簡易檢索 / 詳目顯示

研究生: 楊三慶
San-Ching Yang
論文名稱: 應用於慢性病監測之植入式生醫訊號量測系統
An Implantable Biomedical Signal Measurement System for Chronic Disease Monitoring
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 郭重顯
Chung-Hsien Kuo
邱弘緯
Hung-Wei Chiu
汪濤
Tao Wang
林木鍊
Mu-Lie Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 類比前端低雜訊截切電源重啟生醫植入
外文關鍵詞: Analog front-end, Low-Noise, Chopper, Power-on reset, Implantable biomedical applications.
相關次數: 點閱:245下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中使用台積電CMOS 0.18 μm 1P6M製程,設計並實作了一個應用於生醫頻帶(MICS Band)的慢性病監測之植入式生醫訊號量測系統。由類比前端電路(Analog Front-End)放大待測訊號並傳給下一級類比數位轉換器(Analog to Digital Converter)作轉換,而最後一級的發射機(Transmitter)將取樣後得到的資料送出。此系統使用了能量獲取(Energy Harvesting)的技術來當作整體系統的電源供給,同時也使用這個信號透過注入鎖定式除頻器(Injection-Lock Frequency Divider)產生發射機的載波訊號,接著將資料透過開關調變(On-Off Keying, OOK)電路結合載波訊號再藉由功率放大器(Power Amplifier)送出。
    類比前端電路加入了增益可調的功能與截切安定技巧來達到低雜訊的效果,電路最高增益為50.2 dB,最低增益為21.8 dB,並且具備了95 dB以上的共模具斥比與電源供應拒斥比,電路頻寬為8.5KHz,因為使用了截切安定技巧,等效輸入參考雜訊降低為4.8uVrms,其功率消耗為1.09 mW。數位類比轉換器操作電壓為1.2 V以及50 k-samples/s的取樣頻率下,具有57.75 dB的訊號對雜訊與失真比,相當於9.3 bits的有效位元數,消耗功率為32 µW。發射機的操作頻率為402 MHz,電流消耗為0.91 mA,模擬輸出功率為-12.9dBm,其載波訊號在透過射頻訊號輸入頻率為1608 MHz大小為6dBm的訊號供電並且鎖定電路時,其輸出頻率為402 MHz載波之相位雜訊(Phase Noise)在1 MHz偏移時為-138.8dBc/Hz。


    In this thesis, an implantable biomedical signal measurement system for chronic disease monitoring is proposed and implemented using TSMC CMOS 0.18μm 1P6M process. The implantable biomedical signal measurement system comprises of power management part and biomedical signal process part. The RF-DC converter is used to convert the RF power into the DC power supply required for rest building blocks. When the regulator provides whole system with a stable operating voltage, the digital control unit (DCU) will notify the analog to digital converter (ADC) to sample the biomedical signal from the analog front-end(AFE). As the sample is finished, the ADC will inform the DCU it is ready to turn on the transmitter and send out the data for monitoring. This system applied to two different techniques by the same input signal. Energy harvesting techniques for powering up whole system; the injection-lock techniques for synthesizing carrier of transmitter whose modulation type is on-off keying. The digital data and the carrier will be modulated by OOK modulator, and the signal could be delivered out through the power amplifier.
    The analog front-end(AFE) circuit adopt variable gain control and chopper technique to achieve low noise. The highest and lowest gain of the analog front-end circuit is 50.2 dB with 8.5KHz bandwidth and 21.7dB with 15.9KHz bandwidth respectively. This AFE circuit works with 95dB of common mode rejection ratio(CMRR) and power supply rejection ratio(PSRR). Because of chopper technique, the equivalent input refer noise of the analog front-end circuit is reduced to4.8uVrms. The power consumption is 1.09mW. The analog to digital converter(ADC) achieves a SNDR of 57.75dB, equal to an ENOB of 9.3bits at a sample rate of 50K-samples/s. The ADC dissipates 32uW from a supply voltage of 1.2V. The transmitter operating under wireless power mode when the input signal strength is 6dBm.The carrier frequency is locked at 402 MHz by the 1608 MHz input frequency with phase noise -138.8dBc/Hz at1MHz offset, and current consumption is 0.91mA with -12.9dBm output power post simulation result.

    摘要......................................................................................................................i Abstract................................................................................................................iii 誌謝.....................................................................................................................iv 目錄......................................................................................................................v 圖目錄...............................................................................................................viii 表目錄.................................................................................................................xi 第一章緒論..........................................................................................................1 1.1 簡介................................................................................................................1 1.2 章節簡介........................................................................................................3 第二章植入式生醫訊號監測系統原理與架構..................................................4 2.1 簡介................................................................................................................4 2.2 電路原理與架構............................................................................................6 2.2.1類比前端電路..............................................................................................6 2.2.2連續漸進式類比數位轉換器......................................................................8 2.2.3低功率發射機............................................................................................11 2.2.4數位控制單元............................................................................................11 2.3 植入式晶片的考量......................................................................................14 2.3.1電力來源....................................................................................................14 2.3.2生物相容性................................................................................................14 2.3.3植入晶片位置與傳輸................................................................................14 2.4 結論..............................................................................................................15 第三章類比前端電路........................................................................................16 3.1 簡介..............................................................................................................16 3.1.1雜訊來源....................................................................................................16 3.1.2熱雜訊........................................................................................................17 3.1.3閃爍雜訊....................................................................................................17 3.2 截切安定技巧..............................................................................................19 3.3電路架構.......................................................................................................23 3.3.1截切調變電路............................................................................................23 3.3.2截切安定運算放大器................................................................................24 3.3.3截切安定儀表放大器................................................................................26 3.3.4 Sallen-Key二階低通濾波器......................................................................29 3.3.5偏壓電路....................................................................................................30 3.4模擬結果.......................................................................................................32 3.4.1運算放大器模擬結果................................................................................32 3.4.2 Sallen-Key二階低通濾波器模擬結果......................................................36 3.4.3類比前端電路模擬結果............................................................................36 3.5量測結果.......................................................................................................40 3.5.1量測環境....................................................................................................40 3.5.2類比前端電路量測結果............................................................................43 3.6結論...............................................................................................................47 第四章數位控制單元........................................................................................49 4.1 簡介..............................................................................................................49 4.2電路架構與原理...........................................................................................49 4.2.1 數位控制單元...........................................................................................49 4.2.2電源重啟電路............................................................................................50 4.2.3時脈產生器................................................................................................52 4.3 模擬結果......................................................................................................55 4.3.1 電源重啟電路模擬結果...........................................................................55 4.3.2時脈產生器電路模擬結果........................................................................55 4.3.3數位控制單元模擬結果............................................................................56 4.4 結論..............................................................................................................60 第五章生醫訊號量測實例................................................................................61 5.1 簡介..............................................................................................................61 5.2 肌電訊號量測..............................................................................................61 5.2.1肌電圖概述................................................................................................61 5.2.2肌電圖量測結果........................................................................................63 5.3 心電圖量測..................................................................................................64 5.3.1心電圖概述................................................................................................64 5.3.2心電圖量測結果........................................................................................68 5.4討論...............................................................................................................70 第六章總結與未來展望....................................................................................71 參考文獻............................................................................................................73

    [1] 吳齊修,"應用於生醫系統的儀表放大器與類比機頻電路設計",國立台灣科技大學電機所碩士論文,2012
    [2] 呂毓駿,"適用於ECG量測系統之連續漸進式類比數位轉換器設計",國立台灣科技大學電機所碩士論文,2012
    [3] Anton Bakker, Kevin Thiele, and Johan H. Huijsing,"A CMOS Nested-Chopper Instrumentation Amplifier with 100-nV Offset", IEEE J. Solid-State Circuits, vol. 35, no. 12, DECEMBER 2000.
    [4] Andrea Agnes,Alessandro Cabrini, Franco Maloberti,and Giuseppe Martini,"Cancellation of Amplifier Offset and 1/f Noise: An Improved Chopper Stabilized Technique", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 54, NO. 6, JUNE 2007.
    [5] Philip Godoy, and Joel L. Dawson, "Chopper Stabilization of Analog Multipliers, Variable Gain Amplifiers, and Mixers", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 10, OCTOBER 2008.
    [6] K. A. Ng and P. K. Chan,"A CMOS Analog Front-End IC for Portable EEG/ECG Monitoring Applications", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 11, NOVEMBER 2005.
    [7] RefetFiratYazicioglu, Sunyoung Kim, Tom Torfs, Patrick Merken, Chris Van Hoof,“A 30μW Analog Signal Processor ASIC for Biomedical Signal Monitoring” IEEE J. Solid-State Circuits, vol.46, no. 1, January, 2011
    [8] Yi-Chung Chen, Zong-Han Hsieh, and Wai-Chi Fang, "A Wireless Readout Front-End Device for Portable EEG Acquisition System", 2013 IEEE 17th International Symposium on Consumer Electronics (ISCE).
    [9] Sanghoek Kim, John S. Ho, Lisa Y. Chen and Ada S. Y. Poon, “Wireless power transfer to a cardiac implant,” APPLIED PHYSICS LETTERS 101, 073701 (2012).
    [10] FCC Rules and Regulations, “Medical Device Radiocommunications Service,” 2009.
    [11] Bernhard Wicht, Thomas Nirschl, and Doris Schmitt-Landsiedel,”Yield and Speed Optimization of a Latch-Type Voltage Sense Amplifier”IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 7, JULY 2004.
    [12] B. Razavi,"Design of Analog CMOS Integrated Circuit"McGRAW-HILL International Edition.
    [13] Timothy Denison, Kelly Consoer, Wesley Santa, Greg Molnar, and Keith Miesel, “ A 2uW, 95nV/rtHz, chopper-stabilized instrumentation amplifier for chronic measurement of bio-potentials”, Instrumentation and Measurement Technology Conference - IMTC 2007.
    [14] Phillip E. Allen, and Douglas R. Holberg, "CMOS Analog Circuit Design", Oxford University Press Second Edition .
    [15] John A. McNeill, Ka Yan Chan, Michael C. W. Coln, Christopher L. David, and Cody Brenneman, "All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture",IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 58, NO. 10, OCTOBER 2011.
    [16] JiaHao Cheong, Kok Lim Chan, PradeepBasappaKhannur, Kei Tee Tiew, and Minkyu Je,"A 400-nW 19.5-fJ/Conversion-Step 8-ENOB 80-kS/s SAR ADC in 0.18-μm CMOS", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 58, NO. 7, JULY 2011.
    [17] Chilann, Ka Yan Chan, "Applying the “Split-ADC” Architecture to a 16 bit, 1MS/s differential Successive Approximation Analog-to-Digital Converter", WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the Degree of Master of Science in Electrical Engineering April 2008.
    [18] Ali M. Zargar, ”Successive Approximation Analog to Digital Converter”, San Jose State University, 2010.
    [19] 徐菁偉,"應用於生醫感測器之1伏特13微瓦連續漸進式類比數位轉換器",國立成功大學電機所碩士論文,2008
    [20] 高碩廷,"一個0.8-V低功率類比前端積體電路應用於生醫訊號紀錄",國立交通大學電機與控制工程所碩士論文,2008
    [21] 柯啟育"應用於生醫植入式之低功率發射機",國立台灣科技大學電機所碩士論文,2014
    [22] Daily Care Bio-Medical Inc., “基本心電圖圖例簡介”
    [23] KUO-HSING CHENG, YU-LUNG LO, and WEI-BIN YANG, “A Novel Power-On Reset Circuit Without Capacitor”, Department of Electrical Engineering Tamkang University Tamsui, Taipei Hsien, Taiwan, R.O.C.
    [24] Jim Karki, "Active Low-Pass Filter Design", Texas Instruments Application Report SLOA049B - September 2002.
    [25] Rolf Schaumann, Haiqiao Xiao, and Mac E. Van Valkenburg, "Analog Filter Design", Oxford University Press International Second Edition.
    [26] Huseyin S. Savci, Ahmet Sula, Zheng Wang, Numan S. Dogan and Ercument
    Arvas, "MICS Transceivers: Regulatory Standards and Applications", IEEEProceedings SoutheastCon, pp.179–182, 2005.

    無法下載圖示 全文公開日期 2020/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE