簡易檢索 / 詳目顯示

研究生: 蕭建華
CHIEN-HUA HSIAO
論文名稱: 活性氧響應性藥物結合光動力效果碳點之合成與生醫應用
Synthesis of photodynamic carbon dots integrated with ROS-responsive drug and their biomedical application
指導教授: 張家耀
JIA-YAW CHANG
口試委員: 何郡軒
JINN-HSUAN HO
張榮善
JUNG-SHAN CHANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 107
中文關鍵詞: 碳點藥物傳輸系統異原子摻雜酸氧化處理生醫應用
外文關鍵詞: Carbon dots, drug delivery system, heteratom doping, acid oxidation treatment, biomedical application
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以碳點(Carbon dots, CDs)設計具生物相容性之水溶性藥物載體奈米複合物(CPT-N,S,Cl@CDs),因其具有低毒性及具豐富易改質官能基團之特性。首先,選用微波輔助技術合成法,以對苯二胺搭配過氯酸、L-cystine及L-selenocystine製備碳點,大幅提升螢光量子產率。其中以對苯二胺作為碳源,過氯酸當作鈍化劑改善表面缺陷,而L-cystine及L-selenocystine則以異原子摻雜法提升螢光性質,製備出N,Se,Cl@CDs及N,S,Cl@CDs,並使用UV-Vis、PL、XPS、FTIR及Raman分析螢光性質、材料結構及鍵結組成。
    隨後對N,Se,Cl@CDs及N,S,Cl@CDs進行光動力比較,選用光動力效果較佳之N,S,Cl@CDs,透過交聯反應結合活性氧(ROS)響應性抗癌藥物(TL-CPT)形成CPT-N,S,Cl@CDs。若使用雷射照射CPT-N,S,Cl@CDs,產生之ROS不僅能殺傷癌細胞,也能破壞ROS響應硫醇鍵釋放CPT,達到雙重治療效果;而經由藥物釋放模擬,透過改變材料前處理條件,驗證其藥物釋放可控性。
    於體外細胞生物應用,透過細胞攝取及毒性測試,驗證CPT-N,S,Cl@CDs具優異生物相容性;於雷射照射下,因材料具光動力-藥物治療效果,癌症細胞致死率大幅提升。而藉由細胞顯影及染色試驗,證實材料於體外細胞仍具活性,擁有產生ROS及有效殺死癌細胞之能力。


    Herein, a biocompatible and water-soluble drug carrier agent was designed using carbon dot (CDs) due to it’s low toxicity and abundant surface functional group. Firstly, by employing p-phenylenediamine as the carbon source we have synthesized red-emissive CDs via microwave-assisted technique. The optical properties of CDs was improved by using surface passivating agent such as perchloric acid, resulting N,Cl@CDs which significantly improved the fluorescence quantum yield. Moreover, selenium and sulfur were separately doped into the carbon dots structure, and the fluorescence properties were further improved by heteroatom doping method to prepare N,Se,Cl@CDs and N,S,Cl@CDs, and use UV-Vis, PL, XPS, FTIR, and Raman analysis of fluorescence properties, material structure, and bonding composition.
    The photodynamic effect of N,Se,Cl@CDs and N,S,Cl@CDs was then compared, and the N,S,Cl@CDs with the better photodynamic effect was chosen to combine ROS responsive anticancer drug(TL-CPT) through cross-linking reaction(CPT-N,S,Cl@CDs). When CPT-N,S,Cl@CDs is laser-irradiated, the ROS produced not only kills cancer cells, but also destroys ROS responsive thiol bonds to release CPT, resulting in a dual therapeutic effect. The controllability of drug release was verified using drug release simulation by changing the material's pretreatment conditions.
    In vitro cell biological application, through cell uptake and toxicity tests, it is confirmed that CPT-N,S,Cl@CDs has excellent biocompatibility; under laser irradiation, the lethality of cancer cells is greatly improved due to the material's photodynamic-drug treatment effect. Cell imaging capability and staining tests confirmed that the material was still active in vitro, capable of generating ROS and effectively killing cancer cells.

    第一章 緒論 12 1.1 前言 12 1.2 研究動機與目的 14 第二章 理論基礎及文獻回顧 15 2.1 碳點之合成與發展 15 2.1.1 碳點之起源與發展 15 2.1.2 碳點之合成方法 15 2.1.3 碳點與其他螢光材料之區別 18 2.2 摻雜異原子於碳點 20 2.2.1 異原子摻雜碳點之方法及策略 20 2.2.2 異原子摻雜碳點之光學性質及放光機制 26 2.3 刺激響應性藥物傳送系統(Stimuli-responsive drug delivery system) 28 2.3.1 酸鹼值響應性DDS 28 2.3.2 氧化還原響應性DDS 30 2.3.3 熱響應性DDS 31 2.3.4 光響應性DDS 32 2.3.5 活性氧響應性硫縮酮鍵結 33 2.4 光動力療法(Photodynamic therapy) 37 2.4.1 光動力療法原理與機制 37 2.4.2 光動力介導的反應機制 38 2.4.3 碳點於光動力療法的應用 39 第三章 實驗儀器與方法 44 3.1 實驗藥品 44 3.2 實驗儀器 46 3.3 實驗步驟 49 3.3.1 N、S、Cl共摻雜紅色碳點之合成 49 3.3.2 N、Se、Cl共摻雜之紅色碳點之合成 49 3.3.3 活性氧響應性硫縮酮(Thioketal linker, TL)之合成 49 3.3.4 活性氧響應性藥物(TL-CPT)之合成 50 3.3.5 搭載藥物之碳點(CPT-N,S,Cl@CDs)合成 50 3.4 CPT-N,S,Cl@CDs之光動力檢測 50 3.4.1 以DMA做單態氧檢測試劑 50 3.4.2 以DPBF做單態氧檢測試劑 51 3.4.3 以電子順磁共振(electron paramagnanetic resonance,EPR)光譜分析碳點產生單態氧能力 51 3.5 CPT-N,S,Cl@CDs之藥物釋放能力 51 3.6 細胞培養與細胞實驗 51 3.6.1 培養液(medium)與PBS之配製 51 3.6.2 解凍細胞(Cell defrost) 53 3.6.3 繼代培養(Cell culture) 53 3.6.4 細胞計數(Cell counting) 53 3.6.5 冷凍細胞(Cell Cryopreservation) 54 3.6.6 於細胞體外之材料毒性測試 54 3.6.7 於細胞體外之光動力與藥物傳送治療 55 3.6.8 光動力檢測螢光顯影試片製作 55 3.6.9 台盼藍細胞染色試驗(Trypan blue staining experiments) 56 第四章 結果與討論 57 4.1 N,Se,Cl@CDs、N,S,Cl@CDs及CPT-N,S,Cl@CDs之實驗介紹 57 4.2 N,Se,Cl@CDs、N,S,Cl@CDs光學性質分析 58 4.2.1 N@CDs於摻雜不同濃度過氯酸處理之最適化條件探討 58 4.2.2 N,Cl@CDs於摻雜不同濃度S, Se原子之最適化條件探討 60 4.3 N@CDs、N,Cl@CDs及N,S,Cl@CDs之鑑定與分析 62 4.3.1 N,S,Cl@CDs之粒徑與表面型態分析(HRTEM) 62 4.3.2 N@CDs、N,Cl@CDs、N,S,Cl@CDs及N,Se,Cl@CDs之元素組成分析(XPS) 63 4.3.3 N@CDs、N,Cl@CDs、N,S,Cl@CDs及N,Se,Cl@CDs之傅立葉轉換紅外光譜儀(FTIR)分析 70 4.3.4 N,Se,Cl@CDs、N,S,Cl@CDs之拉曼光譜(Raman)鑑定分析 71 4.4 CPT-N,S,Cl@CDs製備、鑑定與分析 72 4.4.1 TL-CPT活性氧響應性藥物製備與鑑定 74 4.4.2 CPT-N,S,Cl@CDs奈米複合物製備與鑑定 79 4.5 CPT-N,S,Cl@CDs奈米複合物之光動力療法分析 81 4.5.1 以DMA做單態氧檢測試劑 81 4.5.2 以DPBF做單態氧檢測試劑 83 4.5.3 以電子順磁共振(electron paramagnanetic resonance,EPR)光譜分析碳點產生單態氧能力 84 4.6 CPT-N,S,Cl@CDs奈米複合物之藥物釋放分析 87 4.7 CPT-N,S,Cl@CDs於體外細胞光治療應用與藥物治療應用 90 4.7.1 CPT-N,S,Cl@CDs之細胞毒性分析 90 4.7.2 CPT-N,S,Cl@CDs之光動力/藥物治療分析 92 4.7.3 CPT-N,S,Cl@CDs之細胞顯影應用 93 第五章 結論與未來展望 99 參考文獻 100

    [1] Xu, X., Ray, R., Gu, Y., et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, Journal of the American Chemical Society, 2004, 126, 12736-12737
    [2] Sun, Y.-P., Zhou, B., Lin, Y., et al., Quantum-sized carbon dots for bright and colorful photoluminescence, Journal of the American Chemical Society, 2006, 128, 7756-7757
    [3] Ansari, L., Hallaj, S., Hallaj, T., et al., Doped-carbon dots: Recent advances in their biosensing, bioimaging and therapy applications, 2021, 203, 111743
    [4] Algar, W. R., Massey, M., Rees, K., et al., Photoluminescent nanoparticles for chemical and biological analysis and imaging, Chemical Reviews, 2021, 121, 9243-9358
    [5] Liu, Y., Huang, H., Cao, W., et al., Advances in carbon dots: from the perspective of traditional quantum dots, Materials Chemistry Frontiers, 2020, 4, 1586-1613
    [6] Yan, F., Jiang, Y., Sun, X., et al., Surface modification and chemical functionalization of carbon dots: a review, Microchimica Acta, 2018, 185, 1-34
    [7] Omer, K. M. and Hassan, A. Q., Chelation-enhanced fluorescence of phosphorus doped carbon nanodots for multi-ion detection, Microchimica Acta, 2017, 184, 2063-2071
    [8] Li, Y., Lin, H., Luo, C., et al., Aggregation induced red shift emission of phosphorus doped carbon dots, RSC advances, 2017, 7, 32225-32228
    [9] Wang, C., Wang, Y., Shi, H., et al., A strong blue fluorescent nanoprobe for highly sensitive and selective detection of mercury (II) based on sulfur doped carbon quantum dots, Materials Chemistry and Physics, 2019, 232, 145-151
    [10] Xu, Q., Pu, P., Zhao, J., et al., Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection, Journal of Materials Chemistry A, 2015, 3, 542-546
    [11] Tian, Z., Zhang, X., Li, D., et al., Full‐color inorganic carbon dot phosphors for white‐light‐emitting diodes, 2017, 5, 1700416
    [12] Miao, Q., Ten Years of N‐Heteropentacenes as Semiconductors for Organic Thin‐Film Transistors, Advanced Materials, 2014, 26, 5541-5549
    [13] Yuan, Y. H., Liu, Z. X., Li, R. S., et al., Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states, Nanoscale, 2016, 8, 6770-6776
    [14] Liu, J., Li, D., Zhang, K., et al., One‐step hydrothermal synthesis of nitrogen‐doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging, 2018, 14, 1703919
    [15] Yi, Z., Li, X., Zhang, H., et al., High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging, Talanta, 2021, 222, 121663
    [16] Krishnaiah, P., Atchudan, R., Perumal, S., et al., Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+, Chemosphere, 2022, 286, 131764
    [17] Wang, H., Mu, Q., Wang, K., et al., Nitrogen and boron dual-doped graphene quantum dots for near-infrared second window imaging and photothermal therapy, 2019, 14, 108-117
    [18] Zhang, X.-Y., Li, Y., Wang, Y.-Y., et al., Nitrogen and sulfur co-doped carbon dots with bright fluorescence for intracellular detection of iron ion and thiol, Journal of Colloid and Interface Science, 2022, 611, 255-264
    [19] Hu, Y., Gao, Z. and Luo, J., Fluorescence detection of malachite green in fish tissue using red emissive Se, N, Cl-doped carbon dots, Food Chemistry, 2021, 335, 127677
    [20] Zhang, M., Su, R., Zhong, J., et al., Red/orange dual-emissive carbon dots for pH sensing and cell imaging, Nano Research, 2019, 12, 815-821
    [21] Dong, Y., Pang, H., Yang, H. B., et al., Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission, Angewandte Chemie International Edition, 2013, 52, 7800-7804
    [22] Barman, M. K., Jana, B., Bhattacharyya, S., et al., Photophysical properties of doped carbon dots (N, P, and B) and their influence on electron/hole transfer in carbon dots–nickel (II) phthalocyanine conjugates, 2014, 118, 20034-20041
    [23] Lu, Y., Aimetti, A. A., Langer, R., et al., Bioresponsive materials, Nature Reviews Materials, 2016, 2, 1-17
    [24] Takemoto, H., Miyata, K., Hattori, S., et al., Acidic pH‐responsive siRNA conjugate for reversible carrier stability and accelerated endosomal escape with reduced IFNα‐associated immune response, 2013, 125, 6338-6341
    [25] Guo, X., Cheng, Y., Zhao, X., et al., Advances in redox-responsive drug delivery systems of tumor microenvironment, Journal of Nanobiotechnology, 2018, 16, 1-10
    [26] Pang, Z., Zhou, J. and Sun, C. J. F. i. c., Ditelluride-bridged PEG-PCL copolymer as folic acid-targeted and redox-responsive nanoparticles for enhanced cancer therapy, 2020, 8, 156
    [27] Tian, Y. and Lei, M. J. N. r. l., Polydopamine-based composite nanoparticles with redox-labile polymer shells for controlled drug release and enhanced chemo-photothermal therapy, 2019, 14, 1-10
    [28] Fleige, E., Quadir, M. A. and Haag, R., Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications, Advanced drug delivery reviews, 2012, 64, 866-884
    [29] Karimi, M., Ghasemi, A., Zangabad, P. S., et al., Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems, Chemical Society Reviews, 2016, 45, 1457-1501
    [30] Peng, H., Huang, X., Oppermann, A., et al., A facile approach for thermal and reduction dual-responsive prodrug nanogels for intracellular doxorubicin delivery, 2016, 4, 7572-7583
    [31] Hu, X., Tian, J., Liu, T., et al., Photo-triggered release of caged camptothecin prodrugs from dually responsive shell cross-linked micelles, 2013, 46, 6243-6256
    [32] Khan, F. and Tanaka, M., Designing smart biomaterials for tissue engineering, International journal of molecular sciences, 2017, 19, 17
    [33] McGough, M. A., Shiels, S. M., Boller, L. A., et al., Poly (thioketal urethane) autograft extenders in an intertransverse process model of bone formation, Tissue Engineering Part A, 2019, 25, 949-963
    [34] Liu, B. and Thayumanavan, S., Mechanistic Investigation on Oxidative Degradation of ROS-Responsive Thioacetal/Thioketal Moieties and Their Implications, Cell Reports Physical Science, 2020, 1, 100271
    [35] Kim, J. S., Jo, S. D., Seah, G. L., et al., ROS-induced biodegradable polythioketal nanoparticles for intracellular delivery of anti-cancer therapeutics, Journal of Industrial and Engineering Chemistry, 2015, 21, 1137-1142
    [36] Wilson, D. S., Dalmasso, G., Wang, L., et al., Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines, Nature materials, 2010, 9, 923-928
    [37] Pei, P., Sun, C., Tao, W., et al., ROS-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy, Biomaterials, 2019, 188, 74-82
    [38] Li, Q., Wen, Y., Wen, J., et al., A new biosafe reactive oxygen species (ROS)-responsive nanoplatform for drug delivery, RSC advances, 2016, 6, 38984-38989
    [39] Li, Q., Wen, Y., You, X., et al., Development of a reactive oxygen species (ROS)-responsive nanoplatform for targeted oral cancer therapy, Journal of Materials Chemistry B, 2016, 4, 4675-4682
    [40] Rinaldi, A., Caraffi, R., Grazioli, M. V., et al., Applications of the ROS-Responsive Thioketal Linker for the Production of Smart Nanomedicines, Polymers, 2022, 14, 687
    [41] Taresco, V., Alexander, C., Singh, N., et al., Stimuli‐responsive prodrug chemistries for drug delivery, Advanced Therapeutics, 2018, 1, 1800030
    [42] Oddone, N., Boury, F., Garcion, E., et al., Synthesis, characterization, and in vitro studies of an reactive oxygen species (ROS)-responsive methoxy polyethylene glycol-thioketal-melphalan prodrug for glioblastoma treatment, Frontiers in pharmacology, 2020, 11, 574
    [43] Swierczewska, M., Lee, K. C. and Lee, S., What is the future of PEGylated therapies?, Expert opinion on emerging drugs, 2015, 20, 531-536
    [44] Gisbert-Garzarán, M. and Vallet-Regí, M., Influence of the surface functionalization on the fate and performance of mesoporous silica nanoparticles, Nanomaterials, 2020, 10, 916
    [45] Hu, J.-J., Lei, Q., Peng, M.-Y., et al., A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem, Biomaterials, 2017, 128, 136-146
    [46] Dougherty, T. J., Gomer, C. J., Henderson, B. W., et al., Photodynamic therapy, JNCI: Journal of the national cancer institute, 1998, 90, 889-905
    [47] Dolmans, D. E., Fukumura, D. and Jain, R. K., Photodynamic therapy for cancer, Nature reviews cancer, 2003, 3, 380-387
    [48] Lee, C.-N., Hsu, R., Chen, H., et al., Daylight photodynamic therapy: An update, Molecules, 2020, 25, 5195
    [49] Rocha, L. G. B., Development of a novel photosensitizer for Photodynamic Therapy of cancer, Journal, 2016,
    [50] Donnelly, R. F., McCarron, P. A. and Tunney, M. M., Antifungal photodynamic therapy, Microbiological research, 2008, 163, 1-12
    [51] Yang, Z., Wang, J., Ai, S., et al., Self-generating oxygen enhanced mitochondrion-targeted photodynamic therapy for tumor treatment with hypoxia scavenging, Theranostics, 2019, 9, 6809
    [52] Zhang, C., Zhao, K., Bu, W., et al., Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence, Angewandte Chemie International Edition, 2015, 54, 1770-1774
    [53] Dariva, C. G., Coelho, J. F. and Serra, A. C. J. J. o. c. r., Near infrared light-triggered nanoparticles using singlet oxygen photocleavage for drug delivery systems, 2019, 294, 337-354
    [54] Castano, A. P., Mroz, P. and Hamblin, M. R., Photodynamic therapy and anti-tumour immunity, Nature Reviews Cancer, 2006, 6, 535-545
    [55] Agostinis, P., Berg, K., Cengel, K. A., et al., Photodynamic therapy of cancer: an update, CA: a cancer journal for clinicians, 2011, 61, 250-281
    [56] Correia, J. H., Rodrigues, J. A., Pimenta, S., et al., Photodynamic therapy review: principles, photosensitizers, applications, and future directions, Pharmaceutics, 2021, 13, 1332
    [57] Monro, S., Colon, K. L., Yin, H., et al., Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433, Chemical reviews, 2018, 119, 797-828
    [58] Liu, Y., Meng, X. and Bu, W., Upconversion-based photodynamic cancer therapy, Coordination Chemistry Reviews, 2019, 379, 82-98
    [59] Chen, W. H., Luo, G. F. and Zhang, X. Z., Recent advances in subcellular targeted cancer therapy based on functional materials, Advanced Materials, 2019, 31, 1802725
    [60] Li, Q., Li, Y., Min, T., et al., Time‐Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AIE‐Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation, Angewandte Chemie, 2020, 132, 9557-9564
    [61] Markovic, Z. M., Ristic, B. Z., Arsikin, K. M., et al., Graphene quantum dots as autophagy-inducing photodynamic agents, Biomaterials, 2012, 33, 7084-7092
    [62] Zhang, J., Lin, Y., Wu, S., et al., Self-photo-oxidation for extending visible light absorption of carbon dots and oxidase-like activity, Carbon, 2021, 182, 537-544
    [63] Hong, G., Antaris, A. L. and Dai, H., Near-infrared fluorophores for biomedical imaging, Nature biomedical engineering, 2017, 1, 1-22
    [64] Zhong, Y., Ma, Z., Zhu, S., et al., Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm, Nature communications, 2017, 8, 1-7
    [65] Zhao, J., Li, F., Zhang, S., et al., Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors, New Journal of Chemistry, 2019, 43, 6332-6342
    [66] Yi, S., Deng, S., Guo, X., et al., Red emissive two-photon carbon dots: photodynamic therapy in combination with real-time dynamic monitoring for the nucleolus, Carbon, 2021, 182, 155-166
    [67] Tan, C., Su, X., Zhou, C., et al., Acid-assisted hydrothermal synthesis of red fluorescent carbon dots for sensitive detection of Fe (iii), 2017, 7, 40952-40956
    [68] Song, W., Duan, W., Liu, Y., et al., Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots, 2017, 89, 13626-13633
    [69] Tan, C., Zhou, C., Peng, X., et al., Sulfuric acid assisted preparation of red-emitting carbonized polymer dots and the application of bio-imaging, 2018, 13, 1-6
    [70] Shao, T., Wang, G., An, X., et al., A reformative oxidation strategy using high concentration nitric acid for enhancing the emission performance of graphene quantum dots, 2014, 4, 47977-47981
    [71] Hu, Y., Gao, Z. and Luo, J. J. F. C., Fluorescence detection of malachite green in fish tissue using red emissive Se, N, Cl-doped carbon dots, 2021, 335, 127677
    [72] Sharma, A., Gadly, T., Neogy, S., et al., Molecular origin and self-assembly of fluorescent carbon nanodots in polar solvents, 2017, 8, 1044-1052
    [73] Wang, B., Li, J., Tang, Z., et al., Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes, 2019, 64, 1285-1292
    [74] Xu, Q., Pu, P., Zhao, J., et al., Preparation of highly photoluminescent sulfur-doped carbon dots for Fe (III) detection, 2015, 3, 542-546
    [75] Chatzimitakos, T., Kasouni, A., Sygellou, L., et al., Human fingernails as an intriguing precursor for the synthesis of nitrogen and sulfur-doped carbon dots with strong fluorescent properties: analytical and bioimaging applications, 2018, 267, 494-501
    [76] Zhang, X., Tan, X. and Hu, Y. J. J. o. H. M., Blue/yellow emissive carbon dots coupled with curcumin: a hybrid sensor toward fluorescence turn-on detection of fluoride ion, 2021, 411, 125184
    [77] Dong, Y., Pang, H., Yang, H. B., et al., Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission, 2013, 52, 7800-7804
    [78] Ai, L., Yang, Y., Wang, B., et al., Insights into photoluminescence mechanisms of carbon dots: advances and perspectives, 2021, 66, 839-856
    [79] Mendoza, C., Désert, A., Khrouz, L., et al., Heterogeneous singlet oxygen generation: in-operando visible light EPR spectroscopy, Environmental Science and Pollution Research, 2021, 28, 25124-25129
    [80] Pathak, J., Chatterjee, A., Singh, S. P., et al., Detection of Reactive Oxygen Species (ROS) in Cyanobacteria Using the Oxidant-sensing Probe 2’, 7’-Dichlorodihydrofluorescein Diacetate (DCFH-DA), 2017, 7, e2545-e2545
    [81] Liu, Y., Liu, S. and Wang, Y. J. C. l., TEMPO-based redox-sensitive fluorescent probes and their applications to evaluating intracellular redox status in living cells, 2009, 38, 588-589

    無法下載圖示 全文公開日期 2025/08/11 (校內網路)
    全文公開日期 2025/08/11 (校外網路)
    全文公開日期 2025/08/11 (國家圖書館:臺灣博碩士論文系統)
    QR CODE