簡易檢索 / 詳目顯示

研究生: 蕭盛文
Sheng-wen Hsiao
論文名稱: 藉由原子力顯微鏡分析細胞與材料之間的交互作用力
Analysis of cell-material interforce by using AFM
指導教授: 何明樺
Ming-hua Ho
口試委員: 趙振綱
Ching-Kong Chao
陳秀美
Hsiu-Mei Chen
賴君義
Juin-Yih Lai
張雍 
Yung Chang
王大銘
Da-Ming Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 203
中文關鍵詞: 原子力顯微鏡細胞勁度探針改質氫氧基磷灰石幾丁聚醣
外文關鍵詞: AFM, cell stiffness, AFM tip modification, HA, chitosan
相關次數: 點閱:343下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾丁聚醣被認為具有骨誘導性的材料,故被廣泛的應用於骨再生領域。本研究利用原子力顯微鏡,針對幾丁聚醣所具備的骨誘導性進行探討。利用改質原子力顯微鏡的探針,將幾丁聚醣微粒固定在探針尾端,並利用原子力顯微鏡量化該探針對四種具有不同分化能力的細胞之間的交互作用力,證實幾丁聚醣與骨母細胞間確實存在最大的交互作用力,其次為牙齦纖維母細胞,最後是大鼠骨瘤細胞與肌肉纖維母細胞。
    接著將幾丁聚醣製備成的支架浸泡在類人體體液中,製備成複合支架。並利用X光繞射儀、EDS監控不同類人體體液浸泡時間在支架表面沉積層的組成,並利用原子力顯微鏡量測不同類人體體液浸泡時間產生的沉積層與骨母細胞間的交互作用力,以得到不同類人體體液浸泡時間所產生的沉積層具備的骨誘導性。並與細胞實驗、動物實驗做比較,結果顯示浸泡於類人體體液14天後,不論在動物實驗或是細胞時間均可證實,支架表面沉積層內的氫氧基磷灰石,提升了該複合材料的骨誘導性。
    為了探討地形因子對細胞生理行為的影響,本研究利用二種能顯示成骨細胞分化的細胞,骨母細胞(osteoblasts)與類骨母細胞(osteogenic cells)培養於溝槽表面,針對細胞的排列性(alignment)、延展性(elongation)、貼附(attachment)、延伸(spreading)、細胞骨架分佈(cytoskeleton distribution)、細胞穿透深度(Penetration depth)、細胞勁度(cell stiffness)及細胞分化(cell differentiation)進行分析。
    實驗結果顯示,當溝槽寬度為1-6μm時,溝槽結構會阻礙骨母細胞貼附、延展和增生,而溝槽寬度大於為6μm時卻會促進骨母細胞的貼附、延展等行為。而類骨細胞與骨母細胞在細胞貼附、延伸等部分的表現則不同,類骨細胞在窄溝槽區間均的貼附與延伸行為均會被促進。此外,二種細胞的排列性與延展性均明顯隨著溝槽寬度減少而增加,這指出細胞在溝槽上具有接觸引導(contact guidance)的現象。藉由比較二種細胞的細胞勁度與細胞穿透深度的結果可以確定,細胞本身的機械性質主導了細胞在微溝槽區間的行為表現。本研究亦藉由同時比較細胞骨架免疫染色、原子力顯微鏡與鹼性磷酸酶所得的結果,發現在窄溝槽區間,細胞雙極結構所產生的偽足及肌動蛋白絲具有高度方向性會順著溝槽方向生長,進而提高細胞勁度,並促進細胞分化。


    Chitosan, a biocompatible material which has been widely used in the bone tissue engineering, is believed to be with high affinity to osteoblastic cells. This hypothesis was first proved in this research. By using AFM with the chitosan-modified cantilever, the quantitative evaluation of the interforce between chitosan and osteoblastic cells can be carried out. In the last part of this research, the cell attachment and spreading on chitosan substrates were analyzed to further clarify the interactions between cells and chitosan. The results showed that the force between chitosan and osteoblasts or osteoblastic cells was specifically high. Comparatively, the smallest adhesion force appeared between chitosan and muscle fibroblasts, the cell without any osteogenic properties. This result proved that there was a significant interaction existing between chitosan and bone cells, which agreed with the tendency in cell attachment and spreading. The technique developed in this research revealed the adhesion force between chitosan and cells directly and quantitatively. The specific interaction exists between chitosan and osteoblasts which was also first testified in this study.
    Chitosan substrates were also treated by simulated body fluid (SBF) for different time to fabricate scaffolds with different osteoconductivity. XRD and EDS were used to identify crystallinity and Ca/P ratios of the biomimetic layer from SBF deposition. The properties of deposition have been proved to be controlled by the time for SBF treatment. In vitro and in vivo tests revealed that with the SBF treatment longer than 14 days, scaffold showed excellent biocompatibility and osteoconductivity. AFM was used in liquid system to quantify the interforce between the biomimetic layer on scaffolds and cells. The results supported that the interforce between cells and scaffolds dominant in the osteoconductivity of scaffolds.
    To understand how the topographical cues influence cell behaviors, the microgrooved surfaces were used to culture osteoblasts and osteogenic cells in this study. Osteoblasts were cultured on the grooved surfaces , and then cell alignment, elongation, attachment, spreading, cytoskeleton distribution, penetration depth, stiffness and differentiation were analyzed. The cell alignment and elongation were significantly guided by microgroove patterns and enhanced with the decrease in the groove width. In addition, the organization of actin filaments was visualized by the cytoskeleton immunostaining. On the grooved surface, cells adopted bipolar morphology with few lamellipodia and expressed highly orientated actin filaments along the groove direction. The density as well as orientation degree of actin filaments would be increased with the narrowing of groove width. On the other hand, cells exhibited meshwork of peripheral actin filament with many lamellipodia when they were cultured on flat surface. The attachment, spreading and proliferation of osteoblasts were retarded by the small groove patterns (1-6 m) despite this structure could offer a larger specific area. In contrast, topography with wide grooves promoted the attachment, spreading, and proliferation of osteoblasts. The outcomes were different for osteosarcoma cells where the cell attachment, spreading and proliferation were all promoted by narrow grooves. According to the analysis of cell stiffness and penetration depth, the influences of grooves on cell behaviors would be determined by the mechanical properties of cells. Furthermore, ALPase expression of osteoblasts was notably enhanced by the reduction of groove width. The narrow groove patterns are able to promote osteoblasts differentiation. The results suggested that the cell stiffness would greatly induce the osteogenic differentiation.

    摘要 I ABSTRACT III 致 謝 VI 目錄 VIII 圖目錄 XV 表目錄 XXIII 方程式目錄 XXIV 中英對照表 XXV 第一章 緒論 1 1.1細胞力學 1 1.2原子力顯微鏡在細胞力學的應用 1 1.3研究動機 1 第二章 文獻回顧 3 2.1組織工程 3 2.1.1組織工程 3 2.1.2組織工程三要素 4 2.1.3骨重塑作用 5 2.1.4骨母細胞分化標記 6 2.1.5骨組織工程材料的發展 8 2.1.6骨組織工程支架 10 2.2細胞力學的重要性 12 2.2.1細胞骨架與細胞勁度 13 2.2.2細胞的附著性 17 2.3細胞力學的量測技術 21 2.3.1陣列微柱 22 2.3.2磁力扭轉細胞儀 23 2.3.3細胞脫附儀 24 2.3.4 平行板流動槽 25 2.3.5原子力顯微鏡 26 2.4 原子力顯微鏡量測技術 27 2.4.1原子力顯微鏡與其它顯微鏡的比較 27 2.4.2原子力顯微鏡的簡介 28 2.4.3 原子力顯微鏡的硬體架構 29 2.4.4原子力顯微鏡的原理 30 2.4.5原子力顯微鏡的量測方式 32 2.4.6力-距離曲線 35 2.4.7 原子力顯微鏡在生物材料方面的應用 40 第三章 實驗材料與方法 44 3.1實驗藥品 44 3.2 實驗套組 46 3.3實驗設備 47 3.4 實驗儀器 49 3.4.1基材表面靜態接觸角之量測 49 3.4.2通過掃描式電子顯微鏡觀察表面形態 50 3.4.3電顯觀察前之細胞樣本處理方式 50 3.4.4細胞骨架染色 (Cytoskeleton immunostaining) 51 3.4.5鹼性磷酸酶(ALP-ase)定性染色 52 3.4.6利用原子力顯微鏡量測骨母細胞與基材表面的貼附力 53 3.4.7在氣相中量測骨母細胞與微溝槽結構的PDMS之間的貼附力 55 3.4.8利用原子力顯微鏡量測細胞的楊氏系數 57 3.5 實驗步驟 59 3.5.1幾丁聚醣/動物明膠/氫氧基磷灰石緻密膜材及多孔支架製備 59 3.5.2幾丁聚醣/動物明膠/氫氧基磷灰石 緻密膜材製備 59 3.5.3 幾丁聚醣/動物明膠/氫氧基磷灰石 多孔支架製備 60 3.5.4 PDMS基材製備 60 3.5.5 體外實驗分析方法 61 3.5.6 動物實驗步驟 62 3.5.7 組織染色及免疫組織染色 63 3.5.8 組織學染色法 63 3.5.9 鹼性磷酸酶染色(ALP Staining) 64 3.5.10 骨特異蛋白基因表現之組織免疫學染色法 66 3.5.11 連骨質免疫染色法(Osteopotin Staining,OPN Staining) 68 3.5.12 骨涎蛋白免疫染色(Bone Sialoprotein Staining,BSP Staining) 70 3.5.13細胞培養 71 3.5.14 細胞貼附與細胞增生實驗 72 第四章 探針改質程序的發展 73 4.1探針的選擇對樣品表面型態真實性的影響 73 4.2探針改質的重要性與歷史沿革 74 4.3探針改質技術的開發 77 4.3.1以表面改質法修飾探針針尖 77 4.3.2以微粒材料修飾針尖 81 4.3.3以細胞修飾針尖 86 4.4總結 90 第五章 利用原子力顯微鏡量測幾丁聚醣與細胞間的交互作用力 91 5.1幾丁聚醣在生醫領域的應用 91 5.2材料鑑定 94 5.3附著力分析 96 5.4體外實驗-細胞貼附-細胞延伸 103 5.5總結 106 第六章 浸泡時間對類人體體液仿生幾丁聚醣膜材的影響 107 6.1幾丁聚醣與氫氧基磷灰石 107 6.2材料鑑定 108 6.3 細胞實驗 113 6.4 動物實驗 120 6.5 材料與細胞之間的交互作用力 124 6.6總結 128 第七章 藉由地形因子影響支架與細胞間的交互作用力與細胞勁度 129 7.1地形因子 129 7.2材料表面鑑定 134 7.3細胞型態觀察 137 7.4 細胞貼附行為 140 7.5骨母細胞培養在聚二甲基矽氧烷基材的肌動蛋白骨架染色 141 7.6 骨母細胞培養在微溝槽表面結構的穿透伸度 144 7.7親疏水與微溝槽之材料表面對骨母細胞的貼附力影響 147 7.8細胞延展面積 153 7.9 細胞延伸度 154 7.10細胞的排列方式 156 7.11骨母細胞培養在聚二甲基矽氧烷基材的鹼性磷酸酶之定性染色 158 7.12親疏水表面與微溝槽結構之材料對骨母細胞之細胞勁度的影響 160 7.13總結 171 第八章 結論 172 文獻 174 附錄 195 附錄A Non-Hertzian model 195 附錄B細胞力學性質分析 196 附錄C分離細胞與基材的功 198 附錄D 利用Image-J量測細胞面積 200 附錄E利用Image-J量測細胞延伸度 202 履歷 XXXII

    Digital Instruments Veeco Metrology Group (1999). AFM/LFM Instruction Manual.
    Abe, Y., Kokubo, T. and Yamamuro, T. (1990). "Apatite coating on ceramics, metals and polymers utilizing a biological process." Journal of Materials Science: Materials in Medicine 1(4): 233-238.
    Amaral, I. F., Granja, P. L. and Barbosa, M. A. (2004). "In vitro Mineralisation of Chitosan Membranes Carrying Phosphate Functionalities " Key Engineering Materials 254-256: 577-580.
    Amiji, M. M. (1997). "Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis." Journal of Biomaterials Science, Polymer Edition 8(4): 281-298.
    Andweson, J. M. (1988). "Inflammatory Response to Implants." ASAIO Journal 34(2): 101-107.
    Annunziato, L., Amoroso, S., Pannaccione, A., Cataldi, M., Pignataro, G., D'Alessio, A., Sirabella, R., Secondo, A., Sibaud, L. and Di Renzo, G. F. (2003). "Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions." Toxicology Letters 139(2–3): 125-133.
    Anselme, K. (2000). "Osteoblast adhesion on biomaterials." Biomaterials 21(7): 667-681.
    Aoki, H. (1991). Science and Medical Applications of Hydroxyapatite. Tokyo, JAAS.
    Atance, J., Yost, M. J. and Carver, W. (2004). "Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch." Journal of Cellular Physiology 200(3): 377-386.
    Athanasiou, K. A., Thoma, B. S., Lanctot, D. R., Shin, D., Agrawal, C. M. and LeBaron, R. G. (1999). "Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell." Biomaterials 20(23–24): 2405-2415.
    Barrere, F., Snel, M. M. E., van Blitterswijk, C. A., de Groot, K. and Layrolle, P. (2004). "Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants." Biomaterials 25(14): 2901-2910.
    Barrere, F., van Blitterswijk, C. A., de Grook, K. and Layrolle, P. (2002). "Nucleation of biomimetic Ca-P coating on ti6A14V from a SBFx5 solution: Influence of magnesium." Biomaterials 23: 2211-2220.
    Baskar, D., Balu, R. and Kumar, T. S. S. (2011). "Mineralization of pristine chitosan film through biomimetic process." International Journal of Biological Macromolecules 49(3): 385-389.
    Benjamin, F., F.C., F. and Lataillade, J. J. (2009). "Multipotent progenitor cells in gingival connective tissue." Tissue Eng Part A 19(9): 1-24.
    Benoit, M., Gabriel, D., Gerisch, G. and Gaub, H. E. (2000). "Discrete interactions in cell adhesion measured by single-molecule force spectroscopy." Nat Cell Biol 2(6): 313-317.
    Berridge, M. J. (2002). "The endoplasmic reticulum: a multifunctional signaling organelle." Cell Calcium 32(5–6): 235-249.
    Berridge, M. J., Bootman, M. D. and Lipp, P. (1998). "Calcium - a life and death signal." Nature 395(6703): 645-648.
    Bershadsky, A. D., Balaban, N. Q. and Geiger, B. (2003). "Adhesion-dependent cell mechanosensitivity." Annu. Rev. Cell Dev. Biol. 19: 677-695.

    Biagini, G., Bertani, A., Muzzarelli, R., Damadei, A., Di Benedetto, G., Belligolli, A., Riccotti, G., Zucchini, C. and Rizzoli, C. (1991). "Wound management with N-carboxybutyl chitosan." Biomaterials 12(3): 281-286.
    Biggs, M. J. P., Richards, R. G., McFarlane, S., Wilkinson, C. D. W., Oreffo, R. O. C. and Dalby, M. J. (2008). "Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves." Journal of The Royal Society Interface 5(27): 1231-1242.
    Bootman, M. D., Berridge, M. J. and Roderick, H. L. (2002). "Calcium Signalling: More Messengers, More Channels, More Complexity." Current Biology 12(16): R563-R565.
    Bostman, O. M. (1991). "Absorbable Implants for the Fixation of Fractures." Journal Bone Joint Surg Am 73(1): 148-153.
    Brammer, K. S., Choi, C., Frandsen, C. J., Oh, S. and Jin, S. (2011). "Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation." Acta Biomaterialia 7(2): 683-690.
    Brine, C. J., P.A., S. and J.P., Z. (1992). advances in chitin and chitosan. London, Elsevier Applied Science.
    Bruinink, A. and Wintermantel, E. (2001). "Grooves affect primary bone marrow but not osteoblastic MC3T3-E1 cell cultures." Biomaterials 22(18): 2465-2473.
    Bumgardner, J. D., Wiser, R., Gerard, P. D., Bergin, P., Chestnutt, B., Marini, M., Ramsey, V., Elder, S. H. and Gilbert, J. A. (2003). "Chitosan: potential use as a bioactive coating for orthopaedic and craniofacial/dental implants." Journal of Biomaterials Science, Polymer Edition 14(5): 423-438.
    Burton, K. and Taylor, D. L. (1997). "Traction forces of cytokinesis measured with optically modified elastic substrata." Nature 385(6615): 450-454.
    Butt, H.-J., Cappella, B. and Kappl, M. (2005). "Force measurements with the atomic force microscope: Technique, interpretation and applications." Surface Science Reports 59(1–6): 1-152.
    Chang, B.-S., Lee, gt, inits, C.K, fnm, Choon, K., Hong, K.-S., Youn, H.-J., Ryu, H.-S., Chung, S.-S. and Park, K.-W. (2000). "Osteoconduction at porous hydroxyapatite with various pore configurations." Biomaterials 21(12): 1291-1298.
    Charras, G. T., Lehenkari, P. P. and Horton, M. A. (2001). "Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions." Ultramicroscopy 86(1–2): 85-95.
    Chen, P. H., Hwang, Y. H., Kuo, T. Y., Liu, F. H., Lai, J. Y. and Hsieh, H. J. (2007). " Improvement in the properties of chitosan membranes using natural organic acid solutions as solvents for chitosan dissolution " J. Med. Biol. Eng. 27: 23-28.
    Chintala, S. K., Gokaslan, Z. L., Go, Y., Sawaya, R., Nicolson, G. L. and Rao, J. S. (1996). "Role of extracellular matrix proteins in regulation of human glioma cell invasion in vitro." Clinical and Experimental Metastasis 14(4): 358-366.
    Choi, B.-K., Kim, K.-Y., Yoo, Y.-J., Oh, S.-J., Choi, J.-H. and Kim, C.-Y. (2001). "In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans." International Journal of Antimicrobial Agents 18(6): 553-557.
    Clark, P., Connolly, P., Curtis, A. S. G., Dow, J. A. T. and Wilkinson, C. D. W. (1987). "Topographical control of cell behaviour: I. Simple step cues." Development 99(3): 439-488.
    Clark, P., Connolly, P., Curtis, A. S. G., Dow, J. A. T. and Wilkinson, C. D. W. (1990). "Topographical control of cell behaviour: II. multiple grooved substrata." Development 108(4): 635-644.
    Clark, P., Connolly, P., Curtis, A. S. G., Dow, J. A. T. and Wilkinson, C. D. W. (1991). "Cell guidance by ultrafine topography in vitro." Journal of Cell Science 99(1): 73-77.
    Costa, K. D. (2004). "Single-cell elastography: Probing for disease with the atomic force microscope." Disease Markers 19(2-3): 139-154.
    Costa, K. D. and Yin, F. C. P. (1999). "Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy." Journal of Biomechanical Engineering 121(5): 462-471.
    Cross, S. E., Kreth, J., Zhu, L., Sullivan, R., Shi, W., Qi, F. and Gimzewski, J. K. (2007). "Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions." Microbiology 153(9): 3124-3132.
    Docheva, D., Padula, D., Popov, C., Mutschler, W., Clausen-Schaumann, H. and Schieker, M. (2008a). "Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy." Journal of Cellular and Molecular Medicine 12(2): 537-552.
    Docheva, D., Padula, D., Popov, C., Mutschler, W., Clausen-Schaumann, H. and Schieker, M. (2008b). "Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy: Stem Cells." Journal of Cellular and Molecular Medicine 12(2): 537-552.
    Drevet, R., Velard, F., Potiron, S., Laurent-Maquin, D. and Benhayoune, H. (2011). "In vitro dissolution and corrosion study of calcium phosphate coatings elaborated by pulsed electrodeposition current on Ti6Al4V substrate." Journal of Materials Science: Materials in Medicine 22(4): 753-761.
    Ducheyne, P., Radin, S. and King, L. (1993). "The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution." J Biomed Mater Res. 27(1): 25-34.
    Eisenbarth, E., Meyle, J., Nachtigall, W. and Breme, J. (1996). "Influence of the surface structure of titanium materials on the adhesion of fibroblasts." Biomaterials 17(14): 1399-1403.
    Eliaz, N. and Eliyahu, M. (2007). "Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force " J. Biomed. Mater. Res. A. 80: 621-634.
    Evans, E. and Ritchie, K. (1997). "Dynamic strength of molecular adhesion bonds." Biophys J 72: 1541-1555.
    Fakhry, A., Schneider, G. B., Zaharias, R. and Şenel, S. (2004). "Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts." Biomaterials 25(11): 2075-2079.
    Firkowska, I., Godehardt, E. and Giersig, M. (2008). "Interaction Between Human Osteoblast Cells and Inorganic Two-Dimensional Scaffolds Based on Multiwalled Carbon Nanotubes: A Quantitative AFM Study." Advanced Functional Materials 18(23): 3765-3771.
    Fisher, L. W., Torchia, D. A., Fohr, B., Young, M. F. and Fedarko, N. S. (2001). "Flexible Structures of SIBLING Proteins, Bone Sialoprotein, and Osteopontin." Biochemical and Biophysical Research Communications 280(2): 460-465.
    Fletcher, D. A. and Mullins, R. D. (2010). "Cell mechanics and the cytoskeleton." Nature 463(7280): 485-492.
    Fraga, A. F., Filho, E. d. A., Rigo, E. C. d. S. and Boschi, A. O. (2011). "Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes." Applied Surface Science 257(9): 3888-3892.
    Fransiska, S. and Ho, M. H. (2008). The effects of surface micro-pattern on osteoblastic cell's behavior. Chemical Engineering. Taipei, NTUST.

    Franz, C. M., Taubenberger, A., Puech, P.-H. and Muller, D. J. (2007). "Studying Integrin-Mediated Cell Adhesion at the Single-Molecule Level Using AFM Force Spectroscopy." Sci. STKE 406: 15.
    Frisbie, C. D., Rozsnyai, L. F., Noy, A., Wrighton, M. S. and Lieber, C. M. (1994). "Functional Group Imaging by Chemical Force Microscopy." Science 265(5181): 2071-2074.
    Frixione, E. (2000). "Recurring views on the structure and function of the cytoskeleton: A 300-Year Epic." Cell Motility and the Cytoskeleton 46(2): 73-94.
    Fujimura, K., Bessho, K., Kusumoto, K., Ogawa, Y. and Iizuka, T. (1995). "Experimental Studies on Bone Inducing Activity of Composites of Atelopeptide Type I Collagen as a Carrier for Ectopic Osteoinduction by rhBMP-2." Biochemical and Biophysical Research Communications 208(1): 316-322.
    Fulton, A. (1984). The Cytoskeleton: Cellular Architecture and Choreography, Chapman and Hall.
    Gerecht, S., Bettinger, C. J., Zhang, Z., Borenstein, J. T., Vunjak-Novakovic, G. and Langer, R. (2007). "The effect of actin disrupting agents on contact guidance of human embryonic stem cells." Biomaterials 28(28): 4068-4077.
    Gilbert, M., Shaw, W. J., Long, J. R., Nelson, K., Drobny, G. P., Giachelli, C. M. and Stayton, P. S. (2000). "Chimeric Peptides of Statherin and Osteopontin That Bind Hydroxyapatite and Mediate Cell Adhesion." Journal of Biological Chemistry 275(21): 16213-16218.
    Goodwin, A. E. and Pauli, B. U. (1995). "A new adhesion assay using buoyancy to remove non-adherent cells." Journal of Immunological Methods 187(2): 213-219.
    Hamilton, D. W., Riehle, M. O., Monaghan, W. and Curtis, A. S. G. (2005). "Articular chondrocyte passage number: Influence on adhesion, migration, cytoskeletal organisation and phenotype in response to nano- and micro-metric topography." Cell Biology International 29(6): 408-421.
    Harris, A., Wild, P. and Stopak, D. (1980). "Silicone rubber substrata: a new wrinkle in the study of cell locomotion." Science 208(4440): 177-179.
    Harrison, R. G. (1911). "On the stereotropism of embryonic cells." Science 34: 279-281.
    Hay, E. D. (1977). Interaction between the cell surface and extracellular matrix in corneal development: Cell and Tissue Interactions. New York, Raven Press.
    Hayashi, K. (2006). Tensile Properties and Local Stiffness of Cells
    Mechanics of Biological Tissue. G. A. Holzapfel and R. W. Ogden, Springer Berlin Heidelberg: 137-152.
    Helenius, J., Heisenberg, C.-P., Gaub, H. E. and Muller, D. J. (2008). "Single-cell force spectroscopy." Journal of Cell Science 121(11): 1785-1791.
    Hendricks, D. (2010). Fundamentals of Water Treatment Unit Processes: Physical, Chemical, and biological, CRC Press.
    Hertz, H. J. (1882). "Jreine Angew Mathematic." 92: 156-171.
    Hesse, C., Hengst, M., Kleeberg, R. and Götze, J. (2008). "Influence of experimental parameters on spatial phase distribution in as-sprayed and incubated hydroxyapatite coatings." Journal of Materials Science: Materials in Medicine 19(10): 3235-3241.
    Ho, M.-H., Hsiao, S.-W., Hsieh, C.-C. and Doan, V. H. T. (2010). "Fabrication of asymmetric chitosan GTR membranes for the treatment of periodontal disease." Carbohydrate Polymers 79(4): 955-963.

    Hoben, G., Huang, W., Thoma, B., LeBaron, R. and Athanasiou, K. (2002). "Quantification of Varying Adhesion Levels in Chondrocytes Using the Cytodetacher." Annals of Biomedical Engineering 30(5): 703-712.
    Hoffmann, S., Hosseini, B. H., Hecker, M., Louban, I., Bulbuc, N., Garbi, N., Wabnitz, G. H., Samstag, Y., Spatz, J. P. and Hämmerling, G. J. (2011). "Single cell force spectroscopy of T cells recognizing a myelin-derived peptide on antigen presenting cells." Immunology Letters 136(1): 13-20.
    Hsiao, S. W., Doan, V. H. T., Ho, M. H., Hsieh, H. J., Li, C. H., Hung, C. H. and Li, H. H. (2010). "Interactions between chitosan and cells measured by AFM." Biomed. Mater. 5: 054117.
    Hsieh, C.-Y., Tsai, S.-P., Ho, M.-H., Wang, D.-M., Liu, C.-E., Hsieh, C.-H., Tseng, H.-C. and Hsieh, H.-J. (2007). "Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds." Carbohydrate Polymers 67(1): 124-132.
    Hsu, S., Huang, G., Lin, S. Y. F., Feng, F., Ho, T. and Liao, Y. (2012). "Enhanced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membranes." Tissue Eng Part A 18(1-2): 67-79.
    Huu Tan, N. and Ho, M. H. (2011). The influences of PDMS topography and hydrophilicity on DPSCs and UMR. Chemical Engineering. Taipei, NTUST.
    Imatani, T., Kato, T., Okuda, K. and Yamashita, Y. (2004). "Histatin 5 inhibits apoptosis in human gingival fibroblasts induced by porphyromonas gingivalis cell-surface polysaccharide." Eur. J. Med. Res. 9: 528-532.
    Ingber, D. E. (2003). "Tensegrity I. Cell structure and hierarchical systems biology." Journal of Cell Science 116(7): 1157-1173.

    Ismail, F., Rohanizadeh, R., Atwa, S., Mason, R., Ruys, A., Martin, P. and Bendavid, A. (2007). "The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells." Journal of Materials Science: Materials in Medicine 18(5): 705-714.
    Jia, Z., shen, D. and Xu, W. (2001). "Synthesis and antibacterial activities of quaternary ammonium salt of chitosan." Carbohydrate Research 333(1): 1-6.
    Kim, M. S., Kim, A. Y., Jang, K. J., Kim, J. H., Kim, J. B. and Suh, K. Y. (2011). "Effect of nanogroove geometry on adipogenic differentiation." Nanotechnology 22(49).
    Kokubo, T. (1991). "Bioactive glass ceramics: properties and applications." Biomaterials 12(2): 155-163.
    Kokubo, T. and Takadama, H. (2006). "How useful is SBF in predicting in vivo bone bioactivity?" Biomaterials 27(15): 2907-2915.
    Komori, T. and Kishimoto, T. (1998). "Cbfa1 in bone developmen, Current Opinion in Genetics and Development,." 4: 494-499.
    Komori, T. and Kishimoto, T. (1998). "Cbfa1 in bone development." Current Opinion in Genetics & Development 8(4): 494-499.
    Kong, L., Gao, Y., Lu, G., Gong, Y., Zhao, N. and Zhang, X. (2006). "A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering." European Polymer Journal 42(12): 3171-3179.
    Kong, Y.-M., Kim, H.-E. and Kim, H.-W. (2008). "Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite–tricalcium phosphate biphasic ceramics." Journal of Biomedical Materials Research Part B: Applied Biomaterials 84B(2): 334-339.

    Konno, T., Kawazoe, N., Chen, G. and Ito, Y. (2006). "Culture of mouse embryonic stem cells on photoimmobilized polymers." Journal of Bioscience and Bioengineering 102(4): 304-310.
    Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A. and Zhdanov, R. I. (2007). "Atomic force microscopy probing of cell elasticity." Micron 38(8): 824-833.
    Lahiji, A., Sohrabi, A., Hungerford, D. S. and Frondoza, C. G. (2000). "Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes." Journal of Biomedical Materials Research 51(4): 586-595.
    Lamatic, I. E., Bercea, M. and Morariu, S. (2009). "INTRINSIC VISCOSITY OF AQUEOUS POLYVINYL ALCOHOL SOLUTIONS." Revue Roumaine de Chimie, 54(11-12): 981-986.
    Lego, B., Skene, W. G. and Giasson, S. (2007). "Unprecedented Covalently Attached ATRP Initiator onto OH-Functionalized Mica Surfaces." Langmuir 24(2): 379-382.
    Lehenkari, P. P. and Horton, M. A. (1999). "Single Integrin Molecule Adhesion Forces in Intact Cells Measured by Atomic Force Microscopy." Biochemical and Biophysical Research Communications 259(3): 645-650.
    Lekka, M. and Laidler, P. (2009). "Applicability of AFM in cancer detection." Nat Nano 4(2): 72-72.
    Li, C.-L., Tu, C.-Y., Huang, J.-S., Liu, Y.-L., Lee, K.-R. and Lai, J.-Y. (2006). "Surface modification and adhesion improvement of expanded poly(tetrafluoroethylene) films by plasma graft polymerization." Surface and Coatings Technology 201(1–2): 63-72.

    Li, M., Kondo, T., Zhao, Q.-L., Li, F.-J., Tanabe, K., Arai, Y., Zhou, Z.-C. and Kasuya, M. (2000). "Apoptosis Induced by Cadmium in Human Lymphoma U937 Cells through Ca2+-calpain and Caspase-Mitochondria- dependent Pathways." Journal of Biological Chemistry 275(50): 39702-39709.
    Lin, H.-R. and Yeh, Y.-J. (2004). "Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: Preparation, characterization, and in vitro studies." Journal of Biomedical Materials Research Part B: Applied Biomaterials 71B(1): 52-65.
    Lower, S. K., Tadanier, C. J. and Hochella Jr, M. F. (2000). "Measuring interfacial and adhesion forces between bacteria and mineral surfaces with biological force microscopy." Geochimica et Cosmochimica Acta 64(18): 3133-3139.
    Lu, X. and Leng, Y. (2003). "Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata." Journal of Biomedical Materials Research - Part A 66(3): 677-687.
    Ludwig, T., Kirmse, R., Poole, K. and Schwarz, U. (2008). "Probing cellular microenvironments and tissue remodeling by atomic force microscopy." Pflügers Archiv European Journal of Physiology 456(1): 29-49.
    Lynch, S. E., Marx, R. E. and Genco, R. J. (1999). Tissue engineering: applications in maxillofacial surgery and periodontics, Quintessence Pub. Co.
    Méndez-Vilas, A., Gallardo-Moreno, A. M., Calzado-Montero, R. and González-Martín, M. L. (2008). "AFM probing in aqueous environment of Staphylococcus epidermidis cells naturally immobilised on glass: Physico-chemistry behind the successful immobilisation." Colloids and Surfaces B: Biointerfaces 63(1): 101-109.

    Mahara, A. and Yamaoka, T. (2010). "Continuous separation of cells of high osteoblastic differentiation potential from mesenchymal stem cells on an antibody-immobilized column." Biomaterials 31(14): 4231-4237.
    Manjubala, I., Woesz, A., Pilz, C., Rumpler, M., Fratzl-Zelman, N. and Roschger, P. (2005). "Biomimetic mineral-organic composite scaffolds with controlled internal architecture." J. Mater. Sci. Mater. Med. 16: 1111-1119.
    Mathur, A., Reichert, W. and Truskey, G. (2007). "Flow and High Affinity Binding Affect the Elastic Modulus of the Nucleus, Cell Body and the Stress Fibers of Endothelial Cells." Annals of Biomedical Engineering 35(7): 1120-1130.
    Matyka, K., Matyka, M., Mróz, I., Zalewska-Rejdak, J. and Ciszewski, A. (2007). "An AFM study on mechanical properties of native and dimethyl suberimidate cross-linked pericardium tissue." Journal of Molecular Recognition 20(6): 524-530.
    Merkel, R., Nassoy, P., Leung, A., Ritchie, K. and Evans, E. (1999). "Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy." Nature 397(6714): 50-53.
    Morris, V. J., Kirby, A. R. and Gunning, A. P. (1999). Atomic force microscopy for biologists, Imperial College Press.
    Murphy, W., Kohn, D. and Mooney, D. (1999). "Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro." Journal of Biomedical Materials Research 50(1): 50-58.
    Naguyen, H. T. and Ho, M. H. (2011). The influences of PDMS topography and hydrophilicity on DPSCs and UMR. Chemical Engineering. Taipei, NTUST.
    Nakamura, T., Yamamuro, T., Higashi, S., Kokubo, T. and Itoo, S. (1985). "A new glass-ceramic for bone replacement: Evaluation of its bonding to bone tissue." Journal of Biomedical Materials Research 19(6): 685-698.
    Naruse, K. (2005). Application of soft lithography to mechanobiology. Micro-NanoMechatronics and Human Science, 2005 IEEE International Symposium on.
    Noy, A., Vezenov, D. V. and Lieber, C. M. (1997). "Chemical force microscopy." Annu Rev Mater Sci 27: 381-421.
    Nuril, M. and Ho, M. H. (2009). The effects of micro-grooves on gingival fibroblasts and osteoblast-like cells. Chemical Engineering. Taipei, NTUST.
    Oliveira, G., Ferraz, M., González, P., Serra, J., Leon, B., Pèrez-Amor, M. and Monteiro, F. (2007). "PLD bioactive ceramic films: the influence of CaO-P2O5 glass additions to hydroxyapatite on the proliferation and morphology of osteblastic like-cells." J Mater Sci Mater Med.
    Ong, Y.-L., Razatos, A., Georgiou, G. and Sharma, M. M. (1999). "Adhesion Forces between E. coli Bacteria and Biomaterial Surfaces." Langmuir 15(8): 2719-2725.
    Onishi, H. and Machida, Y. (1999). "Biodegradation and distribution of water-soluble chitosan in mice. ." Biomaterials 20: 175-185.
    Paluszkiewicz, C., Stodolak-Zych, E., Kwiatek, W. and Jelen, W. (2011). "Bioactivity of a Chitosan based Nanocomposite." Journal of Biomimetics, Biomaterials and Tissue Engineering 10: 95-106.
    Paradossi, G., Cavalieri, F., Chiessi, E., Spagnoli, C. and Cowman, M. K. (2003). "Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications." Journal of Materials Science: Materials in Medicine 14(8): 687-691.
    Parfitt, A. (1984). "The cellular basis of bone remodeling: The quantum concept reexamined in light of recent advances in the cell biology of bone." Calcified Tissue International 36(0): S37-S45.

    Puig De Morales, M., Grabulosa, M., Alcaraz, J., Mullol, J., Maksym, G. N., Fredberg, J. J. and Navajas, D. (2001). "Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation." Journal of Applied Physiology 91(3): 1152-1159.
    Radder, A. M., Davies, J. E., Leenders, H. and van Blitterswijk, C. A. (1994). "Interfical Behavior of PEO/PBT Copolymers(Polyactive) in A Calavarial System An in Vitro Study." Journal of biomedical Materials Research 28: 269-277.
    Reddi, A. H., Gay, R., Gay, S. and Miller, E. J. (1977). "Transitions in collagen types during matrix-induced cartilage, bone, and bone marrow formation." Cell Biology 74(12): 5589-5592.
    Rezwan, K., Chen, Q. Z., Blaker, J. J. and Boccaccini, A. R. (2006). "Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering." Biomaterials 27(18): 3413-3431.
    Rotsch, C. and Radmacher, M. (2000). "Drug-Induced Changes of Cytoskeletal Structure and Mechanics in Fibroblasts: An Atomic Force Microscopy Study." Biophysical journal 78(1): 520-535.
    Runyan, R. B., Maxwell, G. D. and Shur, B. D. (1986). "Evidence for a novel enzymatic mechanism of neural crest cell migration on extracellular glycoconjugate matrices." The Journal of Cell Biology 102(2): 432-441.
    Sarkar, S., Dadhania, M., Rourke, P., Desai, T. A. and Wong, J. Y. (2005). "Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix." Acta Biomaterialia 1(1): 93-100.
    Shapiro, H. S., Chen, J., Wrana, J. L., Zhang, Q., Blum, M. and Sodek, J. (1993). "Characterization of porcine bone sialoprotein: primary structure and cellular expression." Matrix (Stuttgart, Germany) 13(6): 431-440.
    Sharma, S., Gillespie, B. M., Palanisamy, V. and Gimzewski, J. K. (2011). "Quantitative Nanostructural and Single-Molecule Force Spectroscopy Biomolecular Analysis of Human-Saliva-Derived Exosomes." Langmuir 27(23): 14394-14400.
    Sharma, S., Grintsevich, E. E., Phillips, M. L., Reisler, E. and Gimzewski, J. K. (2010). "Atomic Force Microscopy Reveals Drebrin Induced Remodeling of F-Actin with Subnanometer Resolution." Nano Letters 11(2): 825-827.
    Sheetz, M. P., Felsenfeld, D. P. and Galbraith, C. G. (1998). "Cell migration: regulation of force on extracellular-matrix-integrin complexes." Trends in Cell Biology 8(2): 51-54.
    Shi, C., Zhu, Y., Ran, X., Wang, M., Su, Y. and Cheng, T. (2006). "Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine." Journal of Surgical Research 133(2): 185-192.
    Simon, A., Cohen-Bouhacina, T., Porté, M. C., Aimé, J. P., Amédée, J., Bareille, R. and Baquey, C. (2003). "Characterization of Dynamic Cellular Adhesion of Osteoblasts Using Atomic Force Microscopy." Cytometry Part A 54(1): 36-47.
    Simon, A. and Durrieu, M. C. (2006). "Strategies and results of atomic force microscopy in the study of cellular adhesion." Micron 37(1): 1-13.
    Sinha, V. R. and Khosla, L. (1998). "Bioabsorbable Polymers for Implantable Therapeutic Systems." Drug Development and Industrial Pharmacy 24(12): 1129-1138.
    Sneddon, I. N. (1965). "The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile." International Journal of Engineering Science 3(1): 47-57.
    Stamenovic′, D. and Ingbe, D. E. (2002). "Models of cytoskeletal mechanics of adherent cells." Biomechan Model Mechanobio: 95-108.

    Stein, G. S., J.B., L., J.L., S., A.J., V. W. and M., M. (1996). "Transcriptional Control of Osteoblast Growth and Differentiation " Physiological Reviews 76(2): 593-617.
    Stevens, A. and Lowe, J. (2006). in Human Histology, Elsevier International Ltd.
    Sun, J.-S., Tsuang, Y.-H., Yao, C.-H., Liu, H.-C., Lin, F.-H. and Hang, Y.-S. (1997). "Effects of calcium phosphate bioceramics on skeletal muscle cells." Journal of Biomedical Materials Research 34(2): 227-233.
    Takai, E., Costa, K. D., Shaheen, A., Hung, C. T. and Guo, X. E. (2005). "Osteoblast Elastic Modulus Measured by Atomic Force Microscopy Is Substrate Dependent." Annals of Biomedical Engineering 33(7): 963-971.
    Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K. and Chen, C. S. (2003). "Cells lying on a bed of microneedles: An approach to isolate mechanical force." Proceedings of the National Academy of Sciences 100(4): 1484-1489.
    Tang, L., Huang, Y. B., Liu, D. Q., Li, J. L., Mao, K., Liu, L., Cheng, Z. J., Gong, W. M., Hu, J. and He, J. H. (2005). "Effects of the silanized mica surface on protein crystallization." Acta Crystallographica Section D 61(1): 53-59.
    Tang, Y., Liu, Y., Sampathkumaran, U., Hu, M. Z., Wang, R. and De Guire, M. R. (2002). "Particle growth and particle–surface interactions during low-temperature deposition of ceramic thin films." Solid State Ionics 151(1–4): 69-78.
    Thie, M., Röspel, R., Dettmann, W., Benoit, M., Ludwig, M., Gaub, H. E. and Denker, H. W. (1998). "Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces." Human Reproduction 13(11): 3211-3219.

    Thiede, M. A., Yoon, K., Golub, E. E., Noda, M. and Rodan, G. A. (1988). "Structure and expression of rat osteosarcoma (ROS 17/2.8) alkaline phosphatase: product of a single copy gene." Proceedings of the National Academy of Sciences 85(2): 319-323.
    Toda, K.-I. and Grinnell, F. (1987). "Activation of Human Keratinocyte Fibronectin Receptor Function in Relation to Other Ligand-Receptor Interactions." J Investig Dermatol 88(4): 412-417.
    Truskey, G. A. and Pirone, J. S. (1990). "The effect of fluid shear stress upon cell adhesion to fibronectin-treated surfaces." Journal of Biomedical Materials Research 24(10): 1333-1353.
    Tuzlakoglu, K. and Reis, R. (2007). "Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process." Journal of Materials Science: Materials in Medicine 18(7): 1279-1286.
    Uttayarat, P., Lelkes, P. I. and Composto, R. J. (2005). Effect of nano-to micro-scale surface topography on the orientation of endothelial cells, Boston, MA.
    Uttayarat, P., Lelkes, P. I. and Composto, R. J. (2005). Effect of nano-to micro-scale surface topography on the orientation of endothelial cells. C. T. Laurencin and E. A. Botchwey. Boston, MA. 845: 157-162.
    Uttayarat, P., Toworfe, G. K., Dietrich, F., Lelkes, P. I. and Composto, R. J. (2005). "Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions." Journal of Biomedical Materials Research - Part A 75(3): 668-680.
    Van der Mei, H. C., Busscher, H. J., Bos, R., de Vries, J., Boonaert, C. J. P. and Dufrene, Y. F. (2000). "Direct Probing by Atomic Force Microscopy of the Cell Surface Softness of a Fibrillated and Nonfibrillated Oral Streptococcal Strain." Biophysical Journal 78: 2668–2674.
    Velegol, S. B. and Logan, B. E. (2002). "Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves." Langmuir 18(13): 5256-5262.
    Vince, V., Thil, M. A., Veraart, C., Colin, I. M. and Delbeke, J. (2004). "Biocompatibility of platinum-metallized silicone rubber: in vivo and in vitro evaluation." Journal of Biomaterials Science, Polymer Edition 15(2): 173-188.
    Walboomers, X. F., Monaghan, W., Curtis, A. S. G. and Jansen, J. A. (1999). "Attachment of fibroblasts on smooth and microgrooved polystyrene." Journal of Biomedical Materials Research 46(2): 212-220.
    Wang, D., Chen, C., He, T. and Lei, T. (2008). "Hydroxyapatite coating on Ti6Al4V alloy by a sol–gel method. ." J. Mater. Sci. Mater. Med. 19: 2281-2286.
    Weiss, P. (1945). "Experiments on cell and axon orientation in vitro: The role of colloidal exudates in tissue organization." Journal of Experimental Zoology 100(3): 353-386.
    Wichert, G., Haimovich, B., Feng, G. and Sheetz, M. (2003). "Force-dependent integrin-cytoskeleton linkage formation requires downregulation of focal complex dynamics by Shp2." Embo J 22: 5023-5035.
    Wong, J. Y., Leach, J. B. and Brown, X. Q. (2004). "Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response." Surface Science 570(1–2): 119-133.
    Wu, H., Wan, Y., Dalai, S. and Zhang, R. (2010). "Response of rat osteoblasts to polycaprolactone/chitosan blend porous scaffolds." Journal of Biomedical Materials Research Part A 92A(1): 238-245.
    Xin, R., Leng, Y., Chen, J. and Zhang, Q. (2005). "A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo." Biomaterials 26(33): 6477-6486.
    Yang, J.-Y., Ting, Y.-C., Lai, J.-Y., Liu, H.-L., Fang, H.-W. and Tsai, W.-B. (2009). "Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions." Journal of Biomedical Materials Research Part A 90A(3): 629-640.
    Yang, J. Y., Ting, Y. C., Lai, J. Y., Liu, H. L., Fang, H. W. and Tsai, W. B. (2009). "Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions." Journal of Biomedical Materials Research Part A 90A(3): 629-640.
    Yang, S.-P., Yang, C.-Y., Lee, T.-M. and Lui, T.-S. (2012). "Effects of calcium-phosphate topography on osteoblast mechanobiology determined using a cytodetacher." Materials Science and Engineering: C 32(2): 254-262.
    Yang, S. P. and Lee, T. M. (2011). "The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher." Journal of Materials Science: Materials in Medicine 22(4): 1027-1036.
    Yang, S. P., Yang, C. Y., Lee, T. M. and Lui, T. S. (2012). "Effects of calcium-phosphate topography on osteoblast mechanobiology determined using a cytodetacher." Materials Science and Engineering: C 32(2): 254-262.
    Yang, W. C., Patel, K. G., Lee, J., Ghebremariam, Y. T., Wong, H. E., Cooke, J. P. and Swartz, J. R. (2009). "Cell-free production of transducible transcription factors for nuclear reprogramming." Biotechnology and Bioengineering 104(6): 1047-1058.
    Yousef, M., Hamid, M., Fathollah, M., Masoud, S. and Esmaiel, J. (2007). "Osteogenic Differentiation of Mesenchymal Stem Cells on Novel Three-dimensional Poly(L-lactic acid)/Chitosan/Gelatin/β-Tricalcium Phosphate Hybrid Scaffolds." Iranian Polymer Journal 16(1): 1799-1806.
    Yuan, H., De Bruijn, J. D., Li, Y., Feng, J., Yang, Z., De Groot, K. and Zhang, X. (2001). "Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous α-TCP and β-TCP." Journal of Materials Science: Materials in Medicine 12(1): 7-13.
    Zaari, N., Rajagopalan, P., Kim, S. K., Engler, A. J. and Wong, J. Y. (2004). "Photopolymerization in Microfluidic Gradient Generators: Microscale Control of Substrate Compliance to Manipulate Cell Response." Advanced Materials 16(23-24): 2133-2137.
    Zlatanova, J., Lindsay, S. M. and Leuba, S. H. (2000). "Single molecule force spectroscopy in biology using the atomic force microscope." Prog Biophy Mol Bio 74: 37-61.

    無法下載圖示 全文公開日期 2017/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE