簡易檢索 / 詳目顯示

研究生: 賴俊良
Jyun-Liang Lai
論文名稱: 應用於生醫系統的儀表放大器與資料轉換器
An Instrumentation Amplifier and A 10-bit Successive Approximation ADC for Biomedical System Application
指導教授: 姚嘉瑜
Chia-Yu Yao
口試委員: 陳筱青
Hsiao-Chin Chen
彭盛裕
Sheng-Yu Peng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 截波穩定低功耗放大器生醫類比前端系統低雜訊
外文關鍵詞: chopper stabilization, low noise amplifier, Biomedical analog front-end system, low power
相關次數: 點閱:303下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文設計一個應用於可攜式生醫系統的類比前端電路(AFE),電路包含類比前端放大器與類比數位資料轉換器(ADC),系統以低功耗與低雜訊為設計主軸,所以整體系統功率規格訂定在5u W以下,額定供應電壓1 V;類比前端放大器由三級放大器組成,第一級放大器是利用截波穩定技術消除雜訊,其後兩級則為可調增益的濾波器,使類比放大器輸出振幅符合ADC輸入訊號振幅的要求,在Post-simulation中類比前端放大器共消耗2.4u W,其中截波穩定放大器經修正電容數值後雜訊NEF可達到3以下。ADC解析度10 bit,使用超取樣技術,取樣頻率6.2k Hz,藉以降低ADC雜訊能量,Post-simulation中ADC功率消耗1.6u W,AFE整體系統共消耗4u W。

    晶片使用TSMC 0.18um 1P6M製程製作,類比電路使用Full-custom設計,數位電路則使用Verilog設計並用自動合成與自動繞線軟體完成,類比前端放大器的晶片面積包含腳位共 ,ADC晶片面積包含腳位共 ,整體AFE系統晶片面積包含腳位共 。


    An analog front-end (AFE) circuit for biomedical system application is proposed. The circuit included both analog front-end amplifier and analog digital converter (ADC). Since the design goals are low power and low noise, system’s power consumption is set to be less than 5 uW and the supply voltage is set to 1 V. The front-end amplifier is composed of a low-noise amplifier (LNA) and a programmable gain amplifier (PGA). The LNA uses the chopper stabilization technique to lower the impact of the flicker noise. The PGA has four gain levels controlled by two bits. The PGA adjusts output voltage of the front-end amplifier to suffice input voltage requirement of the ADC. Post-simulation results show that the power consumption of front-end amplifier is 2.4uW and the NEF of the chopper amplifier is less than 3.By using the oversampling technique, the resolution of the ADC is 10 bits under 6.2k-Hz sampling rate. Post-simulation result shows that the ADC’s power consumption is 1.6u W and the AFE's power consumption is 4u W.

    The chip is designed by using TSMC 0.18um 1P6M process. We select Full-custom design to implement the analog circuits of the chip. The digital circuit design follows the cell-based design flow. The chip area of the AFE amplifier is , the chip area of the ADC is , and the chip area of the entire AFE is .

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻探討 2 1.4 論文架構 3 第二章 理論背景 4 2.1 簡介 4 2.2 心電訊號及擷取問題 4 2.2.1 場効電晶體的熱雜訊(MOSFET Thermal Noise) 5 2.2.2 閃爍雜訊(Flicker Noise) 6 2.2.3 電路雜訊效能參數 7 2.3 截波穩定(Chopper Stabilization)技術與問題 9 2.3.1 截波穩定技術工作原理 9 2.3.2 截波穩定技術所遇到的問題 10 2.4 目前應用於生醫系統的儀表放大器介紹 12 2.4.1 傳統式儀表放大器 12 2.4.2 電流回授儀表放大器 13 2.4.3 微分差動儀表放大器 13 2.4.4 電容回授轉導放大器 14 2.5 類比前端電路系統規格與需求 16 第三章 應用於擷取心電訊號的前端放大電路設計 17 3.1 類比前端放大電路系統架構 17 3.1.1 電容回授式截波穩定儀表放大器 17 3.2 二級運算轉導放大器架構 21 3.3 電容回授式截波穩定放大器效能模擬 25 3.3.1 頻率響應、電源抑制比與共模拒斥比 25 3.3.2 電路雜訊模擬 26 3.4 仿電阻、補償電容與補償電阻 29 3.5 DSL積分器、共模回授電路 30 3.5.1 DSL積分器 30 3.5.2 轉導放大器的共模回授電路(Commode feedback circuit) 31 3.6 可調增益的帶通濾波器 32 3.7 偏壓電路 35 3.8 電路佈局與佈局後模擬 35 3.8.1 電路佈局 35 3.8.2 佈局後系統模擬 36 第四章 低功率10位元連續漸進式類比數位轉換器 38 4.1 簡介 38 4.2 系統規格 39 4.3 類比數位轉換器系統架構 39 4.3.1 SAR 系統流程圖 40 4.3.2 SAR系統時序圖 41 4.4 電容式數位類比轉換器 41 4.5 比較器 43 4.6 電路佈局圖 44 4.7 類比數位轉換器系統模擬結果 46 第五章 儀表放大器與資料轉換器之系統整合 48 5.1 簡介 48 5.2 系統架構 48 5.3 晶片佈局 49 5.4 系統模擬 50 第六章 晶片實現與驗證 52 6.1 設計流程 52 6.2 晶片腳位 52 6.3 量測環境設定 54 6.3.1 穩壓電路(Regulator) 54 6.3.2 電路雜訊與動態範圍的量測設定 54 6.3.3 頻率響應的量測設定與心電訊號量測設定 55 6.4 量測結果 55 第七章 總結與未來展望 56 7.1 討論 56 7.1.1 電路雜訊 56 7.1.2 晶片偏壓問題 57 7.2 結論 57 7.3 未來展望 58

    [1] 聯合國經濟與社會事務部http://unstats.un.org/unsd/demographic/
    [2] T. Denison, K. Consoer, and W. Santa et al., “A 2 W 100 nV Hz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2934–2945, Dec. 2007.
    [3] R. Wu, K. A. A. Makinwa, and J. H. Huijsing, “A chopper currentfeedback instrumentation amplifier with a 1 mHz noise corner and an AC-coupled ripple-reduction loop,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3232–3243, Dec. 2009.
    [4] R. Wu, K. A. A. Makinwa, and J. H. Huijsing, “A chopper currentfeedback instrumentation amplifier with a 1 mHz noise corner and an AC-coupled ripple-reduction loop,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3232–3243, Dec. 2009.
    [5] Enz, Christian C., and Gabor C. Temes. "Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization." Proceedings of the IEEE 84.11 (1996): 1584-1614.
    [6] HARRISON, Reid R.; CHARLES, Cameron. A low-power low-noise CMOS amplifier for neural recording applications. Solid-State Circuits, IEEE Journal of, 2003, 38.6: 958-965.
    [7] WATTANAPANITCH, Woradorn; FEE, Michale; SARPESHKAR, Rahul. An energy-efficient micropower neural recording amplifier. Biomedical Circuits and Systems, IEEE Transactions on, 2007, 1.2: 136-147.
    [8] ZOU, Xiaodan, et al. A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. Solid-State Circuits, IEEE Journal of, 2009, 44.4: 1067-1077.
    [9] FAN, Qinwen, et al. A 1.8 u W 60 nV /√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes. Solid-State Circuits, IEEE Journal of, 2011, 46.7: 1534-1543.
    [10] WEBSTER, John. Medical instrumentation: application and design. Wiley. com, 2009.
    [11] Jespers, Paul G. The Gm/ID Design Methodology, a Sizing Tool for Low-voltage Analog CMOS Circuits: The Semi-empirical and Compact Model Approaches. Vol. 29. Springer, 2010.
    [12] Enz, Christian C., and Eric A. Vittoz. Charge-based MOS transistor modeling: the EKV model for low-power and RF IC design. John Wiley & Sons, 2006.
    [13] Y. Tsividis, Operation and Model of the MOS Transistor, Second Ed., Boston: McGraw-Hill, 1999, ch. 4.
    [14] YEN, Chih-Jen; CHUNG, Wen-Yaw; CHI, Mely Chen. Micro-power low-offset instrumentation amplifier IC design for biomedical system applications. Circuits and Systems I: Regular Papers, IEEE Transactions on, 2004, 51.4: 691-699.
    [15] NG, Kian Ann; CHAN, Pak Kwong. A CMOS analog front-end IC for portable EEG/ECG monitoring applications. Circuits and Systems I: Regular Papers, IEEE Transactions on, 2005, 52.11: 2335-2347.
    [16] CHATURVEDI, Vikram; AMRUTUR, Bharadwaj. An area-efficient noise-adaptive neural amplifier in 130 nm cmos technology. Emerging and Selected Topics in Circuits and Systems, IEEE Journal on, 2011, 1.4: 536-545.
    [17] QIAN, Chengliang; PARRAMON, Jordi; SANCHEZ-SINENCIO, Edgar. A micropower low-noise neural recording front-end circuit for epileptic seizure detection. Solid-State Circuits, IEEE Journal of, 2011, 46.6: 1392-1405.
    [18] F. Bahmani and E. Sanchez-Sinencio, “A highly linear pseudo-differential transconductance,” in Proc. 2004 Eur. Solid-State Circuits Conf. (ESSCIRC), Belgium, 2004, pp. 111–114.
    [19] R. Assaad and J. Silva-Martinez, “Enhancing general performance of folded cascode amplifier by recycling current,” Electron. Lett., vol. 43, no. 23, Nov. 2007.
    [20] Ramirez-Angulo, Jaime, et al. "A free but efficient low-voltage class-AB two-stage operational amplifier." Circuits and Systems II: Express Briefs, IEEE Transactions on 2006: 568-571.
    [21] Che-Wei Chang, "Design and Application of Analog-to-Digital Converter. "National Taiwan University MS Thesis,July 2007.
    [22] Razavi, Behzad. Principles of data conversion system design. Vol. 126. New York: IEEE press, 1995.
    [23] Sauerbrey, Jens, Doris Schmitt-Landsiedel, and Roland Thewes. "A 0.5-v 1-μw successive approximation ADC." Solid-State Circuits, IEEE Journal of 38.7 2003: 1261-1265.
    [24] Chow, Hwang-Cherng, et al. "A 1.8 V, 0.3 mW, 10-bit SA-ADC with new self-timed timing control for biomedical applications." Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on. IEEE, 2005.
    [25] Johns, David A., and Ken Martin. Analog integrated circuit design. Wiley. com, 2008.
    [26] Yee, Y. S., L. M. Terman, and L. G. Heller. "A two-stage weighted capacitor network for D/AA/D conversion." Solid-State Circuits, IEEE Journal of, 1979: 778-781.
    [27] MIYAHARA, Masaya, et al. A low-noise self-calibrating dynamic comparator for high-speed ADCs. In: Solid-State Circuits Conference, 2008. A-SSCC'08. IEEE Asian. IEEE, 2008. p. 269-272.

    無法下載圖示 全文公開日期 2018/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE