簡易檢索 / 詳目顯示

研究生: 邱泰勝
Tai-Sheng Chiu
論文名稱: 以3D列印技術製備適合在模擬人體胃部環境下生長之幽門螺旋桿菌培養平台
Using 3D Printing to Build a Novel Culture Platform for Helicobacter Pylori under Simulated Gastric Conditions
指導教授: 高震宇
Chen-Yu Kao
口試委員: 何明樺
Ming-Hua Ho
莊依萍
Yi-Ping Chuang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 74
中文關鍵詞: 幽門螺旋桿菌3D列印培養盒模擬胃部系統細菌培養平台
外文關鍵詞: Helicobacter pylori, 3D printing culture box, simulated gastric system, H. pylori culture platform
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幽門螺旋桿菌是目前唯一可以在人體胃部生存的細菌,感染的人容易引起一系列腸胃道病變,例如十二指腸潰瘍、胃潰瘍、慢性萎縮性胃炎、胃癌和腸發育不良等疾病。目前服用抗生素是治療幽門螺旋桿菌感染的主要方法,但口服抗生素容易被胃環境中的酸和酶降解,造成細菌產生抗藥性並降低根除率;此外,部分抗生素會排至腸道,破壞腸道菌群的平衡。因此研究人員努力開發新一代治療幽門桿菌藥物傳輸載體,以解決上述問題。然而,在未保護的狀況下幽門桿菌在一般酸性環境無法生存,所以目前評估藥物載體抑制幽門桿菌的方式,仍是透過採間接評估藥物載體抑制幽門桿菌。至今仍缺乏一個平台來直接檢測藥物在模擬人體胃中對於幽門螺旋桿菌等菌群的抑制量,因此,本實驗主旨為開發可直接在模擬胃中培養幽門螺旋桿菌的生長平台,在模擬人體胃部環境條件下,測試藥物投入後對幽門螺旋桿菌的生長影響。
    本研究使用3D列印技術列印適合培養幽門螺旋桿菌的H. pylori培養盒,放入胃部模擬系統,觀察在不同條件與環境下之生長情形,找出最有利對於幽門螺旋桿菌生長的條件作為模擬胃之生長平台;研究結果顯示:在僅添加胃黏膜蛋白塗層之H. pylori培養盒中,幽門螺旋桿菌無法在低pH值(pH1~2)之模擬胃部系統內存活;但當將尿素添加至胃黏膜蛋白塗層之H. pylori培養盒內,並安裝能減緩動態胃液直接衝擊幽門螺旋桿菌附著處的蓋子後,則可在低pH值(pH1~2)之模擬胃部系統內存活,以達到模擬幽門螺旋桿菌定植入人體胃部之情形。
    此幽門螺旋桿菌平台也可用於評估治療所需的抗生素與藥物傳輸系統的效用。研究中將四環黴素膠囊及包覆四環黴素之漂浮顆粒等加入至模擬胃中以模擬病患服用抗生素等藥物的狀況,並藉由藥物對胃中的菌群之生長抑制評估藥物的效用。研究結果顯示投入藥物至不同pH值環境之模擬胃部系統後,不論胃排空前與排空後菌落生長數皆有被抑制之情形,其中又以在pH2的環境下藥物的抑菌效果相對較佳。
    此系統未來可作為幽門螺旋桿菌體外試驗平台,可運用此來檢測日後市面上之藥物、健康食品等在模擬人體胃中對幽門螺旋桿菌的生長抑制效果。


    Helicobacter pylori (H. pylori) is the only kind of bacterium discovered to survive in the human stomach. H. pylori infections can cause a series of gastrointestinal lesions, such as duodenal ulcers, gastric ulcers, chronic atrophic gastritis, gastric cancer, and intestinal dysplasia. Taking antibiotics is currently the main method of treating H. pylori infection, but oral administrations of antibiotics are easily degraded by acids and enzymes in the gastric environment. This low bioavailiblity may lead to the bacteria resistance and reduce the eradication rate. In addition, part of the antibiotics may be discharged into the intestine and disrupt the balance of intestinal microbiota due to the poor specificity of antibiotics. Therefore, researchers strive to develop a new drug carrier for the treatment of H. pylori to solve the above problems. Ironically, H. pylori cannot survive in an acidic environment under the unprotected conditions in vitro. Therefore, most of the current studies of H. pylori still use the indirect method to evaluate the inhibitory effects of drug carriers. There is a greatly need to develop a platform that can directly evaluate the inhibitory effect of drug carrier on H. pylori in the simulated gastric system. Therefore, the main purpose of this experiment is to develop a growth platform that could directly cultivate H. pylori in the simulated gastric system. This culture platform was use to evaluate the inhibitory effect of the drugs on the growth of H. pylori under the simulated gastric environment.
    In this study, we used the 3D printing technology to print a 3D culture box, suitable for cultivation of H. pylori in the simulated gastric system. Various formulations and culture environments were tested to find the optimal condition by observation the growth of H. pylori. The results showed that H. pylori cannot survive well in in the simulated gastric environment (pH 1~2) when added to the mucin-coating 3D culture box. By adding the urea and the lid to the 3D mucin-coating culture box, the H. pylori can survive at low pH and dynamic environment by slow down the gastric fluid directly impacting the H. pylori attachment. The results showed that we can successfully mimic the H. pylori implantation the human stomach in this novel H. pylori culture platform.
    In the second part of the research, tetracycline and tetracycline loaded floating beads were added to H. pylori culture platform to evaluate the inhibitory rate of the H. pylori in the simulated gastric system. Results have shown both tetracycline and tetracycline loaded floating bead inhibit the growth of H. pylori at various acidic environment. Among these groups, the tetracycline loaded floating bead exhibit the highest inhibitory effect on H. pylori in the pH2 simulated gastric system environment.
    These results suggest that this novel culture platform can be used to directly measure the inhibitory effect of the drugs and drug delivery system on H. pylori in a simulated gastric system environment. And this culture platform can also be use in the food industry to evaluate the benefit effect of probiotics and other healthy food.

    摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 序論 1 第二章 文獻回顧 3 2-1幽門螺旋桿菌引起的健康問題與治療策略 3 2-2現今幽門螺旋桿菌臨床之檢測 6 2-3現今幽門螺旋桿菌抗藥性研究方法及其限制 8 2-4體外腸胃模擬系統的發展 9 2-4-1人體胃部的特性與排空現象 11 2-5現今體外消化模擬系統的應用 14 2-5-1現今體外胃模擬系統的應用 17 2-6 3D列印應用於生醫領域之發展 20 第三章 實驗材料與方法 21 3-1實驗架構 21 3-2實驗藥品與設備 22 3-2-1實驗藥品 22 3-2-2實驗儀器與設備 22 3-3 幽門螺旋桿菌生長平台開發 23 3-3-1模擬胃部系統 23 3-3-2 H. pylori培養盒製作 24 3-3-3 H. pylori培養盒上成蓋子製作 26 3-3-4 3D 模型之表面型態觀察 27 3-3-5使用紫外/可見光分光光譜儀檢測H. pylori培養盒表面之mucin貼附量 27 3-4 H. pylori體外試驗 28 3-4-1 H. pylori菌液製作與保存 28 3-4-2 H. pylori生長分析 28 3-4-3在模擬胃系統中研究添加mucin於H. pylori培養盒對H. pylori在不同pH值的生長影響 30 3-4-4添加尿素於mucin coating H. pylori培養盒對H. pylori在不同pH值的生長影響 30 3-4-5研究H. pylori於加蓋之urea/mucin coating培養盒中不同pH值環境下生長影響 31 3-4-6微氧環境中優化H. pylori培養盒於不同pH值環境下生長影響 32 3-5投入抗生素膠囊入模擬胃部系統對H. pylori的抑制試驗 33 3-5-1投入漂浮藥物評估模擬胃部環境燒杯內對H. pylori的抑制試驗 34 第四章 結果與討論 35 4-1 H. pylori培養盒之表面型態觀察 35 4-1-1掃描電子顯微鏡之表面觀察 35 4-1-2 能量分散光譜儀表面元素分析 38 4-1-3 檢測mucin於H. pylori培養盒中之貼附量 39 4-2 H. pylori之體外試驗 41 4-2-1添加mucin對H. pylori在不同pH值的生長評估 42 4-2-2添加尿素對H. pylori在不同pH值的生長評估 43 4-2-3 裝設不同形狀孔蓋評估對H. pylori在模擬胃液下的生長評估 44 4-2-4以蓋子結合H. pylori培養盒在不同pH值的生長評估 45 4-2-5在模擬胃環境中通入二氧化碳氣體對H. pylori的生長影響 46 4-2-6評估在模擬胃環境中運轉不同時間下H. pylori的生長評估 48 4-3現有藥物至模擬胃部系統對H. pylori不同pH環境中之生長評估 49 4-3-1評估投入抗生素膠囊入模擬胃部系統對H. pylori的生長情形 49 4-3-2評估投入漂浮藥物評估模擬胃部環境消化H. pylori的生長情形 54 第五章 結論 58 第六章 參考文獻 59

    1. Tripathi, G.K., S. Singh, and G. Nath, Formulation and In-vitro evaluation of pH-sensitive oil entrapped polymeric blend amoxicillin beads for the eradication of Helicobacter pylori. Iranian Journal of Pharmaceutical Research, 2012. 11(2): p. 447.
    2. Thamphiwatana, S., et al., In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation. Proceedings of the National Academy of Sciences, 2014. 111(49): p. 17600-17605.
    3. 涂莎 and 阳惠湘, 幽门螺杆菌感染治疗的进展. 中南大学学报 (医学版), 2014. 39(9): p. 981-988.
    4. Smith, S.M., C. O’Morain, and D. McNamara, Antimicrobial susceptibility testing for Helicobacter pylori in times of increasing antibiotic resistance. World Journal of Gastroenterology: WJG, 2014. 20(29): p. 9912.
    5. Krueger, S., A. Roessner, and D. Kuester, Murine models of H. pylori-induced gastritis and gastric adenocarcinoma. Pathology-Research and Practice, 2011. 207(10): p. 599-607.
    6. Wang, F., et al., Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Letters, 2014. 345(2): p. 196-202.
    7. Graham, D.Y., History of Helicobacter pylori, duodenal ulcer, gastric ulcer and gastric cancer. World Journal of Gastroenterology: WJG, 2014. 20(18): p. 5191.
    8. Fiorillo, C., et al., From biology to surgery: One step beyond histology for tailored surgical treatments of gastric cancer. Surgical Oncology, 2020.
    9. Torre, L.A., et al., Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 2015. 65(2): p. 87-108.
    10. Rugge, M., et al., Gastric cancer as preventable disease. Clinical Gastroenterology and Hepatology, 2017. 15(12): p. 1833-1843.
    11. Ebrahimi, V., et al., Epigenetic modifications in gastric cancer: Focus on DNA Methylation. Gene, 2020. 742: p. 144577.
    12. Malfertheiner, P., et al., Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut, 2007. 56(6): p. 772-781.
    13. Fuccio, L., et al., Meta-analysis: duration of first-line proton-pump inhibitor–based triple therapy for Helicobacter pylori eradication. Annals of Internal Medicine, 2007. 147(8): p. 553-562.
    14. Ford, A.C., et al., Eradication therapy for peptic ulcer disease in Helicobacter pylori positive patients. Cochrane Database of Systematic Reviews, 2006(2).
    15. Hsu, P.-I., et al., A prospective randomized trial of esomeprazole-versus pantoprazole-based triple therapy for Helicobacter pylori eradication. American Journal of Gastroenterology, 2005. 100(11): p. 2387-2392.
    16. Liou, J.-M., et al., Levofloxacin-based and clarithromycin-based triple therapies as first-line and second-line treatments for Helicobacter pylori infection: a randomised comparative trial with crossover design. Gut, 2010. 59(5): p. 572-578.
    17. Huang, A.-H., et al., Impact of Helicobacter pylori antimicrobial resistance on the outcome of 1-week lansoprazole-based triple therapy. Journal of the Formosan Medical Association, 2000. 99(9): p. 704-709.
    18. Sheu, B.S. and K.M. Fock, CYP2C19 genotypes and Helicobacter pylori eradication. Journal of Gastroenterology and Hepatology, 2008. 23(8pt1): p. 1163-1163.
    19. Sheu, B.S., et al., Esomeprazole 40 mg twice daily in triple therapy and the efficacy of Helicobacter pylori eradication related to CYP2C19 metabolism. Alimentary Pharmacology & Therapeutics, 2005. 21(3): p. 283-288.
    20. Megraud, F., H pylori antibiotic resistance: prevalence, importance, and advances in testing. Gut, 2004. 53(9): p. 1374-1384.
    21. 林俊谷, 許秉毅, and 曾暉華, 幽門螺旋桿菌除菌治療之新進展. Recent Advances in the Treatment of Helicobacter pylori. 內科學誌, 2010. 21(4): p. 252-257.
    22. Peng, N.-J., et al., Clinical significance of oral urease in diagnosis of Helicobacter pylori infection by [13C] urea breath test. Digestive Diseases and Sciences, 2001. 46(8): p. 1772-1778.
    23. Newell, D., et al., Estimation of prevalence of Helicobacter pylori infection in an asymptomatic elderly population comparing [14C] urea breath test and serology. Journal of Clinical Pathology, 1991. 44(5): p. 385-387.
    24. Graham, D.Y. and M. Miftahussurur, Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. Journal of Advanced Research, 2018. 13: p. 51-57.
    25. Li, Y., et al., Detection of clarithromycin resistance in Helicobacter pylori following noncryogenic storage of rapid urease tests for 30 days. Journal of Digestive Diseases, 2012. 13(1): p. 54-59.
    26. Rimbara, E., M. Sasatsu, and D.Y. Graham, PCR detection of Helicobacter pylori in clinical samples, in PCR Detection of Microbial Pathogens. 2013, Springer. p. 279-287.
    27. Uotani, T. and D.Y. Graham, Diagnosis of Helicobacter pylori using the rapid urease test. Annals of Translational Medicine, 2015. 3(1): p. 9.
    28. Boisen, S. and B. Eggum, Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutrition Research Reviews, 1991. 4(1): p. 141-162.
    29. Coles, L., P. Moughan, and A. Darragh, In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Animal Feed Science and Technology, 2005. 123: p. 421-444.
    30. Guerra, A., et al., Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 2012. 30(11): p. 591-600.
    31. Burdan, F., et al., Anatomical classification of the shape and topography of the stomach. Surgical and Radiologic Anatomy, 2012. 34(2): p. 171-178.
    32. Kuiken, S.D., et al., Development of a test to measure gastric accommodation in humans. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1999. 277(6): p. G1217-G1221.
    33. Bellmann, S., et al., Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Research International, 2016. 88: p. 191-198.
    34. Pal, A., J.G. Brasseur, and B. Abrahamsson, A stomach road or “Magenstrasse” for gastric emptying. Journal of Biomechanics, 2007. 40(6): p. 1202-1210.
    35. Meyer, J.H., et al., Human postprandial gastric emptying of 1–3-millimeter spheres. Gastroenterology, 1988. 94(6): p. 1315-1325.
    36. Feldman, M., H.J. Smith, and T.R. Simon, Gastric emptying of solid radiopaque markers: studies in healthy subjects and diabetic patients. Gastroenterology, 1984. 87(4): p. 895-902.
    37. Hunt, J., J. Smith, and C. Jiang, Effect of meal volume and energy density on the gastric emptying of carbohydrates. Gastroenterology, 1985. 89(6): p. 1326-1330.
    38. Brener, W., T.R. Hendrix, and P.R. Mchugh, Regulation of the gastric emptying of glucose. Gastroenterology, 1983. 85(1): p. 76-82.
    39. Goyal, R.K., Y. Guo, and H. Mashimo, Advances in the physiology of gastric emptying. Neurogastroenterology & Motility, 2019. 31(4): p. e13546.
    40. Hur, S.J., et al., In vitro human digestion models for food applications. Food Chemistry, 2011. 125(1): p. 1-12.
    41. Englyst, H.N., et al., Measurement of resistant starch in vitro and in vivo. British Journal of Nutrition, 1996. 75(5): p. 749-755.
    42. Garrett, D.A., M.L. Failla, and R.J. Sarama, Development of an in vitro digestion method to assess carotenoid bioavailability from meals. Journal of Agricultural and Food Chemistry, 1999. 47(10): p. 4301-4309.
    43. Oomen, A., et al., Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Archives of Environmental Contamination and Toxicology, 2003. 44(3): p. 0281-0287.
    44. Kong, F. and R. Singh, Disintegration of solid foods in human stomach. Journal of Food Science, 2008. 73(5): p. R67-R80.
    45. Hoebler, C., et al., Development of an in vitro system simulating bucco-gastric digestion to assess the physical and chemical changes of food. International Journal of Food Sciences and Nutrition, 2002. 53(5): p. 389-402.
    46. Mercuri, A., et al., The effect of composition and gastric conditions on the self-emulsification process of ibuprofen-loaded self-emulsifying drug delivery systems: a microscopic and dynamic gastric model study. Pharmaceutical Research, 2011. 28(7): p. 1540-1551.
    47. Vardakou, M., et al., Achieving antral grinding forces in biorelevant in vitro models: comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. Aaps Pharmscitech, 2011. 12(2): p. 620-626.
    48. Mainville, I., Y. Arcand, and E. Farnworth, A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. International Journal of Food Microbiology, 2005. 99(3): p. 287-296.
    49. Kong, F. and R.P. Singh, A human gastric simulator (HGS) to study food digestion in human stomach. Journal of Food Science, 2010. 75(9): p. E627-E635.
    50. Yvon, M., et al., In vitro simulation of gastric digestion of milk proteins: comparison between in vitro and in vivo data. Journal of Agricultural and Food Chemistry, 1992. 40(2): p. 239-244.
    51. Vatier, J., C. Célice‐Pingaud, and R. Farinotti, Interests of the ‘artifical stomach’techniques to study antacid formulations: Comparison with in vivo evaluation. Fundamental & Clinical Pharmacology, 1998. 12(6): p. 573-583.
    52. Castela-Papin, N., et al., Drug interactions with diosmectite: a study using the artificial stomach–duodenum model. International Journal of Pharmaceutics, 1999. 182(1): p. 111-119.
    53. Tompkins, T., I. Mainville, and Y. Arcand, The impact of meals on a probiotic during transit through a model of the human upper gastrointestinal tract. Beneficial Microbes, 2011. 2(4): p. 295-303.
    54. Minekus, M., P. Marteau, and R. Havenaar, Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to Laboratory Animals: ATLA, 1995.
    55. Verhoeckx, K., et al., The impact of food bioactives on health: in vitro and ex vivo models. 2015: p. 338.
    56. Kozu, H., et al., Development of a human gastric digestion simulator equipped with peristalsis function for the direct observation and analysis of the food digestion process. Food Science and Technology Research, 2014. 20(2): p. 225-233.
    57. Chessa, S., et al., Application of the Dynamic Gastric Model to evaluate the effect of food on the drug release characteristics of a hydrophilic matrix formulation. International Journal of Pharmaceutics, 2014. 466(1-2): p. 359-367.
    58. 陳怡文, 3D 列印技術應用於臨床醫療技術發展. 科儀新知, 2017(213): p. 77-81.
    59. Williams, A., et al., A simulated training model for laparoscopic pyloromyotomy: Is 3D printing the way of the future? Journal of Pediatric Surgery, 2018. 53(5): p. 937-941.
    60. Hsu, Y.-T., Evaluation of the inhibitory effect of Tetracycline- Alginate floating beads on the growth of H. pylori in a simulated gastric environment. National Taiwan University of Science and Technology, 2018. p. 98.
    61. Tadjrobehkar, O. Survival and chemotactic behavior of H pylori at different media pH. Iranian Journal of Medical Science, 2004: 29(2): p. 81-84.
    62. Moran, A., A. Gupta, and L. Joshi, Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut, 2011. 60(10): p. 1412-1425.
    63. 何振隆 and 蘇裕昌, 精油之抗菌活性. 林業研究專訊, 2008. 15(3): p. 31-37.
    64. Salcedo, J.A. and F. Al-Kawas, Treatment of Helicobacter pylori infection. Archives of Internal Medicine, 1998. 158(8): p. 842-851.
    65. Megraud, F., and H. Lamouliatte. The treatment of refractory Helicobacter pylori infection. Alimentary Pharmacology & Therapeutics, 2003. 17(11): p. 1333-1343.

    無法下載圖示 全文公開日期 2025/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE