytic system …………….…………………. 8 1.5 General mechanism of photocatalytic degradation…………………………...... 13 Chapter 2 Literature review…………………………………………………………. 16 Chapter 3 Methodology ……………………………………………………………… 28 3.1 Materials and method …………………………………………………….……. 28 3.1.1 Materials ………………………………………………………......... 28 3.1.2 Preparation of graphitic carbon nitride (g-C3N4) nanosheets……………… 28 3.1.3 Preparation of Nickel Aluminate (NiAl2O4) nanoparticles…………….…. 28 3.1.4 Synthesis of NaAl2O4/g-C3N4 binary composite…………………………. 29 3.2.1 Synthesis of manganese Niobate (MnNb2O6) ……………………………. 29 3.2.2 Synthesis of x-MnNb2O6/g-C3N4 binary composite ……………………... 30 3.3 Characterization of the photocatalysts…………………………………………. 30 3.4 Computational band gap calculation of g-CN and MNO and MNO/g-CN……... 31 3.5 Photoelectrochemical measurements…………………………………………… 32 3.6 Photocatalytic CO2 reduction experiment………………………………………. 32 3.7 Photocatalytic degradation of 2,4-dintrophenol (2,4-DNP) ……………………33 3.8 Photocatalytic activity of CIP, TCH ...…………………………………. 33 3.10 Scavenging experiment and photostability of the photocatalyst 34 Chapter 4 Synthesis and applications of NiAl2O4/g-C3N4 binary composite.………………35 4.1 Introduction ………………………………………………………………. 35 4.2 Experiment details……………………………………………………………... 37 4.2.1 Materials.…………………………………………………………………. 37 4.2.2 Preparation of g-C3N4 nanosheets………………………………................. 37 4.2.3 Synthesis of Nickel Aluminate (NiAl2O4) nanoparticles.…………………. 37 4.2.4 Synthesis of NaAl2O4/g-C3N4 binary composite…………………………... 38 4.2.5 Characterization of the photocatalysts……………………………………... 38 4.2.6 Photo electrochemical measurements……………………………………… 39 4.2.7 Photocatalytic CO2 reduction experiment…………………………………... 39 4.2.8 Photocatalytic degradation of 2,4-DNP ………………….............................. 40 4.2.9 Scavenging experiment and photostability of the photocatalyst…………… 40 4.3 Results and discussion…………………………………………………………... 41 4.3.1 Characterization of the photocatalysts……………………………………. 41 4.3.1.1 Crystal structure and Fourier transformed infrared (FTIR) spectra…... 41 4.3.1.2 Morphological analysis of as-synthesized photocatalyst……………... 49 4.3.1.3 UV-Vis, photoluminescence (PL), photocurrent density, Electrochemical impedance (EIS) spectra, Mott-Schottky analysis…. 45 3.3.1.4 Specific surface areas (SBET) of as-synthesized photocatalyst………. 52 3.3.1.5 Analysis of XPS by X-ray photoelectron spectroscopy……………… 52 3.3.2 Photocatalytic degradation applications……………………………………. 54 3.3.2.1 Photocatalytic CO2 reduction to CO…………………………………. 54 3.3.2.2 Photodegradation of 2, 4-dinitrophenol………………………………. 61 3.3.2.3 Reaction’s mechanism involved in 2,4-DNP degradation……………. 65 Contents…………………………………………………………………………………. Pages 3.3.2.3 Scavenging experiment for radical trapping and reusability of the Photocatalyst…………………………………………………………. 67 4.4 Conclusions……………………………………………………………………... 69 Chapter 5 Study of synthesis and applications of Type-II MnNb2O6/g-C3N4 heterojunction…70 5.1 Introduction……………………………………………………………………. 70 5.2 Materials and method………………………………………………………… 72 5.2.1 Materials ………………………………………………………………… 72 5.2.2 Synthesis of g-C3N4 and MnNb2O6………………………………………… 73 5.2.3 Synthesis of x-MnNb2O6/g-C3N4 binary composite……………………… 73 5.2.4 Characterization of the photocatalyst…………………………………… 74 5.2.5 Photoelectrochemical measurements…………………………………… 75 5.2.6 Computational study……………………………………………………. 75 5.2.7 Photocatalytic efficiency…………………….……………………………. 75 5.2.8 Scavenger’s experiment and stability of photocatalyst…………………. 76 5.3 Results and discussions………………………………………………………… 76 5.3.1 Characterization of MNO/g-CN photo-catalyst…………………………. 76 5.3.1.1 X-ray diffraction (XRD) Analysis…………………………………… 76 5.3.1.2 Fourier transform infrared (FTIR) study……………………………… 77 5.3.1.3 X-ray photoelectron (XPS) Study……………………………………. 79 5.3.1.4 Transmission electron microscope (TEM) analysis…………………… 81 5.3.1.5 Field emission¬ scanning electron microscope study…………………… 81 5.3.1.6 Energy dispersive X-ray (EDX) and EDX mapping Study…………… 83 5.3.1.7 UV Visible DRS Spectra, band gap, mottschotky plot, photoluminescence (PL), TRPL, and transient photocurrent density………………………………………………….83 5.3.1.8 Computational study…………………………………………………… 89 5.3.1.9 Brunauer Emmett Teller (B ET) analysis………………………………. 90 5.3.2 Photocatalytic activity………………………………………………………… 93 5.3.2.1 Photocatalytic degradation of CIP, and TCH …………………………. 93 5.3.3 Degradation pathway of CIP……………….……………………………......... 95 5.3.4 Photodegradation Pathway of TCH………………………………………........ 98 5.3.5 Photocatalytic mechanism, free radical trapping and reusability Experiments……………………………………………………………...........105 5.4 Conclusions…………………………………………………………………………. 116 Chapter 6. Summary and future work 118 6.1 Summary…………………………………………………………………………..... 118 6.2 Future work…………………………………………………………………………. 120 References…………………………………………………………………………... 121 Publications…………………………………………………………………………. 147

    References
    [1] Y. Wang, E. Chen, J. Tang, Insight on reaction pathways of photocatalytic CO2 conversion, ACS Catalysis 12 (2022) 7300-7316.
    [2] W. Dai, P. Wang, J. Long, Y. Xu, M. Zhang, L. Yang, J. Zou, X. Luo, S. Luo, Constructing robust Bi active sites in-situ on α-Bi2O3 for efficient and selective photoreduction of CO2 to CH4 via directional transfer of electrons, ACS Catalysis, 13 (2023) 2513-2522.
    [3] M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C.T. Dinh, F. Fan, C. Cao, F.P. de Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S.O. Kelley, E.H. Sargent, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature, 537 (2016) 382-386.
    [4] R. Chen, L. Wang, J. Ding, J. Zhang, H. Wan, G. Guan, Microwave-assisted construction of Bi2MoO6/g-C3N4 heterostructure for boosting photocatalytic CO2 conversion, Journal of Alloys and Compounds, 960 (2023) 170605.
    [5] H. Lin, S. Luo, H. Zhang, J. Ye, Toward solar-driven carbon recycling, Joule, 6 (2022) 294-314.
    [6] S. Sun, B. Peng, Y. Song, R. Wang, H. Song, W. Lin, Engineering Z-Scheme FeOOH/PCN with fast photoelectron transfer and surface redox kinetics for efficient solar-rriven CO2 reduction, ACS Applied Materials Interfaces, 15 (2023) 12957-12966.
    [7] K. de Kleijne, S.V. Hanssen, L. van Dinteren, M.A.J. Huijbregts, R. van Zelm, H. de Coninck, Limits to Paris compatibility of CO2 capture and utilization, One Earth, 5 (2022) 168-185.
    [8] M. Tayyab, Y. Liu, S. Min, R. Muhammad Irfan, Q. Zhu, L. Zhou, J. Lei, J. Zhang, Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires, Chinese Journal of Catalysis, 43 (2022) 1165-1175.
    [9] M. Cabrero-Antonino, A. Melillo, E. Montero-Lanzuela, M. Álvaro, B. Ferrer, I. Vayá, H.G. Baldoví, S. Navalón, Solar-driven gas phase photocatalytic CO2 methanation by multimetallic UiO-66 solids decorated with RuOx nanoparticles, Chemical Engineering Journal, 468 (2023).
    [10] Z. Pan, W. Ding, H. Chen, H. Ji, A review on g-C3N4 decorated with silver for photocatalytic energy conversion, Chinese Chemical Letters, (2023) 108567.
    [11] Y. Xing, X. Wang, S. Hao, X. Zhang, X. Wang, W. Ma, G. Zhao, X. Xu, Recent advances in the improvement of g-C3N4 based photocatalytic materials, Chinese Chemical Letters, 32 (2021) 13-20.
    [12] S. Afshin, Y. Rashtbari, M. Vosough, A. Dargahi, M. Fazlzadeh, A. Behzad, M. Yousefi, Application of Box–Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe3O4 loaded on activated carbon prepared from alga: Kinetics and equilibrium study, Journal of Water Process Engineering, 42 (2021) 102113.
    [13] S.P. Hooshyar, H.A. Panahi, E. Moniri, M. Farsadrooh, Tailoring a new hyperbranched PEGylated dendrimer nano-polymer as a super-adsorbent for magnetic solid-phase extraction and determination of letrozole in biological and pharmaceutical samples, Journal of Molecular Liquids, 338 (2021) 116772.
    [14] Y. Zhang, X. Chen, M.-S. Cui, Z. Guo, Y.-H. Chen, K.-P. Cui, Z.-G. Ding, R. Weerasooriya, Binding Fe-doped g-C3N4 on the porous diatomite for efficient degradation of tetracycline via photo-Fenton process, Journal of Environmental Chemical Engineering, 10 (2022) 107406.
    [15] H. Rahmani, A. Lakzian, A. Karimi, A. Halajnia, Efficient removal of 2,4-dinitrophenol from synthetic wastewater and contaminated soil samples using free and immobilized laccases, Journal of Environmental Management, 256 (2020) 109740.
    [16] D. Gogoi, R.S. Karmur, M.R. Das, N.N. Ghosh, Cu and CoFe2O4 nanoparticles decorated hierarchical porous carbon: An excellent catalyst for reduction of nitroaromatics and microwave-assisted antibiotic degradation, Applied Catalysis B: Environmental, 312 (2022) 121407.
    [17] P. Ding, H. Ji, P. Li, Q. Liu, Y. Wu, M. Guo, Z. Zhou, S. Gao, W. Xu, W. Liu, Q. Wang, S. Chen, Visible-light degradation of antibiotics catalyzed by titania/zirconia/graphitic carbon nitride ternary nanocomposites: a combined experimental and theoretical study, Applied Catalysis B: Environmental, 300 (2022) 120633.
    [18] D. Gogoi, M.R. Das, N. Nath Ghosh, 2-D gC3N4 supported CoFe2O4 nanoparticles as an efficient S-scheme catalyst for various antibiotic degradation, Applied Surface Science, 619 (2023) 156753.
    [19] X. Gao, J. Chen, H. Che, Y. Ao, P. Wang, Rationally constructing of a novel composite photocatalyst with multi charge transfer channels for highly efficient sulfamethoxazole elimination: Mechanism, degradation pathway and DFT calculation, Chemical Engineering Journal, 426 (2021) 131585.
    [20] Amina, X. Si, K. Wu, Y. Si, B. Yousaf, Mechanistic insights into the reactive radicals-assisted degradation of sulfamethoxazole via calcium peroxide activation by manganese-incorporated iron oxide–graphene nanocomposite: Formation of radicals and degradation pathway, Chemical Engineering Journal, 384 (2020) 123360.
    [21] L. Serwecińska, Antimicrobials and Antibiotic-Resistant Bacteria: A risk to the environment and to public health, Water, 12 (2020) 3313.
    [22] M. Mezzelani, S. Gorbi, F. Regoli, Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms, Marine Environmental Research, 140 (2018) 41-60.
    [23] A. Kutuzova, J.-O. Moritz, N.G. Moustakas, T. Dontsova, T. Peppel, J. Strunk, Performance of Sm-doped TiO2 in photocatalytic antibiotic degradation and photocatalytic CO2 reduction, Applied Nanoscience, (2023) 1-16.
    [24] H. Dong, W. Chi, A. Gao, T. Xie, B. Gao, Electrochemical degradation of tetracycline using a Ti/Ta2O5-IrO2 anode: Performance, kinetics, and degradation mechanism, Materials, 14 (2021) 4325.
    [25] L. Yao, X. He, J. Lv, G. Xu, Z. Bao, J. Cui, D. Yu, Y. Wu, Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: Performance and mechanism, Journal of Environmental Chemical Engineering, 10 (2022) 107397.
    [26] G. Sharma, S. Bhogal, A. Kumar, M. Naushad, S. Sharma, T. Ahamad, F.J. Stadler, AgO/MgO/FeO@Si3N4 nanocomposite with robust adsorption capacity for tetracycline antibiotic removal from aqueous system, Advanced Powder Technology, 31 (2020) 4310-4318.
    [27] A.A. Ghani, A. Shahzad, M. Moztahida, K. Tahir, H. Jeon, B. Kim, D.S. Lee, Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater, Chemical Engineering Journal, 421 (2021) 127780.
    [28] H. Chen, M. Huang, Z. Wang, P. Gao, T. Cai, J. Song, Y. Zhang, L. Meng, Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane, Chemical Engineering Journal, 382 (2020). 123052.
    [29] Q. Li, G. Wei, G. Duan, L. Zhang, Z. Li, Z. Wei, Q. Zhou, R. Pei, Photocatalysis activation of peroxydisulfate over oxygen vacancies-rich mixed metal oxide derived from red mud-based layered double hydroxide for ciprofloxacin degradation, Separation and Purification Technology, 289 (2022) 120733.
    [30] W. Gu, X. Huang, Y. Tian, M. Cao, L. Zhou, Y. Zhou, J. Lu, J. Lei, Y. Zhou, L. Wang, Y. Liu, J. Zhang, High-efficiency adsorption of tetracycline by cooperation of carbon and iron in a magnetic Fe/porous carbon hybrid with effective Fenton regeneration, Applied Surface Science, 538 (2021) 147813.
    [31] H. Ren, F. He, S. Liu, T. Li, R. Zhou, Enhancing Fenton-like process at neutral pH by Fe(III)-GLDA complexation for the oxidation removal of organic pollutants, Journal of Hazardous Materials, 416 (2021) 126077.
    [32] W. Shang, B. Qiao, Q.M. Xu, J.S. Cheng, Potential biotransformation pathways and efficiencies of ciprofloxacin and norfloxacin by an activated sludge consortium, Science of Total Environment, 785 (2021) 147379.
    [33] Z. Lin, Z. Zhen, S. Luo, L. Ren, Y. Chen, W. Wu, W. Zhang, Y.Q. Liang, Z. Song, Y. Li, D. Zhang, Effects of two ecological earthworm species on tetracycline degradation performance, pathway and bacterial community structure in laterite soil, Journal of Hazardous Materials, 412 (2021) 125212.
    [34] J. Cui, X. Xu, L. Yang, C. Chen, J. Qian, X. Chen, D. Sun, Soft foam-like UiO-66/polydopamine/bacterial cellulose composite for the removal of aspirin and tetracycline hydrochloride, Chemical Engineering Journal, 395 (2020) 125174.
    [35] L. Peng, X. Duan, Y. Shang, B. Gao, X. Xu, Engineered carbon supported single iron atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical pathways, Applied Catalysis B: Environmental, 287 (2021) 119963.
    [36] F. Guo, H. Zhang, H. Li, Z. Shen, Modulating the oxidative active species by regulating the valence of palladium cocatalyst in photocatalytic degradation of ciprofloxacin, Applied Catalysis B: Environmental, 306 (2022) 121092.
    [37] Z. Chen, N. Mi, L. Huang, W. Wang, C. Li, Y. Teng, C. Gu, Snow-like BiVO4 with rich oxygen defects for efficient visible light photocatalytic degradation of ciprofloxacin, Science of Total Environment, 808 (2022) 152083.
    [38] N. Ahmad, C.J. Kuo, M. Mustaqeem, Synthesis of novel CuNb2O6/g-C3N4 binary photocatalyst towards efficient visible light reduction of Cr (VI) and dyes degradation for environmental remediation, Chemosphere, 298 (2022) 134153.
    [39] L. Wang, X. Ma, G. Huang, R. Lian, J. Huang, H. She, Q. Wang, Construction of ternary CuO/CuFe2O4/g-C3N4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight, J Environ Sci (China), 112 (2022) 59-70.
    [40] J. Li, C. He, N. Xu, K. Wu, Z. Huang, X. Zhao, J. Nan, X. Xiao, Interfacial bonding of hydroxyl-modified g-C3N4 and Bi2O2CO3 toward boosted CO2 photoreduction: Insights into the key role of OH groups, Chemical Engineering Journal, 452 (2023) 139191.
    [41] J.-Y. Tang, C.-C. Er, X.Y. Kong, B.-J. Ng, Y.-H. Chew, L.-L. Tan, A.R. Mohamed, S.-P. Chai, Two-dimensional interface engineering of g-C3N4/g-C3N4 nanohybrid: Synergy between isotype and p-n heterojunctions for highly efficient photocatalytic CO2 reduction, Chemical Engineering Journal, 466 (2023) 143287.
    [42] Y. Li, Z. Ren, M. Gu, Y. Duan, W. Zhang, K. Lv, Synergistic effect of interstitial C doping and oxygen vacancies on the photoreactivity of TiO2 nanofibers towards CO2 reduction, Applied Catalysis B: Environmental, 317 (2022) 121773.
    [43] Z. Zhang, S.-Y. Pan, H. Li, J. Cai, A.G. Olabi, E.J. Anthony, V. Manovic, Recent advances in carbon dioxide utilization, Renewable and Sustainable Energy Reviews, 125 (2020) 109799.
    [44] J. Artz, T.E. Muller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow, W. Leitner, Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment, Chemical Review, 118 (2018) 434-504.
    [45] L. Liu, S. Wang, H. Huang, Y. Zhang, T. Ma, Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction, Nano Energy, 75 (2020) 104959.
    [46] J. Wu, B.Y. Deng, J. Liu, S.R. Yang, M.D. Li, J. Li, F. Wang, Assembling CdSe quantum dots into polymeric micelles formed by a polyethylenimine-based amphiphilic polymer to enhance efficiency and selectivity of CO2-to-CO photoreduction in water, ACS Applied Materials and Interfaces, 14 (2022) 29945-29955.
    [47] S. Yin, X. Zhao, E. Jiang, Y. Yan, P. Zhou, P. Huo, Boosting water decomposition by sulfur vacancies for efficient CO2 photoreduction, Energy & Environmental Science, 15 (2022) 1556-1562.
    [48] G. Tang, J. Li, Y. Lu, T. Song, S. Yin, G. Mao, B. Long, A. Ali, G.-J. Deng, Donor-acceptor organic polymer with sulfur bridge for superior photocatalytic CO2 reduction to CH4 under visible light illumination, Chemical Engineering Journal, 451 (2023) 138744.
    [49] Q. Wang, Z. Fang, X. Zhao, C. Dong, Y. Li, C. Guo, Q. Liu, F. Song, W. Zhang, Biotemplated g-C3N4/Au periodic hierarchical structures for the enhancement of photocatalytic CO2 reduction with localized surface plasmon resonance, ACS Applied Materials and Interfaces, 13 (2021) 59855-59866.
    [50] H. Abdullah, M.M.R. Khan, H.R. Ong, Z. Yaakob, Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview, Journal of CO2 Utilization, 22 (2017) 15-32.
    [51] J. Li, J. Feng, X. Guo, H. Fang, J. Chen, C. Ma, R. Li, Y. Wang, Z. Rui, Defect-band bridge photothermally activates Type III heterojunction for CO2 reduction and typical VOCs oxidation, Applied Catalysis B: Environmental, 309 (2022) 121248.
    [52] I. Kriegel, C. Jiang, J. Rodriguez-Fernandez, R.D. Schaller, D.V. Talapin, E. da Como, J. Feldmann, Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals, Journal of American Chemical Society, 134 (2012) 1583-1590.
    [53] C. Wang, H. Liu, G. Wang, H. Fang, X. Yuan, C. Lu, Photocatalytic removal of metronidazole and Cr (Ⅵ) by a novel Zn3In2S6/Bi2O3 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment, Chemical Engineering Journal, 450 (2022) 138167.
    [54] J. Lee, L.L. Tan, S.P. Chai, Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives, Nanoscale, 13 (2021) 7011-7033.
    [55] P. Xing, P. Chen, Z. Chen, X. Hu, H. Lin, Y. Wu, L. Zhao, Y. He, Novel Ternary MoS2/C-ZnO Composite with efficient performance in photocatalytic NH3 synthesis under simulated sunlight, ACS Sustainable Chemistry & Engineering, 6 (2018) 14866-14879.
    [56] V. Devthade, A. Gupta, S.S. Umare, Graphitic carbon nitride−γ-gallium oxide (GCN-γ-Ga2O3) nanohybrid photocatalyst for dinitrogen fixation and pollutant decomposition, ACS Applied Nano Materials, 1 (2018) 5581-5588.
    [57] E. Vesali-Kermani, A. Habibi-Yangjeh, S. Ghosh, Visible-light-induced nitrogen photofixation ability of g-C3N4 nanosheets decorated with MgO nanoparticles, Journal of Industrial and Engineering Chemistry, 84 (2020) 185-195.
    [58] E. Vesali-Kermani, A. Habibi-Yangjeh, H. Diarmand-Khalilabad, S. Ghosh, Nitrogen photofixation ability of g-C3N4 nanosheets/Bi2MoO6 heterojunction photocatalyst under visible-light illumination, Journal of Colloids and Interface Science, 563 (2020) 81-91.
    [59] P. Xing, W. Zhang, L. Chen, X. Dai, J. Zhang, L. Zhao, Y. He, Preparation of a NiO/KNbO3 nanocomposite via a photodeposition method and its superior performance in photocatalytic N2 fixation, Sustainable Energy & Fuels, 4 (2020) 1112-1117.
    [60] X. Xue, R. Chen, C. Yan, Y. Hu, W. Zhang, S. Yang, L. Ma, G. Zhu, Z. Jin, Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr, Nanoscale, 11 (2019) 10439-10445.
    [61] X. Gao, Y. Shang, L. Liu, K. Gao, Ag plasmon resonance promoted 2D AgBr-δ-Bi2O3 nanosheets with enhanced photocatalytic ability, Journal of Alloys and Compounds, 803 (2019) 565-575.
    [62] J. Luo, X. Yang, R. Tusiime, H. Chen, Y. Liu, H. Zhang, J. Yu, Synergistic effect of multiscale BNs/CNT and 3D melamine foam on the thermal conductive of epoxy resin, Composites Communications, 29 (2022) 101044.
    [63] C. Hou, M. Niu, J. Hao, Q. Liu, X. Wang, M. Zhang, L. Wang, Construction of an S-scheme g-C3N4/TiOF2 heterostructures with abundant O vacancies: Enhanced photocatalytic activity and mechanism insight, Journal of Alloys and Compounds, 938 (2023) 168560.
    [64] G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation, Applied Catalysis B: Environmental, 198 (2016) 347-377.
    [65] P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaroniec, Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction, Journal of Materials Chemistry A, 5 (2017) 3230-3238.
    [66] S. Patnaik, D.P. Sahoo, K.M. Parida, Bimetallic co-effect of Au-Pd alloyed nanoparticles on mesoporous silica modified (g-C3N4) for single and simultaneous photocatalytic oxidation of phenol and reduction of hexavalent chromium, Journal of Colloids and Interface Science, 560 (2020) 519-535.
    [67] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T. Zhang, Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution, Advanced Materials, 29 (2017) 1605148.
    [68] X. Yu, S.F. Ng, L.K. Putri, L.L. Tan, A.R. Mohamed, W.J. Ong, Point-defect engineering: leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis, Small, 17 (2021) 2006851.
    [69] L. Wang, K. Wang, T. He, Y. Zhao, H. Song, H. Wang, Graphitic carbon nitride-based photocatalytic materials: Preparation strategy and application, ACS Sustainable Chemistry & Engineering, 8 (2020) 16048-16085.
    [70] L. Zhao, J. Ji, Y. Shen, K. Wu, T. Zhao, H. Yang, Y. Lv, S. Liu, Y. Zhang, Exfoliation and sensitization of 2D carbon nitride for photoelectrochemical biosensing under red light, Chemistry, 25 (2019) 15680-15686.
    [71] Q. Liang, X. Liu, J. Wang, Y. Liu, Z. Liu, L. Tang, B. Shao, W. Zhang, S. Gong, M. Cheng, Q. He, C. Feng, In-situ self-assembly construction of hollow tubular (g-C3N4) isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories, Journal of Hazardous Materials, 401 (2021) 123355.
    [72] N. Ahmad, C.J. Kuo, M. Mustaqeem, Synthesis of novel CuNb2O6/g-C3N4 binary photocatalyst towards efficient visible light reduction of Cr (VI) and dyes degradation for environmental remediation, Chemosphere, 298 (2022) 134153.
    [73] H. Wang, J. Li, Y. Wan, A. Nazir, X. Song, P. Huo, H. Wang, Fabrication of Zn vacancies-tunable ultrathin-g-C3N4@ZnIn2S4/SWNTs composites for enhancing photocatalytic CO2 reduction, Applied Surface Science, 613 (2023) 155989.
    [74] W. Zhu, Y. Yue, H. Wang, B. Zhang, R. Hou, J. Xiao, X. Huang, A. Ishag, Y. Sun, Recent advances on energy and environmental application of graphitic carbon nitride (g-C3N4)-based photocatalysts: A review, Journal of Environmental Chemical Engineering, 11 (2023) 110164.
    [75] M. Raaja Rajeshwari, S. Kokilavani, S. Sudheer Khan, Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment, Chemosphere, 291 (2022) 132735.
    [76] J. Wang, S. Wang, A critical review on graphitic carbon nitride g-C3N4-based materials: Preparation, modification and environmental application, Coordination Chemistry Reviews, 453 (2022) 214338.
    [77] J. Wu, J. Wang, H. Li, Y. Li, Y. Du, Y. Yang, X. Jia, Surface activation of MnNb2O6 nanosheets by oxalic acid for enhanced photocatalysis, Applied Surface Science, 403 (2017) 314-325.
    [78] M. Yan, Y. Hua, F. Zhu, W. Gu, J. Jiang, H. Shen, W. Shi, Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p-n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics, Applied Catalysis B: Environmental, 202 (2017) 518-527.
    [79] N. Ahmad, C.-F. Jeffrey Kuo, M. Mustaqeem, M.K. Hussien, K.-H. Chen, Improved photocatalytic activity of novel NiAl2O4/g-C3N4 binary composite for photodegradation of 2,4-dinitrophenol and CO2 reduction via gas phase adsorption, Materials Today Physics, 31 (2023) 100965.
    [80] H. Liang, C. Zhu, A. Wang, K. Palanisamy, F. Chen, Facile synthesis of NiAl2O4/g-C3N4 composite for efficient photocatalytic degradation of tetracycline, Journal of Environmental Science, 127 (2023) 700-713.
    [81] T. de Oliveira Guidolin, N.M. Possolli, M.B. Polla, T.B. Wermuth, T. Franco de Oliveira, S. Eller, O.R. Klegues Montedo, S. Arcaro, M.A.P. Cechinel, Photocatalytic pathway on the degradation of methylene blue from aqueous solutions using magnetite nanoparticles, Journal of Cleaner Production, 318 (2021) 128556.
    [82] H. Guo, M. Chen, Q. Zhong, Y. Wang, W. Ma, J. Ding, Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH, Journal of CO2 Utilization, 33 (2019) 233-241.
    [83] H. Yin, C. Yuan, H. Lv, K. Zhang, X. Chen, Y. Zhang, Y. Zhang, Fabrication of 2D/1D Bi2WO6/C3N5 heterojunctions for efficient antibiotics removal, Powder Technology, 413 (2023) 118083.
    [84] X. Jia, H. Sun, H. Lin, J. Cao, C. Hu, S. Chen, In-depth insight into the mechanism on photocatalytic selective CO2 reduction coupled with tetracycline oxidation over BiO1-Br/g-C3N4, Applied Surface Science, 614 (2023) 156017.
    [85] W. Ma, Y. Zhu, X. Wang, Au nanoparticles modified HNTs/g-C3N4/CdS composite for highly efficient CO2 photoreduction and tetracycline degradation, Journal of Alloys and Compounds, 935 (2023) 168129.
    [86] C. Wang, R. Yan, M. Cai, Y. Liu, S. Li, A novel organic/inorganic S-scheme heterostructure of TCPP/Bi12O17Cl2 for boosting photodegradation of tetracycline hydrochloride: Kinetic, degradation mechanism, and toxic assessment, Applied Surface Science, 610 (2023) 155346.
    [87] S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction, Advanced Powder Materials, 2 (2023) 100073.
    [88] Y. Jia, H. Han, Y. Luo, Q. Wang, B. Wha Lee, C. Liu, SrTiO3 nanosheets decorated with ZnFe2O4 nanoparticles as Z-scheme photocatalysts for highly efficient photocatalytic degradation and CO2 conversion, Separation and Purification Technology, 306 (2023) 122667.
    [89] Z. Li, Z. Li, J. Liang, W. Fan, Y. Li, Y. Shen, D. Huang, Z. Yu, S. Wang, Y. Hou, Bi-functional S-scheme S-Bi2WO6/NiO heterojunction for photocatalytic ciprofloxacin degradation and CO2 reduction: Mechanisms and pathways, Separation and Purification Technology, 310 (2023) 123197.
    [90] M. Cai, Y. Liu, C. Wang, W. Lin, S. Li, Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment, Separation and Purification Technology, 304 (2023) 122401.
    [91] S. Miao, Y. Zhang, H. Xia, H. Gao, W. Tao, Z. Zhang, C. Huang, L. Huang, Preparation of highly N-doped CoFeN by pyrolysis g-C3N4 for markedly enhanced Fenton degradation of MO and TC-HCl under visible illumination, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 664 (2023) 131192.
    [92] L. Zhang, X. Hao, Y. Li, Z. Jin, Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution, Applied Surface Science, 499 (2020) 143862.
    [93] R. Chellammal Gayathri, V. Elakkiya, S. Sumathi, Effect of method of preparation on the photocatalytic activity of NiAl2O4, Inorganic Chemistry Communications, 129 (2021) 108634.
    [94] J. Wen, J. Xie, Z. Yang, R. Shen, H. Li, X. Luo, X. Chen, X. Li, Fabricating the robust g-C3N4 nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: An insight into the trifunctional roles of nanocarbons, ACS Sustainable Chemistry & Engineering, 5 (2017) 2224-2236.
    [95] V. Vinesh, M. Preeyanghaa, T.R.N. Kumar, M. Ashokkumar, C.L. Bianchi, B. Neppolian, Revealing the stability of CuWO4/g-C3N4 nanocomposite for photocatalytic tetracycline degradation from the aqueous environment and DFT analysis, Environmental Research, 207 (2022) 112112.
    [96] M. Kamal Hussien, A. Sabbah, M. Qorbani, M. Hammad Elsayed, P. Raghunath, T.-Y. Lin, S. Quadir, H.-Y. Wang, H.-L. Wu, D.-L.M. Tzou, M.-C. Lin, P.-W. Chung, H.-H. Chou, L.-C. Chen, K.-H. Chen, Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution, Chemical Engineering Journal, 430 (2022) 132853.
    [97] B. Ma, N. Yu, S. Xin, Y. Xin, C. Zhang, X. Ma, M. Gao, Photoelectrocatalytic degradation of p-chloronitrobenzene by g-C3N4/TiO2 nanotube arrays photoelectrodes under visible light irradiation, Chemosphere, 267 (2021) 129242.
    [98] M. Arshad, S. Ehtisham-ul-Haque, M. Bilal, N. Ahmad, A. Ahmad, M. Abbas, J. Nisar, M.I. Khan, A. Nazir, A. Ghaffar, M. Iqbal, Synthesis and characterization of Zn doped WO3 nanoparticles: photocatalytic, antifungal and antibacterial activities evaluation, Materials Research Express, 7 (2020) 015407.
    [99] H. Li, D. Wang, C. Miao, F. xia, Y. Wang, Y. Wang, C. Liu, G. Che, g-C3N4/BiOI S‑scheme heterojunction: A 2D/2D model platform for visible-light-driven photocatalytic CO2 reduction and pollutant degradation, Journal of Environmental Chemical Engineering, 10 (2022) 108201.
    [100] P. Jia, Y. Li, Z. Zheng, Y. Liu, Y. Wang, T. Liu, A dual optimization approach for photoreduction of CO2 to alcohol in g-C3N4/BaTiO3 system: Heterojunction construction and ferroelectric polarization, Applied Surface Science, 602 (2022) 154310.
    [101] T.A. Saleh, M. Mustaqeem, M. Khaled, Water treatment technologies in removing heavy metal ions from wastewater: A review, Environmental Nanotechnology, Monitoring & Management, 17 (2022) 100617.
    [102] B. Dai, W. Zhao, W. Wei, J. Cao, G. Yang, S. Li, C. Sun, D.Y.C. Leung, Photocatalytic reduction of CO2 and degradation of bisphenol-S by g-C3N4/Cu2O@Cu S-scheme heterojunction: Study on the photocatalytic performance and mechanism insight, Carbon, 193 (2022) 272-284.
    [103] X. Zhao, D. Han, M. Dai, Y. Fan, Z. Wang, D. Han, L. Niu, Direct Z-scheme FeV2O4/g-C3N4 binary catalyst for highly selective reduction of carbon dioxide, Chemical Engineering Journal, 436 (2022) 132051.
    [104] B. Singh, A. Singh, A. Sharma, P. Mahajan, S. Verma, B. Padha, A. Ahmed, S. Arya, Electrochemical sensing and photocatalytic degradation of 2,4-dinitrophenol via bismuth (III) oxide nanowires, Journal of Molecular Structure, 1255 (2022) 132379.
    [105] J.C. Peixoto, A.E. Nogueira, A. Dias, J.A. Torres, J.C. da Cruz, C. Ribeiro, K.P.F. Siqueira, Experimental evaluation of the activity and selectivity of pure MnWO4 and doped with rare earth ions in the CO2 photoreduction process, Materials Research Bulletin, 153 (2022) 111912.
    [106] F. Conte, A. Villa, L. Prati, C. Pirola, S. Bennici, G. Ramis, I. Rossetti, Effect of metal cocatalysts and operating conditions on the product distribution and the productivity of the CO2 photoreduction, Industrial & Engineering Chemistry Research, 61 (2022) 2963-2972.
    [107] S.Y.A. Siddiki, M. Mofijur, P.S. Kumar, S.F. Ahmed, A. Inayat, F. Kusumo, I.A. Badruddin, T.M.Y. Khan, L.D. Nghiem, H.C. Ong, T.M.I. Mahlia, Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept, Fuel, 307 (2022) 121782.
    [108] A. Azari, M. Yeganeh, M. Gholami, M. Salari, The superior adsorption capacity of 2,4-Dinitrophenol under ultrasound-assisted magnetic adsorption system: Modeling and process optimization by central composite design, Journal of Hazardous Materials, 418 (2021) 126348.
    [109] S.H. Khoshravesh, Z. Azizi, H. Javadian, M. Farsadrooh, N. Hashemifard, M. Soltani, M. Taghavi, Synthesis of resorcinol-functionalized multi-walled carbon nanotubes as a nanoadsorbent for the solid-phase extraction and determination of diclofenac in human plasma and aqueous samples, Colloid and Interface Science Communications, 46 (2022) 100555.
    [110] M. Mustaqeem, K. Mahmood, T.A. Saleh, A.u. Rehman, M. Ahmad, Z.A. Gilani, M. Asif, Synthesis of CuFe2–xErxO4 nanoparticles and their magnetic, structural and dielectric properties, Physica B: Condensed Matter, 588 (2020) 412176.
    [111] F.M. Sanakousar, C.C. Vidyasagar, V.M. Jiménez-Pérez, K. Prakash, Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants, Materials Science in Semiconductor Processing, 140 (2022) 106390.
    [112] R. Bhosale, S. Jain, C.P. Vinod, S. Kumar, S. Ogale, Direct Z-Scheme g-C3N4/FeWO4 nanocomposite for enhanced and selective photocatalytic CO2 reduction under visible light, ACS Applied Materials & Interfaces, 11 (2019) 6174-6183.
    [113] A. Akhundi, A. Badiei, G.M. Ziarani, A. Habibi-Yangjeh, M.J. Muñoz-Batista, R. Luque, Graphitic carbon nitride-based photocatalysts: Toward efficient organic transformation for value-added chemicals production, Molecular Catalysis, 488 (2020) 110902.
    [114] X.-Y. Dao, X.-F. Xie, J.-H. Guo, X.-Y. Zhang, Y.-S. Kang, W.-Y. Sun, Boosting photocatalytic CO2 reduction efficiency by heterostructures of NH2-MIL-101Fe/g-C3N4, ACS Applied Energy Materials, 3 (2020) 3946-3954.
    [115] S. Zhou, Y. Liu, J. Li, Y. Wang, G. Jiang, Z. Zhao, D. Wang, A. Duan, J. Liu, Y. Wei, Facile in situ synthesis of graphitic carbon nitride g-C3N4-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO, Applied Catalysis B: Environmental, 158-159 (2014) 20-29.
    [116] Y. Wang, C. Zeng, Y. Zhang, R. Su, D. Yang, Z. Wang, Y. Wu, H. Pan, W. Zhu, W. Hu, H. Liu, R. Yang, Promoted photocarriers separation by straining in 2D/2D van der Waals heterostructures for high-efficiency visible-light photocatalysis, Materials Today Physics, 22 (2022) 100600.
    [117] L. Shi, S. Wang, Y.-j. Han, Z.-x. Ji, L. Liu, D. Ma, Z.-f. Mu, Z.-y. Mao, D.-j. Wang, Z.-w. Zhang, Y. Zhao, Effects of Ti4+- and W6+-substitution on photoluminescence properties of Sr2GdSbO6:Mn4+ phosphor for plant cultivation, Journal of Alloys and Compounds, 829 (2020) 154475.
    [118] T. Liu, L. Hao, L. Bai, J. Liu, Y. Zhang, N. Tian, H. Huang, Z-scheme junction Bi2O2(NO3)(OH)/g-C3N4 for promoting CO2 photoreduction, Chemical Engineering Journal, 429 (2022) 132268.
    [119] B. Zhu, Q. Xu, X. Bao, H. Yin, Y. Qin, X.-C. Shen, Highly selective CO2 capture and photoreduction over porous carbon nitride foams/LDH monolith, Chemical Engineering Journal, 429 (2022) 132284.
    [120] B. Yu, Y. Wu, F. Meng, Q. Wang, X. Jia, M. Wasim Khan, C. Huang, S. Zhang, L. Yang, H. Wu, Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction, Chemical Engineering Journal, 429 (2022) 132456.
    [121] A. Raza, A.A. Haidry, J. Saddique, In-situ synthesis of Cu2ZnSnS4/g-C3N4 heterojunction for superior visible light-driven CO2 reduction, Journal of Physics and Chemistry of Solids, 165 (2022) 110694.
    [122] G.B. Kunde, B. Sehgal, A.K. Ganguli, Modified EISA synthesis of NiAl2O4/MWCNT composite mesoporous free-standing film as a potential electrochemical capacitor material, Journal of Alloys and Compounds, 856 (2021) 158019.
    [123] Z. Liang, S. Yang, X. Wang, H. Cui, X. Wang, J. Tian, The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes, Applied Catalysis B: Environmental, 274 (2020) 119114.
    [124] L.-F. Hong, R.-T. Guo, Y. Yuan, X.-Y. Ji, Z.-D. Lin, X.-F. Yin, W.-G Pan, 2D Ti3C2 decorated Z-scheme BiOIO3/g-C3N4 heterojunction for the enhanced photocatalytic CO2 reduction activity under visible light, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 639 (2022) 128358.
    [125] M. Mustaqeem, K. Mahmood, T.A. Saleh, A. ur Rehman, M. Ahmad, Z.A. Gilani, M. Asif, Synthesis of CuFe2–xErxO4 nanoparticles and their magnetic, structural and dielectric properties, Physica B: Condensed Matter, (2020) 412176.
    [126] A. Irshad, M.F. Warsi, P.O. Agboola, G. Dastgeer, M. Shahid, Sol-gel assisted Ag doped NiAl2O4 nanomaterials and their nanocomposites with g-C3N4 nanosheets for the removal of organic effluents, Journal of Alloys and Compounds, 902 (2022) 163805.
    [127] M. Mustaqeem, T.A. Saleh, A. ur Rehman, M.F. Warsi, A. Mehmood, A. Sharif, S. Akther, Synthesis of Zn0.8Co0.1Ni0.1Fe2O4 polyvinyl alcohol nanocomposites via ultrasound-assisted emulsion liquid phase, Arabian Journal of Chemistry, 13 (2020) 3246-3254.
    [128] G.B. Kunde, G.D. Yadav, Green strategy for the synthesis of mesoporous, free-standing MAl2O4 (M = Fe, Co, Ni, Cu) spinel films by sol–gel method, Materials Science and Engineering: B, 271 (2021) 115244.
    [129] Y. Liu, Q. Zhu, M. Tayyab, L. Zhou, J. Lei, J. Zhang, Single‐atom Pt loaded zinc vacancies ZnO–ZnS induced Type‐V electron transport for efficiency photocatalytic H2 evolution, Solar RRL, 5 (2021) 2100536.
    [130] J. Ding, S. Lu, L. Shen, R. Yan, Y. Zhang, H. Zhang, Enhanced photocatalytic reduction for the dechlorination of 2-chlorodibenzo-p-dioxin by high-performance g-C3N4/NiO heterojunction composites under ultraviolet-visible light illumination, Journal of Hazardous Materials, 384 (2020) 121255.
    [131] V. Elakkiya, R. Abhishekram, S. Sumathi, Copper doped nickel aluminate: Synthesis, characterisation, optical and colour properties, Chinese Journal of Chemical Engineering, 27 (2019) 2596-2605.
    [132] M.A. Ferreira, G.T.S.T. da Silva, O.F. Lopes, V.R. Mastelaro, C. Ribeiro, M.J.M. Pires, A.R. Malagutti, W. Avansi, H.A.J.L. Mourão, Fabrication of SrTiO3/g-C3N4 heterostructures for visible light-induced photocatalysis, Materials Science in Semiconductor Processing, 108 (2020) 104887.
    [133] E. Regulska, J. Breczko, A. Basa, A.T. Dubis, Rare-earth metals-doped nickel aluminate spinels for photocatalytic degradation of organic pollutants, Catalysts, 10 (2020) 1003.
    [134] S. Pareek, J.K. Quamara, Dielectric and optical properties of graphitic carbon nitride–titanium dioxide nanocomposite with enhanced charge seperation, Journal of Materials Science, 53 (2017) 604-612.
    [135] M. Han, Z. Wang, Y. Xu, R. Wu, S. Jiao, Y. Chen, S. Feng, Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method, Materials Chemistry and Physics, 215 (2018) 251-258.
    [136] L. Zhang, X. Wang, C. Chen, X. Zou, X. Shang, W. Ding, X. Lu, Investigation of mesoporous NiAl2O4/MOx (M = La, Ce, Ca, Mg)–γ-Al2O3 nanocomposites for dry reforming of methane, RSC Advances, 7 (2017) 33143-33154.
    [137] B. Lakshmi, B. Joe Thomas, P. Gopinath, Accurate band gap determination of chemically synthesized cobalt ferrite nanoparticles using diffuse reflectance spectroscopy, Advanced Powder Technology, 32 (2021) 3706-3716.
    [138] L.R. Nagappagari, S.S. Patil, J. Lee, E. Park, Y.-T. Yu, K. Lee, Upgraded charge transport in g-C3N4 nanosheets by boron doping and their heterojunction with 3D CdIn2S4 for efficient photodegradation of azo dye, Materials Today Chemistry, 24 (2022) 100857.
    [139] X. Wang, J. Gong, Y. Dong, S. An, X. Zhang, J. Tian, Energy band engineering of hydroxyethyl group grafted on the edge of 3D g-C3N4 nanotubes for enhanced photocatalytic H2 production, Materials Today Physics, 27 (2022) 100806.
    [140] J. Chen, Z. Wang, H. Lee, J. Mao, C.A. Grimes, C. Liu, M. Zhang, Z. Lu, Y. Chen, S.P. Feng, Efficient electroreduction of CO2 to CO by Ag-decorated S-doped g-C3N4/CNT nanocomposites at industrial scale current density, Materials Today Physics, 12 (2020) 100176.
    [141] H. Qin, Y. Zhang, S. He, Z. Guan, Y. Shi, X. Xie, D. Xia, D. Li, H. Xu, Increasing the migration and separation efficiencies of photogenerated carriers in CQDs/BiOCl through the point discharge effect, Applied Surface Science, 562 (2021) 150214.
    [142] M. Ismael, M. Wark, Photocatalytic activity of CoFe2O4/g-C3N4 nanocomposite toward degradation of different organic pollutants and their inactivity toward hydrogen production: The role of the conduction band position, FlatChem, 32 (2022) 100337.
    [143] N. García-Gómez, J. Valecillos, A. Remiro, B. Valle, J. Bilbao, A.G. Gayubo, Effect of reaction conditions on the deactivation by coke of a NiAl2O4 spinel derived catalyst in the steam reforming of bio-oil, Applied Catalysis B: Environmental, 297 (2021) 120445.
    [144] A.J. Pamphile-Adrian, F.B. Passos, P.P. Florez-Rodriguez, Systematic study on the properties of nickel aluminate (NiAl2O4) as a catalytic precursor for aqueous phase hydrogenolysis of glycerol, Catalysis Today, (2021) 499-509.
    [145] N. Kumar, K. Biswas, Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles, Journal of Materials Research and Technology, 8 (2019) 63-74.
    [146] A. Sabbah, I. Shown, M. Qorbani, F.-Y. Fu, T.-Y. Lin, H.-L. Wu, P.-W. Chung, C.-I. Wu, S.R.M. Santiago, J.-L. Shen, K.-H. Chen, L.-C. Chen, Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon, Nano Energy, 93 (2022) 106809.
    [147] N. Ahmad, C.-F.J. Kuo, M. Mustaqeem, Synthesis of novel CuNb2O6/g-C3N4 binary photocatalyst towards efficient visible light reduction of Cr (VI) and dyes degradation for environmental remediation, Chemosphere, 298 (2022) 134153.
    [148] J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Materials Today, 32 (2020) 222-243.
    [149] A. Sabbah, I. Shown, M. Qorbani, F.-Y. Fu, T.-Y. Lin, H.-L. Wu, P.-W. Chung, C.-I. Wu, S.R.M. Santiago, J.-L. Shen, K.-H. Chen, L.-C. Chen, Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon, Nano Energy, 93 (2022) 106809.
    [150] G. Zhou, L. Meng, X. Ning, W. Yin, J. Hou, Q. Xu, J. Yi, S. Wang, X. Wang, Switching charge transfer of g-C3N4/BiVO4 heterojunction from Type II to Z-scheme via interfacial vacancy engineering for improved photocatalysis, International Journal of Hydrogen Energy, 47 (2022) 8749-8760.
    [151] C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, K. Lv, 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea, Applied Catalysis B: Environmental, 268 (2020) 118738.
    [152] M. Wang, M. Shen, L. Zhang, J. Tian, X. Jin, Y. Zhou, J. Shi, 2D-2D MnO2/g-C3N4 heterojunction photocatalyst: In-situ synthesis and enhanced CO2 reduction activity, Carbon, 120 (2017) 23-31.
    [153] B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian, X. Chen, Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity, ACS Applied Materials & Interfaces, 10 (2018) 4001-4009.
    [154] Q. Li, Z. Sun, H. Wang, Z. Wu, Insight into the enhanced CO2 photocatalytic reduction performance over hollow-structured Bi-decorated g-C3N4 nanohybrid under visible-light irradiation, Journal of CO2 Utilization, 28 (2018) 126-136.
    [155] K. Wang, J. Fu, Y. Zheng, Insights into photocatalytic CO2 reduction on C3N4: Strategy of simultaneous B, K co-doping and enhancement by N vacancies, Applied Catalysis B: Environmental, 254 (2019) 270-282.
    [156] M. Kamal Hussien, A. Sabbah, M. Qorbani, M. Hammad Elsayed, P. Raghunath, T.-Y. Lin, S. Quadir, H.-Y. Wang, H.-L. Wu, D.-L.M. Tzou, M.-C. Lin, P.-W. Chung, H.-H. Chou, L.-C. Chen, K.-H. Chen, Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution, Chemical Engineering Journal, 430 (2022) 132853.
    [157] M.A. Al-Ghouti, D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: A review, Journal of Hazardous Materials, 393 (2020) 122383.
    [158] Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, A hierarchical Z‑scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction, Advanced Materials, 30 (2018) 1706108.
    [159] T. Qiang, L. Chen, Y. Xia, X. Qin, Dual modified MoS2/SnS2 photocatalyst with Z-scheme heterojunction and vacancies defects to achieve a superior performance in Cr (VI) reduction and dyes degradation, Journal of Cleaner Production, 291 (2021) 125213.
    [160] W.S. Al-Arjan, S. Al-Saeed, S. Nazir, E. Da’na, Synthesis of porous chlorophyll coated SiO2/Fe3O4 nanocomposites for the photocatalytic degradation of organic pollutants, Reaction Kinetics, Mechanisms and Catalysis, 135 (2022) 555-570.
    [161] S.J. Park, G.S. Das, F. Schütt, R. Adelung, Y.K. Mishra, K.M. Tripathi, T. Kim, Visible-light photocatalysis by carbon-nano-onion-functionalized ZnO tetrapods: degradation of 2,4-dinitrophenol and a plant-model-based ecological assessment, NPG Asia Materials, 11 (2019) 1-8.
    [162] M. Rani, Rachna, J. Yadav, U. Shanker, Efficient degradation of nonylphenol and 2,4-dinitrophenol by sunlight responsive hexacyanocobaltates nanostructures, Environmental Nanotechnology, Monitoring & Management, 14 (2020) 100325.
    [163] P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, P. Thakur, H. Jung, Visible light assisted photodegradation of 2,4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater, Arabian Journal of Chemistry, 13 (2020) 3196-3209.
    [164] J. Huang, B. Jin, H. Liu, X. Li, Q. Zhang, S. Chu, R. Peng, S. Chu, Controllable synthesis of flower-like MoSe2 3D microspheres for highly efficient visible-light photocatalytic degradation of nitro-aromatic explosives, Journal of Materials Chemistry A, 6 (2018) 11424-11434.
    [165] A. Alam, W.U. Rahman, Z.U. Rahman, S.A. Khan, Z. Shah, K. Shaheen, H. Suo, M.N. Qureshi, S.B. Khan, E.M. Bakhsh, K. Akhtar, Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst, Journal of Materials Science: Materials in Electronics, 33 (2022) 4255-4267.
    [166] T. Munawar, S. Yasmeen, F. Hussain, K. Mahmood, A. Hussain, M. Asghar, F. Iqbal, Synthesis of novel heterostructured ZnO-CdO-CuO nanocomposite: Characterization and enhanced sunlight driven photocatalytic activity, Materials Chemistry and Physics, 249 (2020) 122983.
    [167] Z. Lu, Y. Ling, X. Wang, S. Li, X. Ao, W. Wang, C. Li, W. Sun, T. Huang, Insight into the degradation of ciprofloxacin by medium-pressure UV-activated monochloramine process, Science of Total Environment, 832 (2022) 154850.
    [168] R. Wei, F. Ge, L. Zhang, X. Hou, Y. Cao, L. Gong, M. Chen, R. Wang, E. Bao, Occurrence of 13 veterinary drugs in animal manure-amended soils in Eastern China, Chemosphere, 144 (2016) 2377-2383.
    [169] X. Yi, J. Zhu, Y. Yan, H. Cheng, W. Xu, Removal of Tetracycline Hydrochloride (TCH) in Simulated Wastewater by Zero-Valent Iron with Ultrasonic Irradiation (US-ZIV), Polish Journal of Environmental Studies, 30 (2020) 903-916.
    [170] B.O. Ojo, O.A. Arotiba, N. Mabuba, Sonoelectrochemical degradation of ciprofloxacin in water on a Ti/BaTiO3 electrode, Journal of Environmental Chemical Engineering, 10 (2022) 107224.
    [171] J. Porras, C. Bedoya, J. Silva-Agredo, A. Santamaria, J.J. Fernandez, R.A. Torres-Palma, Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water, Water Research, 94 (2016) 1-9.
    [172] T. Yang, T. Ma, L. Yang, W. Dai, S. Zhang, S. Luo, A self-supporting UiO-66 photocatalyst with Pd nanoparticles for efficient degradation of tetracycline, Applied Surface Science, 544 (2021) 148928.
    [173] N.A. Al-Dhabi, G.A. Esmail, M. Valan Arasu, Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor, Chemosphere, 268 (2021) 128726.
    [174] Y. Shi, H. Lin, J. Ma, R. Zhu, W. Sun, X. Lin, J. Zhang, H. Zheng, X. Zhang, Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16, Journal of Hazardous Materials, 403 (2021) 123996.
    [175] S. Xin, G. Liu, X. Ma, J. Gong, B. Ma, Q. Yan, Q. Chen, D. Ma, G. Zhang, M. Gao, Y. Xin, High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism, Applied Catalysis B: Environmental, 280 (2021) 119386.
    [176] H. Chen, M. Huang, Z. Wang, P. Gao, T. Cai, J. Song, Y. Zhang, L. Meng, Enhancing rejection performance of tetracycline resistance genes by a TiO2/AgNPs-modified nanofiber forward osmosis membrane, Chemical Engineering Journal, 382 (2020) 123052.
    [177] S. Wu, Y. Lin, Y.H. Hu, Strategies of tuning catalysts for efficient photodegradation of antibiotics in water environments: a review, Journal of Materials Chemistry A, 9 (2021) 2592-2611.
    [178] Y. Jiang, Z. Sun, Q. Chen, C. Cao, Y. Zhao, W. Yang, L. Zeng, L. Huang, Fabrication of 0D/2D TiO2 Nanodots/g-C3N4 S-scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting, Applied Surface Science, 571 (2022) 151287.
    [179] R. Li, M. Cai, Z. Xie, Q. Zhang, Y. Zeng, H. Liu, G. Liu, W. Lv, Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation, Applied Catalysis B: Environmental, 244 (2019) 974-982.
    [180] E.B. Ertuş, C. Vakifahmetoglu, A. Öztürk, Enhanced methylene blue removal efficiency of TiO2 embedded porous glass, Journal of the European Ceramic Society, 41 (2021) 1530-1536.
    [181] Y. Chen, F. Su, H. Xie, R. Wang, C. Ding, J. Huang, Y. Xu, L. Ye, One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution, Chemical Engineering Journal, 404 (2021) 126498.
    [182] M. Faisal, M. Jalalah, F.A. Harraz, A.M. El-Toni, A. Khan, M.S. Al-Assiri, Au nanoparticles-doped g-C3N4 nanocomposites for enhanced photocatalytic performance under visible light illumination, Ceramics International, 46 (2020) 22090-22101.
    [183] J. Liu, J. Li, M. Shao, M. Wei, Directed synthesis of SnO2@BiVO4/Co-Pi photoanode for highly efficient photoelectrochemical water splitting and urea oxidation, Journal of Materials Chemistry A, 7 (2019) 6327-6336.
    [184] Y. Pu, W. Li, Y. Cai, X. Wei, X. Wang, C. Chen, W. Zou, L. Dong, Effects of different treatment atmospheres on CeO2/g-C3N4 photocatalytic CO2 reduction: good or bad?, Catalysis Science & Technology, 11 (2021) 2827-2833.
    [185] X. Du, S. Song, Y. Wang, W. Jin, T. Ding, Y. Tian, X. Li, Facile one-pot synthesis of defect-engineered step-scheme WO3/g-C3N4 heterojunctions for efficient photocatalytic hydrogen production, Catalysis Science & Technology, 11 (2021) 2734-2744.
    [186] Y. Geng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide, Applied Catalysis B: Environmental, 280 (2021) 119254.
    [187] Y. Qin, H. Li, J. Lu, Y. Feng, F. Meng, C. Ma, Y. Yan, M. Meng, Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 277 (2020) 119254.
    [188] X. Ma, Z. Fu, C. Wang, X. Hu, J. Fan, C. Tang, E. Liu, Facile strategy to construction Co2P/g-C3N4 heterojunction with excellent photocatalytic water splitting activity, Materials Letters, 284 (2021) 128964.
    [189] K. Sonowal, N. Nandal, P. Basyach, L. Kalita, S.L. Jain, L. Saikia, Photocatalytic reduction of CO2 to methanol using Zr(IV)-based MOF composite with g-C3N4 quantum dots under visible light irradiation, Journal of CO2 Utilization, 57 (2022) 101905.
    [190] H. Shi, T. Jin, J. Li, Y. Li, Y. Chang, Z. Jin, W. Jiang, X. Qu, Z. Chen, Construction of Z-scheme Cs3PMo12O40/g-C3N4 composite photocatalyst with highly efficient photocatalytic performance under visible light irradiation, Journal of Solid State Chemistry, 311 (2022) 123069.
    [191] X. Peng, C. Liu, Z. Zhao, F. Hu, H. Dai, Construction of a Z-scheme g-C3N4/NBGO/BiVO4 heterostructure with visible-light driven photocatalytic degradation of tetracycline: efficiency, reaction pathway and mechanism, Catalysis Science & Technology, 12 (2022) 1339-1358.
    [192] X. Huang, X. Xu, R. Yang, X. Fu, Synergetic adsorption and photocatalysis performance of g-C3N4/Ce-doped MgAl-LDH in degradation of organic dye under LED visible light, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 643 (2022) 128738.
    [193] R. Pang, K. Teramura, H. Asakura, S. Hosokawa, T. Tanaka, Highly selective photocatalytic conversion of CO2 by water over Ag-loaded SrNb2O6 nanorods, Applied Catalysis B: Environmental, 218 (2017) 770-778.
    [194] X. Zhang, J. Zhang, S. Kong, K. Zhu, J. Yan, K. Ye, G. Wang, K. Cheng, L. Zhou, D. Cao, A novel calendula-like MnNb2O6 anchored on graphene sheet as high-performance intercalation pseudocapacitive anode for lithium-ion capacitors, Journal of Materials Chemistry A, 7 (2019) 2855-2863.
    [195] H. Yuan, F. Fang, J. Dong, W. Xia, X. Zeng, W. Shangguan, Enhanced photocatalytic hydrogen production based on laminated MoS2/g-C3N4 photocatalysts, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 641 (2022) 128575.
    [196] Y. Lian, Y. Zheng, D. Wang, Y. Bai, H. Yan, Z. Wang, J. Zhao, H. Zhang, Ultrafast and stable ion/electron transport of MnNb2O6 in LIC/SC via interface protection and lattice defects, Journal of Colloids and Interface Science, 606 (2022) 77-86.
    [197] S.-Y. Lee, A.S. Lim, Y.M. Kwon, K.Y. Cho, S. Yoon, Copper, zinc, and manganese niobates (CuNb2O6, ZnNb2O6, and MnNb2O6): structural characteristics, Li+ storage properties, and working mechanisms, Inorganic Chemistry Frontiers, 7 (2020) 3176-3183.
    [198] H.M. Khan, M. Mustaqeem, Y.-F. Chen, M. Junaid, T.A. Saleh, M.N. Akram, A.u. Rehman, N. Lateef, Tuning of structural and dielectric properties of X type hexaferrite through Co and Zn variation, Journal of Alloys and Compounds, 909 (2022) 164529.
    [199] A. Sharif, M. Mustaqeem, T.A. Saleh, A. ur Rehman, M. Ahmad, M.F. Warsi, Synthesis, structural and dielectric properties of Mg/Zn ferrites -PVA nanocomposites, Materials Science and Engineering: B, 280 (2022) 115689.
    [200] M. Mustaqeem, T.A. Saleh, A. ur Rehman, M. Farooq Warsi, A. Mehmood, A. Sharif, S. Akther, Synthesis of Zn0.8Co0.1Ni0.1Fe2O4 polyvinyl alcohol nanocomposites via ultrasound-assisted emulsion liquid phase, Arabian Journal of Chemistry, 13 (2020) 3246-3254.
    [201] F.A. Qaraah, S.A. Mahyoub, M.E. Hafez, G. Xiu, Facile route for C–N/Nb2O5 nanonet synthesis based on 2-methylimidazole for visible-light driven photocatalytic degradation of Rhodamine B, RSC Advances, 9 (2019) 39561-39571.
    [202] M. Bourguiba, Z. Raddaoui, M. Chafra, J. Dhahri, The investigation of structural and vibrational properties and optical behavior of Ti-doped La0.67Ba0.25Ca0.08Mn(1−x)TixO3 (x = 0.00, 0.05 and 0.10) manganites, RSC Advances, 9 (2019) 42252-42261.
    [203] X. Liu, L. Gao, G. Qi, J. Zhang, B. Liu, Y. Chen, Enhanced visible light photocatalytic water-splitting activity over LaVO4/g-C3N4 with oxygen defects, New Journal of Chemistry, 45 (2021) 18615-18622.
    [204] M. R, S. Ghosh, M.S. Seehra, D.C. Joshi, M.R. Chowdhury, R. Medwal, R.S. Rawat, B. Weise, S. Thota, Magnetic field-temperature phase diagram, exchange constants and specific heat exponents of the antiferromagnet MnNb2O6, Journal of Physics and Condensed Matter, 33 (2021).
    [205] N. Xiao, Y. Li, S. Li, X. Li, Y. Gao, L. Ge, G. Lu, In-situ synthesis of PdAg/g-C3N4 composite photocatalyst for highly efficient photocatalytic H2 generation under visible light irradiation, International Journal of Hydrogen Energy, 44 (2019) 19929-19941.
    [206] X. Liu, J. Chen, L. Yang, S. Yun, M. Que, H. Zheng, Y. Zhao, T. Yang, Z. Liu, 2D/2D g-C3N4/TiO2 with exposed (001) facets Z-Scheme composites accelerating separation of interfacial charge and visible photocatalytic degradation of rhodamine B, Journal of Physics and Chemistry of Solids, 160 (2022) 110339.
    [207] S. Balu, Y.-L. Chen, S.-W. Chen, T.C.K. Yang, Rational synthesis of BixFe1−xVO4 heterostructures impregnated sulfur-doped g-C3N4: A visible-light-driven Type-II heterojunction photo(electro)catalyst for efficient photodegradation of roxarsone and photoelectrochemical OER reactions, Applied Catalysis B: Environmental, 304 (2022) 120852.
    [208] Y. Li, T. Li, J. Tian, X. Wang, H. Cui, TiO2 nanobelts decorated with In2S3 nanoparticles as photocatalysts with enhanced full-solar-spectrum (UV-vis-NIR) photocatalytic activity toward the degradation of tetracycline, Particle & Particle Systems Characterization, 34 (2017) 1700127.
    [209] Y. Yang, B. Liu, J. Xu, Q. Wang, X. Wang, G. Lv, J. Zhou, The synthesis of h-BN-modified Z-scheme WO3/g-C3N4 heterojunctions for enhancing visible light photocatalytic degradation of tetracycline pollutants, ACS Omega, 7 (2022) 6035-6045.
    [210] M.Z. Ahmad, I.A. Bhatti, K. Qureshi, N. Ahmad, J. Nisar, M. Zuber, A. Ashar, M.I. Khan, M. Iqbal, Graphene oxide supported Fe2(MoO4)3 nano rods assembled round-ball fabrication via hydrothermal route and photocatalytic degradation of nonsteroidal anti-inflammatory drug, Journal of Molecular Liquids, 301 (2020) 112343.
    [211] R. Koutavarapu, K. Syed, S. Pagidi, M.Y. Jeon, M.C. Rao, D.Y. Lee, J. Shim, An effective CuO/Bi2WO6 heterostructured photocatalyst: Analyzing a charge-transfer mechanism for the enhanced visible-light-driven photocatalytic degradation of tetracycline and organic pollutants, Chemosphere, 287 (2022) 132015.
    [212] C.-H. Shen, X.-J. Wen, Z.-H. Fei, Z.-T. Liu, Q.-M. Mu, Visible-light-driven activation of peroxymonosulfate for accelerating ciprofloxacin degradation using CeO2/Co3O4 p-n heterojunction photocatalysts, Chemical Engineering Journal, 391 (2020) 105405.
    [213] X. Yu, J. Zhang, J. Zhang, J. Niu, J. Zhao, Y. Wei, B. Yao, Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates, Chemical Engineering Journal, 374 (2019) 316-327.
    [214] X.-J. Wen, C.-G. Niu, L. Zhang, C. Liang, H. Guo, G.-M. Zeng, Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: Influencing factors, possible degradation pathways, and mechanism insight, Journal of Catalysis, 358 (2018) 141-154.
    [215] S. Zhu, W. Wang, Y. Xu, Z. Zhu, Z. Liu, F. Cui, Iron sludge-derived magnetic Fe0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation, Chemical Engineering Journal, 365 (2019) 99-110.
    [216] Z. Ouyang, C. Yang, G. Lu, Q. Yao, J. He, H. Wang, Z. Zhang, J. Yang, Y. Liu, Y. Jiang, Y. Deng, Z. Dang, Chromate(VI)-induced homogeneous oxidation and photolysis of aqueous tetracycline: Kinetics and mechanism, Chemical Engineering Journal, 379 (2020) 122276
    [217] S. Kumar Ray, D. Dhakal, G. Gyawali, B. Joshi, A. Raj Koirala, S. Wohn Lee, Transformation of tetracycline in water during degradation by visible light driven Ag nanoparticles decorated α-NiMoO4 nanorods: Mechanism and pathways, Chemical Engineering Journal, 373 (2019) 259-274.
    [218] J. Guo, L. Jiang, J. Liang, W. Xu, H. Yu, J. Zhang, S. Ye, W. Xing, X. Yuan, Photocatalytic degradation of tetracycline antibiotics using delafossite silver ferrite-based Z-scheme photocatalyst: Pathways and mechanism insight, Chemosphere, 270 (2021) 128651.
    [219] X. Zhang, J. Chen, S. Jiang, X. Zhang, F. Bi, Y. Yang, Y. Wang, Z. Wang, Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): Degradation pathway and mechanism studies, Journal of Colloids and Interface Science, 588 (2021) 122-137.
    [220] S. Yang, Y. Feng, D. Gao, X. Wang, N. Suo, Y. Yu, S. Zhang, Electrocatalysis degradation of tetracycline in a three-dimensional aeration electrocatalysis reactor (3D-AER) with a flotation-tailings particle electrode (FPE): Physicochemical properties, influencing factors and the degradation mechanism, Journal of Hazardous Materials, 407 (2021) 124361.
    [221] L. Tang, C. Feng, Y. Deng, G. Zeng, J. Wang, Y. Liu, H. Feng, J. Wang, Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism, Applied Catalysis B: Environmental, 230 (2018) 102-114.
    [222] I. Dalmazio, M.O. Almeida, R. Augusti, T.M. Alves, Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry, Journal of American Chemical Society Mass Spectrom, 18 (2007) 679-687.
    [223] A. Iqbal, U. Saidu, S. Sreekantan, M.N. Ahmad, M. Rashid, N.M. Ahmed, W.H. Danial, L.D. Wilson, Mesoporous TiO2 implanted ZnO QDs for the photodegradation of tetracycline: Material design, structural characterization and photodegradation mechanism, Catalysts, 11 (2021) 1205.
    [224] J.-H. Shen, T.-H. Chiang, C.-K. Tsai, Z.-W. Jiang, J.-J. Horng, Mechanistic insights into hydroxyl radical formation of Cu-doped ZnO/g-C3N4 composite photocatalysis for enhanced degradation of ciprofloxacin under visible light: Efficiency, kinetics, products identification and toxicity evaluation, Journal of Environmental Chemical Engineering, 10 (2022) 107352.
    [225] Z. Gao, J. Liang, J. Yao, Y. zhao, Q. Meng, G. He, H. Chen, Synthesis of Ce-doped NiAl LDH/RGO composite as an efficient photocatalyst for photocatalytic degradation of ciprofloxacin, Journal of Environmental Chemical Engineering, 9 (2021) 105405.
    [226] Y. Hong, C. Li, Y. Meng, C. Huang, W. Shi, In situ synthesis of a nanoplate-like Bi-based heterojunction for photocatalytic degradation of ciprofloxacin, Materials Science and Engineering: B, 224 (2017) 69-77.
    [227] S. Saha, T.K. Saha, S. Karmaker, Z. Islam, S. Demeshko, H. Frauendorf, F. Meyer, Solar light-assisted oxidative degradation of ciprofloxacin in aqueous solution by Iron(III) chelated cross-linked chitosan immobilized on a glass plate, Catalysts, 12 (2022) 475.
    [228] B. Gupta, A.K. Gupta, Photocatalytic performance of 3D engineered chitosan hydrogels embedded with sulfur-doped C3N4/ZnO nanoparticles for Ciprofloxacin removal: Degradation and mechanistic pathways, Int J Biol Macromol, 198 (2022) 87-100.
    [229] A. Gandamalla, S. Manchala, A. Verma, Y.P. Fu, V. Shanker, Microwave-assisted synthesis of ZnAl-LDH/g-C3N4 composite for degradation of antibiotic ciprofloxacin under visible-light illumination, Chemosphere, 283 (2021) 131182.
    [230] M. Yan, R. Liu, S. Wang, X. Hu, M. Xu, Fabrication of double Z-scheme photocatalyst BiOI/g-C3N4/CoFe2O4 with enhanced photocatalytic activity for tetracycline hydrochloride degradation, Materials Letters, 320 (2022) 132306.
    [231] Y. Shi, L. Li, Z. Xu, H. Sun, S. Amin, F. Guo, W. Shi, Y. Li, Engineering of 2D/3D architectures Type II heterojunction with high-crystalline g-C3N4 nanosheets on yolk-shell ZnFe2O4 for enhanced photocatalytic tetracycline degradation, Materials Research Bulletin, 150 (2022) 111789
    [232] J. Tang, J. Wang, L. Tang, C. Feng, X. Zhu, Y. Yi, H. Feng, J. Yu, X. Ren, Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation, Chemical Engineering Journal, 430 (2022) 132669.
    [233] S. Wang, J. Long, T. Jiang, L. Shao, D. Li, X. Xie, F. Xu, Magnetic Fe3O4/CeO2/g-C3N4 composites with a visible-light response as a high efficiency Fenton photocatalyst to synergistically degrade tetracycline, Separation and Purification Technology, 278 (2021) 119609.
    [234] Y. Duan, Y. Cao, X. Shang, D. Jia, C. Li, Synthesis of g-C3N4/W-SBA-15 Composites for Photocatalytic Degradation of Tetracycline Hydrochloride, Journal of Inorganic and Organometallic Polymers and Materials, 31 (2021) 2140-2149.
    [235] M. Tayyab, Y. Liu, Z. Liu, L. Pan, Z. Xu, W. Yue, L. Zhou, J. Lei, J. Zhang, One-pot in-situ hydrothermal synthesis of ternary In2S3/Nb2O5/Nb2C Schottky/S-scheme integrated heterojunction for efficient photocatalytic hydrogen production, Journal of Colloids and Interface Science, 628 (2022) 500-512.
    [236] G.S. Wolde, D.H. Kuo, H. Abdullah, Solar-light-driven ternary MgO/TiO2/g-C3N4 heterojunction photocatalyst with surface defects for dinitrobenzene pollutant reduction, Chemosphere, 307 (2022) 135939.
    [237] G. Liu, M. Feng, M. Tayyab, J. Gong, M. Zhang, M. Yang, K. Lin, Direct and efficient reduction of perfluorooctanoic acid using bimetallic catalyst supported on carbon, Journal of Hazardous Materials, 412 (2021) 125224.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 2025/08/25 (校外網路)
    全文公開日期 2028/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE