簡易檢索 / 詳目顯示

研究生: 林坤德
Kun-De Lin
論文名稱: 以電噴射製備光動力治療之幾丁聚醣-五胺基酮戊酸奈米粒子
Preparation and In Vitro Evaluation of 5-Aminolevulinic Acid (ALA) Loaded Chitosan Electrosprayed Nanoparticles
指導教授: 何明樺
Ming-hua Ho
口試委員: 曾婷芝
Ting-chih Tseng
李忠興
Li-zhong Xing
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 108
中文關鍵詞: 光動力治療幾丁聚醣胺基酮戊酸電噴射
外文關鍵詞: photodynamic, chitosan, aminolevulinic, electrospraying
相關次數: 點閱:359下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了增強藥物傳遞的效果,本實驗以電噴射(electrospraying)製備五胺基酮戊酸(-ALA)-幾丁聚醣奈米粒子。藉由調整不同的操作條件:流率、操作電壓、collector-tip距離、-ALA 濃度,進而製造出直徑最小及直徑分布最窄之奈米粒子。並利用光交聯反應增加奈米粒子的穩定性。在電噴的過程中加入tetraethyleneglycoldiacrylate (TTEGDA) 及 2,2-dimethoxy-2-phenylacetophenone (DMPA),同時以UV光照射而達到單步驟交聯。光交聯後之五胺基酮戊酸-幾丁聚醣奈米粒子的形狀可在磷酸鹽緩衝溶液中為持至少一天。並在骨母細胞(osteoblast)及骨癌細胞(osteosarcoma)上展現良好的生物相容性。
    光交聯後之五胺基酮戊酸-幾丁聚醣奈米粒子可延遲釋放曲線,達到12小時的穩定釋放。由細胞攝入的結果得知,在4小時培養後,325 奈米之五胺基酮戊酸-幾丁聚醣粒子可以被骨癌細胞及骨母細胞吞噬入細胞質中。
    由毒性測試的結果指出,五胺基酮戊酸的親水性降低了光動力治療的效率。而以幾丁聚醣包覆五胺基酮戊酸能有效增加骨癌的毒殺效果,並不對骨母細胞及纖維母細胞造成顯著的毒性。


    In this research, -aminolevulinic acid (ALA)-chitosan nanoparticles were prepared by electrospraying. The main parameters in electrospraying process, including ALA concentration, applied voltage, flow-rate, and tip-collector distance, were optimized to obtain spherical and mono-dispersed nanoparticles for drug delivery.
    To enhance the anti-swelling ability of nanoparticles for the reduction of burst release, chitosan nanoparticles were neutralized with Na2CO3, or photocrosslinked with tetraethyleneglycoldiacrylate (TTEGDA) and 2,2-dimethoxy-2-phenylaceto- phenone (DMPA). With photocrosslinking, the morphologies of chitosan were not changed after immersion in PBS for a day. The processes were diminished into one step by using photocrossking. The treatment was greatly simplified to result in good anti-swelling ability of chitosan nanoparticles, compared with several steps through Na2CO3 neutralization. Besides, photocrosslinked chitosan nanoparticles demonstrated good biocompatibility for osteosarcoma UMR-106 cells and osteoblast 7F2 cells.
    From images of confocal fluorescence microscope, the cellular uptake of ALA-chitosan nanoparticles was obvious in UMR-106 and 7F2 cells after the culture for 4 h. With the incubation of 1 and 2 days, the internalization of chitosan particles was still clear in cytoplasm and nucleus of UMR-106 and 7F2 cells. The results support that for chitosan nanoparticles developed in this study, their cellular uptake and duration were efficient in osteogenic cells.
    The photodynamic therapy (PDT) efficacy of ALA-chitosan was tested on UMR-106, 7F2 and skin fibroblast L929 cells with the radiation energy of 234 mW/cm2 for 10 minutes. From the cell culture with ALA-chitosan nanoparticles under low-energy irradiation, the cytotoxicity of ALA-chitosan was the highest in UMR-106 cells, and the second highest was in L929 cells. On the other hand, the cytotoxicity of ALA-chitosan was insignificant in 7F2 cells. The results reveal that the PDT efficiency of ALA was greatly promoted by chitosan nanoparticles especially for osteosarcoma cells, supporting the potential of ALA-chitosan nanoparticles in the treatment of bone cancer.

    摘要…………………………………………………….………..................................II Abstract………………………………………………………………………………III 致謝……………………………………………………………………………….......V Contents…………………………………………………………………………...…VI Figure List……………………………………………………………………..…...VIII Table List…………………………………………………………………………....XII Abbreviation………………………………………………………………………..XIII Chapter 1 Introduction………………………………………………………………...1 Chapter 2 Literature Review…………………………………………………………..3 2.1 Nano-carrier for anticancer drugs……………..……………………………….…3 2.1.1 Polymeric Nano-carriers…………...…...……………………………………..5 2.1.2 Chitosan…………………………………………………………………….…6 2.1.3 Targeting Strategies for Chitosan Nano-carriers.....…………………….…….8 2.2 Introduction of Photodynamic Therapy (PDT)…………………………………..9 2.2.1 Mechanism of PDT…………………………………………………………...9 2.2.2 Light Sources for PDT………………………………………………………12 2.2.3 Photosensitizers……………………………………………………………...13 2.2.4 -Aminolevulinic Acid (-ALA)….…..……………………………………..14 2.2.5 ALA Conjugated Nano-carriers...………………………………………...….20 2.3 Fabrication of Nano-carriers……………………………………………………23 2.3.1 Introduction of Electrospraying.......................................................................25 2.3.2 Parameters in Electrospraying……………………………………………….29 2.3.3 Electrosprayed Chitosan Nano-carriers………………………………….…..31 Chapter -3- Material and Experiment Procedure………………………………….....34 3.1 Chemicals and Materials………………………………………………………..34 3.2 Experimental Apparatus ………………………………………………………..35 3.3 Experimental Procedure………………………………………………………...36 3.3.1 Determination of Molecular Weight of Chitosan............................................36 3.3.2 Electrospraying of Chitosan and ALA-Chitosan…..………………………...36 3.3.3 Analysis of ALA-Chitosan Nanoparticles………………………………..….37 3.3.4 Swelling Test………………………………………………………………...38 3.3.5 Evaluation of in vitro ALA Release..…………………………………….….38 3.3.6 Cell Culture………………………………………………………………….38 3.3.5 Uptake of Chitosan-ALA on Confocal Microscope………………………....42 3.3.6 Cytotoxicity Assay of Chitosan and ALA-Chitosan……………………...…42 Chapter -4- Result and Discussion……………………………………………….…..43 4.1 Electrosprayed Chitosan-ALA Nanoparticles……………………………….….43 4.1.1 Effect of ALA concentration …………………………………………..…....43 4.1.2 Effect of Applied Voltage................................................................................45 4.1.3 Effect of Flow Rate ……………………………………………………….....49 4.1.4 Effect of Tip-Collector Distance…………………………………………….52 4.2 Characterization of Optimized Chitosan-ALA Nanoparticles…………………..55 4.2.1 Summary of Optimized Conditions………………………………………….55 4.2.2 Anti-swelling Test for Chitosan Nanoparticles………………………………56 4.2.3 FTIR Analysis……………………………………………………………….62 4.2.4 In vitro release of ALA from chitosan nanoparticles………………………..65 4.3 Endocytosis of ALA-Chitosan nanoparticles…………………………………...66 4.4 Low Level Energy to Osteosarcoma……………………………………………72 4.5 Photo-toxicity of ALA for Osteosarcoma……………………………………….76 4.6 Biocompatibility Test for Chitosan Nanoparticles…………………………...…80 4.6.1 Chitosan Nanoparticles to osteosarcoma…………………………………….80 4.6.2 Chitosan Nanoparticles to osteoblast………………………………………..82 4.7 Cytotoxicity of ALA-Chitosan Nanoparticles…………………………................83 4.7.1 Cytotoxicity of ALA-Chitosan Nanoparticles on UMR……………………..83 4.7.2 Cytotoxicity of Chitosan-ALA Nanoparticles on 7F2……………………….85 4.7.3 Cytotoxicity of Chitosan-ALA Nanoparticles to L929……………………...87 Chapter -5- Conclusion………………………………………………………………90 Reference……………………………………………………………………………..92

    1. Robertson CA, Hawkins Evans D, Abrahamse H, Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT. Journal of Photochemistry and Photobiology B: Biology, 2009; 96: 1-8.
    2. Buytaert E, Dewaele M, Agostinis P, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochimica et Biophysica Acta, 2007; 1776: 86-107.
    3. Detty MR, Gibson SL, Wagner SJ, Current clinical and preclinical photosensitizers for use in photodynamic therapy. Journal of medicinal chemistry, 2004; 47: 3897-3915.
    4. Nokes B, Apel M, Jones C, Brown G, Lang JE, Aminolevulinic acid (ALA): photodynamic detection and potential therapeutic applications. Journal of Surgical Research, 2013; 181: 262-271.
    5. Sadlon TJ, Dell’Oso T, Surinya KH, and May BK, Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis. The International Journal of Biochemistry & Cell Biology, 1999; 31: 1153-1167.
    6. Mitragotri S, Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. Journal of Controlled Release, 2003; 86: 69-92.
    7. Endlicher E, Rummele P, Hausmann F, Krieg R, Knuchel R, Rath HC, Scholmerich J, Messmann H, Protoporphyrin IX distribution following local application of 5-aminolevulinic acid and its esterified derivatives in the tissue layers of the normal rat colon. British Journal of Cancer, 2001; 85: 1572-1576.
    8. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC, Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Advanced Drug Delivery Reviews, 2014; 66: 2-25.
    9. Lehr CM, Bouwstra JA, Schacht EH, Junginger HE, In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. International Journal of Pharmaceutics, 1992; 78: 43-48.
    10. Mignani S, Kazzouli SE, Bousmina M, and Majoral JP, Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Progress in Polymer Science, 2013; 38: 993-1008.
    11. Fukui Y, Maruyama T, Iwamatsu Y, Fujii A, Tanaka T, Ohmukai Y, Matsuyama H, Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010; 370: 28-34.
    12. Anselmo AC, Mitragotri S, An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release, 2014; 190: 15-28.
    13. Wu Q, Yang Z, Nie Y, Shi Y, Fan D, Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Letters, 2014; 347: 159-166.
    14. Kathawala RJ, Gupta P, Jr CRA, Chen ZS, The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resistance Updates, 2015; 18: 1-17.
    15. Kaseta MKA, Khaldi L, Gomatos IP, Tzagarakis GP, Alevizos L, Leandros E, Papagelopoulos PJ, Soucacos PN, Prognostic value of bax, bcl-2, and p53 staining in primary osteosarcoma. Journal of Surgical Oncology, 2008; 97: 259-266.
    16. Perche F, Torchilin VP, Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. Journal of drug delivery, 2013; 2013: 705265.
    17. Ji SR, Liu C, Zhang B, Yang F, Xu J, Long J, Jin C, Fu DL, Ni QX, Yu XJ, Carbon nanotubes in cancer diagnosis and therapy. Biochimica et Biophysica Acta - Reviews on Cancer, 2010; 1806: 29-35.
    18. Sun C, Lee JSH, Zhang M, Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 2008; 60: 1252-1265.
    19. Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM, Applications of biosynthesized metallic nanoparticles – A review. Acta Biomaterialia, 2014; 10: 4023-4042.
    20. Tanaka T, Shiramoto S, Miyashita M, Fujishima Y, Kaneo Y, Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). International Journal of Pharmaceutics, 2004; 277: 39-61.
    21. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK, Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 1998; 95: 4607-4612.
    22. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S, pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Advanced materials, 2011; 23: 2436-2442.
    23. Wicki A, Witzigmann D, Balasubramanian V, and Huwyler J, Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release, 2015; 200: 138-157.
    24. Seymour LW, Duncan R, Strohalm J, and Kopeček J, Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. Journal of Biomedical Materials Research, 1987; 21: 1341-1358.
    25. Willis JM, Favis BD, Lunt J, Reactive processing of polystyrene-co-maleic anhydride/elastomer blends: Processing-morphology-property relationships. Polymer Engineering & Science, 1990; 30: 1073-1084.
    26. Kumar S, Alnasif N, Fleige E, Kurniasih I, Kral V, Haase A, Luch A, Weindl G, Haag R, Schäfer-Korting M, Hedtrich S, Impact of structural differences in hyperbranched polyglycerol–polyethylene glycol nanoparticles on dermal drug delivery and biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2014; 88: 625-634.
    27. Li C, Poly(l-glutamic acid)–anticancer drug conjugates. Advanced Drug Delivery Reviews, 2002; 54: 695-713.
    28. Gentile P, Chiono V, Carmagnola I, Hatton PV, An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. International Journal of Molecular Sciences, 2014; 15, 3640-3659.
    29. Zhu G, Mallery SR, Schwendeman SP, Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotech, 2000; 18: 52-57.
    30. Estellés JM, Vidaurre A, Dueñas JM, Cortázar IC, Physical characterization of polycaprolactone scaffolds. Journal of Materials Science: Materials in Medicine, 2008; 19: 189-195.
    31. Wong BS, Teoh SH, Kang L, Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Delivery and Translational Research, 2012; 2: 272-283.
    32. Elzoghby AO, Samy WM, Elgindy NA, Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 2012; 157: 168-182.
    33. Liang Y, Kiick KL, Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomaterialia, 2014; 10: 1588-1600.
    34. Sinha VR, Kumria R, Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics, 2001; 224: 19-38.
    35. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z, Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews, 2008; 60: 1650-1662.
    36. Yao KD, Peng T, Goosen MFA, Min JM, He YY, pH-sensitivity of hydrogels based on complex forming chitosan: Polyether interpenetrating polymer network. Journal of Applied Polymer Science, 1993; 48: 343-354.
    37. Chen WR, Liu H, Ritchey JW, Bartels KE, Lucroy MD, and Nordquist RE, Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats. Cancer Research, 2002; 62: 4295-4299.
    38. Shukla SK, Mishra AK, Arotiba OA, Mamba BB, Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 2013; 59: 46-58.
    39. Huang M, Khor E, Lim LY, Uptake and Cytotoxicity of Chitosan Molecules and Nanoparticles: Effects of Molecular Weight and Degree of Deacetylation. Pharmaceutical Research, 2004; 21: 344-353.
    40. Zhang J, Xia W, Liu P, Cheng Q, Tahi T, Gu W, Li B, Chitosan Modification and Pharmaceutical/Biomedical Applications. Marine Drugs, 2010; 8: 1962.
    41. Khoo CGL, Frantzich S, Rosinski A, Sjöström M, Hoogstraate J, Oral gingival delivery systems from chitosan blends with hydrophilic polymers. European Journal of Pharmaceutics and Biopharmaceutics, 2003; 55: 47-56.
    42. Jr OACM, Airoldi C, Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, 1999; 26: 119-128.
    43. Muzzarelli RAA, Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydrate Polymers, 2009; 77: 1-9.
    44. Kurdikar DL, Peppas NA, A kinetic study of diacrylate photopolymerizations. Polymer, 1994; 35: 1004-1011.
    45. Huang X, Brazel CS, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. Journal of Controlled Release, 2001; 73: 121-136.
    46. Bhise K, Dhumal R, Paradkar A, Kadam S, Effect of Drying Methods on Swelling, Erosion and Drug Release from Chitosan–Naproxen Sodium Complexes. American Association of Pharmaceutical Scientists, 2008; 9: 1-12.
    47. Lu Y, Park K, Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. International Journal of Pharmaceutics, 2013; 453: 198-214.
    48. Park JH, Kwon S, Lee M, Chung H, Kim JH, Kim YS, Park RW, Kim IS, Seo SB, Kwon IC, Jeong SY, Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: In vivo biodistribution and anti-tumor activity. Biomaterials, 2006; 27: 119-126.
    49. Yeh TH, Hsu LY, Tseng MT, Lee PL, Sonjae K, Ho YC, Sung HW, Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials, 2011; 32: 6164-6173.
    50. Wang X, Chen Y, Dahmani FZ, Yin L, Zhou J, Yao J, Amphiphilic carboxymethyl chitosan-quercetin conjugate with P-gp inhibitory properties for oral delivery of paclitaxel. Biomaterials, 2014; 35: 7654-7665.
    51. Paulos CM, Reddy JA, Leamon CP, Turk MJ, Low PS, Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Molecular Pharmacology, 2004; 66: 1406-1414.
    52. Chen HM, Yu CH, Lin HP, Yang H, Kuo RC, Kuo YS, Chiang CP, Successful treatment of an early invasive oral squamous cell carcinoma with topical 5-aminolevulinic acid-mediated photodynamic therapy. Journal of Dental Sciences, 2010; 5: 36-40.
    53. Sabharanjak S, Mayor S, Folate receptor endocytosis and trafficking. Advanced Drug Delivery Reviews, 2004; 56: 1099-1109.
    54. Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY, Nanomedicine therapeutic approaches to overcome cancer drug resistance. Advanced Drug Delivery Reviews, 2013; 65: 1866-1879.
    55. Park JH, Saravanakumar G, Kim K, Kwon IC, Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 2010; 62: 28-41.
    56. Lupberger J, Kreuzer KA, Baskaynak G, Peters UR, Coutre PL, Schmidt CA, Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR. Molecular and Cellular Probes, 2002; 16: 25-30.
    57. Almeida RD, Manadas BJ, Carvalho AP, Duarte CB, Intracellular signaling mechanisms in photodynamic therapy. Biochimica et Biophysica Acta- Reviews on Cancer, 2004; 1704: 59-86.
    58. Attili SK, Dawe R, Ibbotson S, A review of pain experienced during topical photodynamic therapy—Our experience in Dundee. Photodiagnosis and Photodynamic Therapy, 2011; 8: 53-57.
    59. Warren CB, Karai LJ, Vidimos A, Maytin EV, Pain associated with aminolevulinic acid-photodynamic therapy of skin disease. Journal of the American Academy of Dermatology, 2009; 61: 1033-1043.
    60. Almerie MQ, Gossedge G, Wright KE, Jayne DG, Photodynamic diagnosis for detection of peritoneal carcinomatosis. Journal of Surgical Research, 2015; 195: 175-187.
    61. Yakes FM, Houten BV, Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 1997; 94: 514-519.
    62. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA, Reactive oxygen species, cell signaling, and cell injury. Free Radical Biology and Medicine, 2000; 28: 1456-1462.
    63. Kessel D, Luo Y, Mitochondrial photodamage and PDT-induced apoptosis. Journal of Photochemistry and Photobiology B: Biology, 1998; 42: 89-95.
    64. Fan TJ, Han LH, Cong RS, Liang J, Caspase Family Proteases and Apoptosis. Acta Biochimica et Biophysica Sinica, 2005; 37: 719-727.
    65. Golstein P, Kroemer G, Cell death by necrosis: towards a molecular definition. Trends in Biochemical Sciences, 2007; 32: 37-43.
    66. Luo Y, Kessel D, Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochemistry and Photobiology, 1997; 66: 479-483.
    67. Noodt BB, Berg K, Stokke T, Peng Q, Nesland JM, Apoptosis and necrosis induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX. British Journal of Cancer, 1996; 74: 22-29.
    68. Alexiades-Armenakas M, Laser-mediated photodynamic therapy. Clinics in Dermatology, 2006; 24: 16-25.
    69. Mang TS, Lasers and light sources for PDT: past, present and future. Photodiagnosis and Photodynamic Therapy, 2004; 1: 43-48.
    70. Brancaleon L, Moseley H, Laser and Non-laser Light Sources for Photodynamic Therapy. Lasers in Medical Science, 2002; 17: 173-186.
    71. Curnow A, McLlroy BW, Postle-Hacon MJ, MacRobert AJ, Bown SG, Light Dose Fractionation to Enhance Photodynamic Therapy Using 5-Aminolevulinic Acid in the Normal Rat Colon. Photochemistry and Photobiology, 1999; 69: 71-76.
    72. Pieslinger A, Plaetzer K, Oberdanner CB, Berlanda J, Mair H, Krammer B, Kiesslich T, Characterization of a simple and homogeneous irradiation device based on light-emitting diodes: A possible low-cost supplement to conventional light sources for photodynamic treatment. Medical Laser Application, 2006; 21: 277-283.
    73. Pariser D, Loss R, Jarratt M, Abramovits W, Spencer J, Geronemus R, Philip Bailin, and Suzanne Bruce, Topical methyl-aminolevulinate photodynamic therapy using red light-emitting diode light for treatment of multiple actinic keratoses: A randomized, double-blind, placebo-controlled study. Journal of the American Academy of Dermatology, 2008; 59: 569-576.
    74. Robinson DJ, Bruijn HSD, Veen NVD, Stringer MR, Brown SB, Star WM, Fluorescence Photobleaching of ALA-induced Protoporphyrin IX during Photodynamic Therapy of Normal Hairless Mouse Skin: The Effect of Light Dose and Irradiance and the Resulting Biological Effect. Photochemistry and Photobiology, 1998; 67: 140-149.
    75. Langmack K, Mehta R, Twyman P, Norris P, Topical photodynamic therapy at low fluence rates – theory and practice. Journal of Photochemistry and Photobiology B: Biology, 2001; 60: 37-43.
    76. Svanberg K, Bendsoe N, Axelsson J, Andersson-Engels S, Svanberg S, Photodynamic therapy: superficial and interstitial illumination. Journal of Biomedical Optics, 2010; 15: 041502-041502-10.
    77. Lipson RL, Baldes EJ, Olsen AM, The use of a derivative of hematoporhyrin in tumor detection. Journal of the National Cancer Institute, 1961; 26: 1-11.
    78. Profio AE, Laser excited fluorescence of hematoporphyrin derivative for diagnosis of cancer. Quantum Electronics; 20: 1502-1507.
    79. Mandys V, Jirsová K, Jirsa M, Vrana J, Neurotoxicity of tetraphenylporphinesulfonate (TPPS4) and a hematoporphyrin derivative (Photosan) in organotypic cultures of chick embryonic dorsal root ganglia. Journal of Photochemistry and Photobiology B: Biology, 1998; 47: 197-201.
    80. Kubin RF, Fletcher AN, Fluorescence quantum yields of some rhodamine dyes. Journal of Luminescence, 1982; 27: 455-462.
    81. Tsiftsoglou AS, Tsamadou AI, Papadopoulou LC, Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. Pharmacology and Therapeutics, 2006; 111: 327-345.
    82. Quigley JG, Yang Z, Worthington MT, Phillips JD, Sabo KM, Sabath DE, Berg CL, Sassa S, Wood BL, Abkowitz JL, Identification of a Human Heme Exporter that Is Essential for Erythropoiesis. Cell Press, 2004; 118: 757-766.
    83. Hunter GA, Ferreira GC, Molecular enzymology of 5-Aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochimica et Biophysica Acta - Proteins and Proteomics, 2011; 1814: 1467-1473.
    84. Ryter SW, Tyrrell RM, The heme synthesis and degradation pathways: role in oxidant sensitivity: Heme oxygenase has both pro- and antioxidant properties. Free Radical Biology and Medicine, 2000; 28: 289-309.
    85. Kennedy JC, Pottier RH, New trends in photobiology: Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 1992; 14: 275-292.
    86. Batlle AMC, Porphyrins, porphyrias, cancer and photodynamic therapy — a model for carcinogenesis. Journal of Photochemistry and Photobiology B: Biology, 1993; 20: 5-22.
    87. Leibovici L, Schoenfeld N, Yehoshua HA, Mamet R, Rakowsky E, Shindel A, Atsmon A, Activity of porphobilinogen deaminase in peripheral blood mononuclear cells of patients with metastatic cancer. Cancer, 1988; 62: 2297-2300.
    88. Roozeboom MH, Aardoom MA, Nelemans PJ, Thissen MRTM, Kelleners-Smeets NWJ, Kuijpers DIM, Mosterd K, Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus surgical excision for nodular basal cell carcinoma: A randomized controlled trial with at least 5-year follow-up. Journal of the American Academy of Dermatology, 2013; 69: 280-287.
    89. Chen HM, Yu CH, Lin HP, Yang H, Kuo RC, Kuo RS, Chiang CP, Successful treatment of an early invasive oral squamous cell carcinoma with topical 5-aminolevulinic acid-mediated photodynamic therapy. Journal of Dental Sciences, 2010; 5: 36-40.
    90. Usmani N, Stables GI, Telfer NR, Stringer MR, Subungual Bowen's disease treated by topical aminolevulinic acid—photodynamic therapy. Journal of the American Academy of Dermatology, 2005; 53: S273-S276.
    91. Cai H, Wang XY, Sun P, Yang ZY, Tian R, Liu XY, Li Q, Qiao L, Liu W, Photodynamic therapy for facial actinic keratosis: A clinical and histological study in Chinese patients. Photodiagnosis and Photodynamic Therapy, 2013; 10: 260-265.
    92. Hino H, Murayama Y, Nakanishi M, Inoue K, Nakajima M, Otsuji E, 5-Aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes of different wavelengths in a mouse model of peritoneally disseminated gastric cancer. Journal of Surgical Research, 2013; 185: 119-126.
    93. Juzeniene A, Iani V, Moan J, Clearance mechanism of protoporphyrin IX from mouse skin after application of 5-aminolevulinic acid. Photodiagnosis and Photodynamic Therapy, 2013; 10: 538-545.
    94. Monteiro-Riviere NA, The structure and function of skin. 2010; Toxicology of the Skin.
    95. Bisland SK, Burch S, Photodynamic therapy of diseased bone. Photodiagnosis and Photodynamic Therapy, 2006; 3: 147-155.
    96. Zakaria S, Gamal-Eldeen AM, El-Daly SM, Saleh S, Synergistic apoptotic effect of Doxil® and aminolevulinic acid-based photodynamic therapy on human breast adenocarcinoma cells. Photodiagnosis and Photodynamic Therapy, 2014; 11: 227-238.
    97. Waidelich R, Beyer W, Knchel R, Stepp H, Baumgartner R, Schrder J, A. Hofstetter, and M. Kriegmair, Whole bladder photodynamic therapy with 5-aminolevulinic acid using a white light source. Urology, 2003; 61: p. 332-337.
    98. Zaak D, Sroka R, Höppner M, Khoder W, Reich O, Tritschler S, Muschte R, Knüchel R, Hofstetter A, Photodynamic Therapy by Means of 5-ALA Induced PPIX in Human Prostate Cancer – Preliminary Results. Medical Laser Application, 2003; 18: 91-95.
    99. Ascencio M, Delemer M, Farine MO, Jouve E, Collinet P, Mordon S, Evaluation of ALA-PDT of ovarian cancer in the Fisher 344 rat tumor model. Photodiagnosis and Photodynamic Therapy, 2007; 4: 254-260.
    100. Skivka LM, Gorobets OB, Kutsenok VV, Lozinsky MO, Borisevich AN, Fedorchuk AG, Kholin VV, Gamaleya NF, 5-aminolevulinic acid mediated photodynamic therapy of Lewis lung carcinoma: a role of tumor infiltration with different cells of immune system. Experimental Oncology, 2004; 26: 312-315.
    101. Zoepf T, Jakobs R, Rosenbaum A, Apel D, Arnold JC, Riemann JF, Photodynamic therapy with 5-aminolevulinic acid is not effective in bile duct cancer. Gastrointestinal Endoscopy, 2001; 54: 763-766.
    102. Au CM, Luk SK, Jackson CJ, Ng HK, Yow CMN, To SST , Differential effects of photofrin, 5-aminolevulinic acid and calphostin C on glioma cells. Journal of Photochemistry and Photobiology B: Biology, 2006; 85: 92-101.
    103. Yanase S, Nomura J, Matsumura Y, Nagata T, Fujii T, Tagawa T, Synergistic interaction of 5-aminolevulinic acid-based photodynamic therapy with simultaneous hyperthermia in an osteosarcoma tumor model. International Journal of Oncology, 2006; 29: 365-373.
    104. Moan J, Ma LW, Juzeniene A, Iani V, Juzenas P, Apricena F, Peng Q, Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters. Internal Journal of Cancer, 2003; 103: 132-5.
    105. Xu H, Liu, Mei, Yao, Wang, Wang, Li, Zhang, Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid–gold nanoparticle conjugates in K562 cells via singlet oxygen generation. International Journal of Nanomedicine, 2012: 5029.
    106. Oo MKK, Yang Y, Hu Y, Gomez M, Du H, Wang H, Gold Nanoparticle-Enhanced and Size-Dependent Generation of Reactive Oxygen Species from Protoporphyrin IX. American Chemical Society, 2012; 6: 1939-1947.
    107. Benito M, Martin V, Blanco MD, Teijon JM, Gomez C, Cooperative effect of 5-aminolevulinic acid and gold nanoparticles for photodynamic therapy of cancer. Journal of Pharamaceutical, 2013; 102: 2760-9.
    108. Mohammadi Z, Sazgarnia A, Soudmand ORS, Esmaily H, Sadeghi HR, An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis and Photodynamic Therapy, 2013; 10: 382-8.
    109. Qian J, Gharibi A, He S, Colloidal mesoporous silica nanoparticles with protoporphyrin IX encapsulated for photodynamic therapy. Journal of Biomedical Optics, 2009; 14: 014012-014012-6.
    110. Rossi LM, Silva PR, Vono LLR, Fernandes AU, Tada DB, Baptista MS, Protoporphyrin IX Nanoparticle Carrier: Preparation, Optical Properties, and Singlet Oxygen Generation. Langmuir, 2008; 24: 12534-12538.
    111. Xie G, Sun J, Zhong G, Shi L, Zhang D, Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Archives of Toxicology, 2010; 84: 183-190.
    112. Casas A, Battah S, Venosa GD, Dobbin P, Rodriguez L, Fukuda H, Batlle A, MacRobert AJ, Sustained and efficient porphyrin generation in vivo using dendrimer conjugates of 5-ALA for photodynamic therapy. Journal of Controlled Release, 2009; 135: 136-143.
    113. Chung CW, Chung KD, Jeong YI, Kang DH, 5-aminolevulinic acid-incorporated nanoparticles of methoxy poly(ethylene glycol)-chitosan copolymer for photodynamic therapy. International Journal of Nanomedicine, 2013; 8: 809-819.
    114. Silva CLD, Ciampo JOD, Rossetti FC, Bentley MVLB, Pierre MBR, Improved In vitro and In vivo Cutaneous Delivery of Protoporphyrin IX from PLGA-based Nanoparticles. Photochemistry and Photobiology, 2013; 89: 1176-1184.
    115. Shi L, Wang X, Zhao F, Luan H, Tu Q, Huang Z, Wang H, Wang H, In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. International Journal of Nanomedicine, 2013; 8: 2669-2676.
    116. Park SI, Lim JH, Kim JH, Yun HI, Kim CO, In vivo and in vitro investigation of photosensitizer-adsorbed superparamagnetic nanoparticles for photodynamic therapy. IEEE Transactions on Magnetics, 2005; 41: 4111-4113.
    117. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH, Toxicity and Tissue Distribution of Magnetic Nanoparticles in Mice. Toxicological Sciences, 2006; 89: 338-347.
    118. Filip A, Clichici S, Muresan A, Daicoviciu D, Tatomir C, Login C, Dreve S, Gherman C, Effects of PDT with 5-aminolevulinic acid and chitosan on Walker carcinosarcoma. Experimental Oncology, 2008; 30: 212-219.
    119. Doina D, Filip A, Clichici S, Suciu S, Muresan A, Decea N, Dreve S, Oxidative effects after photodynamic therapy in rats. Veterinary Medicine, 2008; 65: 364-369.
    120. Costa IDSM, Abranches RP, Garcia MTJ, Pierre MBR, Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment. Journal of Photochemistry and Photobiology B: Biology, 2014; 140: 266-275.
    121. Yang SJ, Lin FH, Tsai HM, Lin CF, Chin HC, Wong JM, Shieh MJ, Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials, 2011; 32: 2174-2182.
    122. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F, Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & future prospects. Advances in Colloid and Interface Science, 2012; 170: 2-27.
    123. Anton N, Benoit JP, Saulnier P, Design and production of nanoparticles formulated from nano-emulsion templates—A review. Journal of Controlled Release, 2008; 128: 185-199.
    124. Kaloti M, Bohidar HB, Kinetics of coacervation transition versus nanoparticle formation in chitosan–sodium tripolyphosphate solutions. Colloids and Surfaces B: Biointerfaces, 2010; 81: 165-173.
    125. Dong Y, Ng WK, Shen S, Kim S, Tan RBH, Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers. Carbohydrate Polymers, 2013; 94: 940-945.
    126. Iskandar F, Gradon L, Okuyama K, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science, 2003; 265: 296-303.
    127. Park CH, Chung NO, Lee J, Monodisperse red blood cell-like particles via consolidation of charged droplets. Journal of Colloid and Interface Science, 2011; 361: 423-428.
    128. Almería B, Deng W, Fahmy TM, Gomez A, Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. Journal of Colloid and Interface Science, 2010; 343: 125-133.
    129. Jaworek A, Sobczyk AT, Electrospraying route to nanotechnology: An overview. Journal of Electrostatics, 2008; 66: 197-219.
    130. Martin S, Perea A, Garcia-Ybarra PL, Castillo JL, Effect of the collector voltage on the stability of the cone-jet mode in electrohydrodynamic spraying. Journal of Aerosol Science, 2012; 46: 53-63.
    131. Park H, Kim K, Kim S, Effects of a guard plate on the characteristics of an electrospray in the cone-jet mode. Journal of Aerosol Science, 2004; 35: 1295-1312.
    132. Cao L, Luo J, Tu K, Wang LQ, Jiang H, Generation of nano-sized core–shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids and Surfaces B: Biointerfaces, 2014; 115: 212-218.
    133. Almería B, Fahmy TM, Gomez A, A multiplexed electrospray process for single-step synthesis of stabilized polymer particles for drug delivery. Journal of Controlled Release, 2011; 154: 203-210.
    134. Wu Y, Duong A, Lee LJ, Wyslouzil BE, Electrospray Production of Nanoparticles for Drug/Nucleic Acid Delivery. The Delivery of Nanoparticles, 2012: 223-242
    135. Yao J, Lim LK, Xie J, Hua J, Wang CH, Characterization of electrospraying process for polymeric particle fabrication. Journal of Aerosol Science, 2008; 39: 987-1002.
    136. Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N, Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Archives of Pharmacal Research, 2011; 34: 583-592.
    137. Ghayempour S, Mortazavi SM, Fabrication of micro–nanocapsules by a new electrospraying method using coaxial jets and examination of effective parameters on their production. Journal of Electrostatics, 2013; 71: 717-727.
    138. Bock N, Woodruff MA, Hutmacher DW, Dargaville TR, Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers, 2011; 3: 131-149.
    139. Speranza A, Ghadiri M, Newman M, Osseo LS, Ferrari G, Electro-spraying of a highly conductive and viscous liquid. Journal of Electrostatics, 2001; 51–52: 494-501.
    140. Ikeuchi M, Tane R, Ikuta K, Electrospray deposition and direct patterning of polylactic acid nanofibrous microcapsules for tissue engineering. Biomedical Microdevices, 2012; 14: 35-43.
    141. Arya N, Chakraborty S, Dube N, Katti DS, Electrospraying: A facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009; 88: 17-31.
    142. Chen DR, Pui DYH, Kaufman SL, Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. Journal of Aerosol Science, 1995; 26: 963-977.
    143. Lenggoro IW, Xia B, Okuyama K, Mora JFDL, Sizing of Colloidal Nanoparticles by Electrospray and Differential Mobility Analyzer Methods. Langmuir, 2002; 18: 4584-4591.
    144. Xie J, Lim LK, Phua Y, Hua J, Wang CH, Electrohydrodynamic atomization for biodegradable polymeric particle production. Journal of Colloid and Interface Science, 2006; 302: 103-112.
    145. Valo H, Peltonen L, Vehviläinen S, Karjalainen M, Kostiainen R, Laaksonen T, Hirvonen J, Electrospray Encapsulation of Hydrophilic and Hydrophobic Drugs in Poly(L-lactic acid) Nanoparticles. Small, 2009; 5: 1791-1798.
    146. Smith KL, Alexander MS, Stark JPW, The role of molar conductivity in electrospray cone-jet mode current scaling. Journal of Applied Physics, 2006; 100: 014905.
    147. Scholten E, Dhamankar H, Bromberg L, Rutledge GC, Hatton TA, Electrospray as a Tool for Drug Micro- and Nanoparticle Patterning. Langmuir, 2011; 27: 6683-6688.
    148. Jaworek A, Micro- and nanoparticle production by electrospraying. Powder Technology, 2007; 176: 18-35.
    149. Stanger J, Tucker N, Kirwan K, Staiger MP, Effect of Cancer Density on the Taylor Cone in Electrospinning. International Journal of Modern Physics B, 2009; 23: 1956-1961.
    150. Bodnar E, Kiselev P, Rosell J, Effect of relative humidity on the microstructure of electrospray deposited polymer thin films. Nanospain, 2011.
    151. Zhang S, Kawakami K, One-step preparation of chitosan solid nanoparticles by electrospray deposition. International Journal of Pharmaceutics, 2010; 397: 211-217.
    152. Xu Y, Hanna MA, Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: Synthesis and characterization. Journal of Microencapsulation, 2007; 24: 143-151.
    153. Thien DVH, Hsiao SW, Ho MH, Synthesis of Electrosprayed Chitosan Nanoparticles for Drug Sustained Release. Nano Life, 2012; 2: 1250003.
    154. Kasaai MR, Calculation of Mark–Houwink–Sakurada (MHS) Equation Viscometric Constants For Chitosan In Any Solvent–Temperature System Using Experimental Reported Viscometric Constants Data. Carbohydrate Polymers, 2007; 68: 477–488.
    155. Roberts GAF, Maghami GG, Evaluation of The Viscometric Constants For Chitosan. Die Makromolekulare Chemie, 1988; 189: 195-200.
    156. Miyazaki T, Yomota SOC, Determination of The Viscometric Constants For Chitosan And The Application of Universal Calibration Procedure In Its Gel Permeation Chromatography. Colloid Polymer Science, 1993; 271: 76-82.
    157. Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B, Jet break-up in electrohydrodynamic atomization in the cone-jet mode. Journal of Aerosol Science, 2000; 31: 65-95.
    158. Rosell-Llompart J, Mora JFDL, Generation of monodisperse droplets 0.3 to 4 μm in diameter from electrified cone-jets of highly conducting and viscous liquids. Journal of Aerosol Science, 1994; 25: 1093-1119.
    159. Fukuda T, Suzuki A, Liao Y, Suzuki K, Influence of spray conditions on droplet charge per unit volume for electrospray deposition. Journal of Aerosol Science, 2014; 77: 38-49.
    160. Stolnik S, Illum L, Davis SS, Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 2012; 64: 290-301.
    161. Storm G, Belliot SO, Daemen T, Lasic DD, Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 1995; 17: 31-48.
    162. Ferreira P, Almeida JF, Coelho JFJ, Gil MH, Photocrosslinkable polymers for biomedical applications. Biomedical Engineering-Frontiers and Challenges, 2011; 56-74
    163. Zhang X, Yang D, Nie J, Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. International Journal of Biological Macromolecules, 2008; 43: 456-462.
    164. Zhong C, Wu J, Reinhart-King CA, Chu CC, Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan–polyethylene glycol diacrylate hybrid hydrogels. Acta Biomaterialia, 2010; 6: 3908-3918.
    165. Velde KVD, Kiekens P, Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR. Carbohydrate Polymers, 2004; 58: 409-416.
    166. Brugnerotto J, Lizardi J, Goycoolea FM, Argüelles-Monal W, Desbrières J, Rinaudo M, An infrared investigation in relation with chitin and chitosan characterization. Polymer, 2001; 42: 3569-3580.
    167. Ma G, Zhang X, Han J, Song G, Nie J, Photo-polymeriable chitosan derivative prepared by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA). International Journal of Biological Macromolecules, 2009; 45: 499-503.
    168. Chen JY, Peng Q, Jodl HJ, Infrared spectral comparison of 5-aminolevulinic acid and its hexyl ester. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003; 59: 2571-2576.
    169. Pavinatto FJ, Pavinatto A, Caseli L, Santos DSD, Nobre TM, Zaniquelli MED, Oliveira ON, Interaction of Chitosan with Cell Membrane Models at the Air−Water Interface. Biomacromolecules, 2007; 8: 1633-1640.
    170. Azarmi S, Huang Y, Chen H, Quarrie SM, Abrams D, Roa W, Finlay WH, Miller GG, Löbenberg R, Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. Journal of Pharmacy and Pharmaceutical Sciences, 2006; 9: 124-132.
    171. Karu T, Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of Photochemistry and Photobiology B: Biology, 1999; 49: 1-17.
    172. Silva APRBD, Petri AD, Crippa GE, Stuani AS, Stuani AS, Ros AL, Stuani MBS, Effect of low-level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers in Medical Science, 2012; 27: 777-783.
    173. Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, Baghestanian M, Turhani D, Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wiener Klinische Wochenschrift, 2008; 120: 112-117.
    174. Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW, The effects of low level laser irradiation on osteoblastic cells. Clinical Orthodontics and Research, 2001; 4: 3-14.
    175. Ilic S,Leichliter S, Streeter J, Oron A, DeTaboada L, Oron U, Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain. Photomedicine and Laser Surgery, 2006; 24: 458.
    176. Hashmi JT, Huang YY, Sharma SK, Kurup DB, Taboada LD, Carroll JD, Hamblin MR, Effect of Pulsing in Low-Level Light Therapy. Lasers in Surgery and Medicine, 2010; 42: 450-466.
    177. Ueda Y, Shimizu N, Pulse irradiation of low-power laser stimulates bone nodule formation. Journal of Oral Science, 2001; 43: 55-60.
    178. Oliveira RFD, Oliveira DAAP, Monteiro W, Zangaro RA, Magini M, Soares CP, Comparison between the effect of low-level laser therapy and low-intensity pulsed ultrasonic irradiation in vitro. Photomedicine and Laser Surgery, 2008; 26: 6-9.
    179. Gebauer GP, Lin SS, Beam HA, Vieira P, Parsons JR, Low‐intensity pulsed ultrasound increases the fracture callus strength in diabetic BB Wistar rats but does not affect cellular proliferation. Journal of Orthopaedic Research, 2002; 20: 587-592.
    180. Miyamoto Y, Umebayashi Y, Nishisaka T, Comparison of phototoxicity mechanism between pulsed and continuous wave irradiation in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 1999; 53: 53-59.
    181. Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR, An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis and Photodynamic Therapy, 2013; 10: 382-388.
    182. Juzeniene A, Juzenas P, Ma LW, Iani V, Moan J, Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers in Medical Science, 2004; 19: 139-149.
    183. Tsai JC, Chiang CP, Chen HM, Huang SB, Wang CW, Lee MI, Hsu YC, Chen CT, Tsai T, Photodynamic Therapy of oral dysplasia with topical 5-aminolevulinic acid and light-emitting diode array. Lasers in Surgery and Medicine, 2004; 34: 18-24.
    184. Hua Z, Gibson SL, Foster TH, Hilf R, Effectiveness of δ-Aminolevulinic Acid-induced Protoporphyrin as a Photosensitizer for Photodynamic Therapy in Vivo. Cancer Research, 1995; 55: 1723-1731.
    185. Mansouri S, Cuie Y, Winnik F, Shi Q, Lavigne P, Benderdour M, Beaumont E, Fernandes JC, Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials, 2006; 27: 2060-2065.
    186. Yamada S, Ohara N, Hayashi Y, Mineralization of matrix vesicles isolated from a human osteosarcoma cell line in culture with water-soluble chitosan-containing medium. Journal of Biomedical Materials Research Part A, 2003; 66: 500-506.
    187. Diebold Y, Jarrín M, Sáez V, Carvalho ELS, Orea M, Calonge M, Seijo B, Alonso MJ, Ocular drug delivery by liposome–chitosan nanoparticle complexes (LCS-NP). Biomaterials, 2007; 28: 1553-1564.
    188. Soenen SJH, Illyes E, Vercauteren D, Braeckmans K, Majer Z, Smedt SCD, Cuyper MD, The role of nanoparticle concentration-dependent induction of cellular stress in the internalization of non-toxic cationic magnetoliposomes. Biomaterials, 2009; 30: 6803-6813.
    189. Campos AD, Diebold Y, Carvalho ES, Sánchez A, Alonso MJ, Chitosan Nanoparticles as New Ocular Drug Delivery Systems: in Vitro Stability, in Vivo Fate, and Cellular Toxicity. Pharmaceutical Research, 2004; 21: 803-810.
    190. Ho MH, Li CH, Hsiao SW, Hsiao SW, Thien DV, Preparation of Chitosan/Hydroxyapatite Substrates with Controllable Osteoconductivity Tracked by AFM. Annals of Biomedical Engineering, 2015; 43: 1024-1035.
    191. Hsiao SW, Thien DAH, Ho MH, Hsieh HJ, Li CH, Hung CH, Li HH, Interactions between chitosan and cells measured by AFM. Biomedical Materials, 2010; 5: 054117.
    192. Anitha A, Deepagan VG, Divya Rani VV, Menon D, Nair SV, Jayakumar R, Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydrate Polymers, 2011; 84: 1158-1164.
    193. Rossi VM, White BM, Newton MJ, Jacques SL, Baugher PJ. In vitro photodynamic therapy of MG-63 osteosarcoma cells mediated by aminolevulinic acid. Proceedings of the SPIE, 2011; 7886.
    194. Newton M, White B, Rossi V, Baugher PJ, Aminolevulinic acid-mediated photodynamic therapy induces cell death in human osteosarcoma cells. Cancer Research, 2012; 72: 3464.
    195. Shi SF, Jia JF, Guo XK, Zhao YP, Chen DS, Guo YY, Cheng T, Zhang XL, Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells. International Journal of Nanomedicine, 2012; 7: 5593-5602.
    196. Egli RJ, Schober M, Hempfing A, Ganz R, Hofstetter W, Leunig M, Sensitivity of osteoblasts, fibroblasts, bone marrow cells, and dendritic cells to 5-aminolevulinic acid based photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2007; 89: 70-77.
    197. Sigrid Karrer, Anja Kathrin Bosserhoff, Petra Weiderer, Michael Landthaler, and Rolf-Markus Szeimies, Influence of 5-Aminolevulinic Acid and Red Light on Collagen Metabolism of Human Dermal Fibroblasts. Journal of Investigative Dermatology, 2003; 120: 325-331.

    無法下載圖示 全文公開日期 2020/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE