簡易檢索 / 詳目顯示

研究生: 蔣宏瑋
Hung-Wei Chiang
論文名稱: 矽凝膠與矽膠貼片於增生性疤痕減少及抑制之功效評估
Evaluation of the efficacy of silicone gel silicone sheet in reducing and inhibiting hyperplastic scars
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 蔡協致
Hsieh-Chih Tsai
高震宇
Chen-Yu Kao
張浩銘
Hao-Ming Chang
林宣因
Suian-Yin Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 80
中文關鍵詞: 矽凝膠矽膠貼片增生性疤痕傷口癒合
外文關鍵詞: silicone gel, silicone sheet, hyperplastic scar, wound healing
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次實驗是利用矽膠的阻水性及透氣性來達到抑制、減少增生性疤痕的產生。本篇將探討體外模擬及動物實驗模式來驗證矽凝膠及矽膠貼片之功效。首先,體外模擬採用了豬皮作為皮膚的替代物,比較有塗抹矽凝膠與未塗抹矽凝膠的豬皮在水分散失速度上的差異。經實驗後,未塗抹矽凝膠的豬皮在12小時的失重率約為22%,而有塗抹矽凝膠的豬皮在12小時失重率為11%。上述可說明矽凝膠在豬皮的失重率上有顯著差異。此外,在矽膠貼片的部分主要使用MED6345這個產品。當純的MED6345遇到較濕潤的環境時,黏著力會下降。因此本次實驗中添加了Tris-co-Vp的共聚物來提升MED6345在濕潤態下的黏著力。在添加共聚物的矽膠貼片與未添加的矽膠貼片,利用豬皮模擬皮膚做拉伸試驗來檢測乾燥狀態下與濕潤狀態下矽膠貼片的黏著力。測試結果得出在乾燥狀態下矽膠貼片有添加共聚物或未添加共聚物的都有3.5-4N的黏著力表現。而在濕潤狀態下添加1至2%的共聚物時黏著力可以達到2.8-3N之間的黏著力;未添加共聚物的只剩0.8N的黏著力。因此添加共聚物會有效提升矽膠貼片在濕潤態下的黏著力。
    最後利用動物實驗來驗證矽凝膠與矽膠貼片對於抑制、減少增生性疤痕的功效。採用BALB/c這一品系的老鼠作為動物實驗模擬的品系,在其背上製造出兩個相似的傷口。一個做為實驗組給予材料而另一個作為對照組,利用自體比較的方式以減少個體間差異而影響傷口癒合速度。透過疤痕指數計算對照組在1.11,實驗組在1.04-1.06之間(針對增生性疤痕當疤痕指數為1時,代表與原本皮膚無差異)不管是矽凝膠還是矽膠貼片皆有達到抑制、減少疤痕的效果。


    In this experiment, the water resistance and air permeability of silicone gel and silicone sheet to inhibit and reduce the hyperplastic scars. In vitro simulation and animal experiment models to verify the efficacy of silicone gel and silicone sheet will be discussed in this thesis. First, pig skin was used to simulation the human skin to compare percentage of weight loss between silicone gel application and without silicone gel application. For the result, the weight loss percentage of pig skin without silicone gel was about 22% at 12 hours, while the weight loss rate of pig skin with silicone gel was about 11% at 12 hours. These results indicate that the silicone gel has a significant difference in the weight loss percentage of pig skin. Furthermore, MED6345 is mainly used in the part of the silicone sheet. When the pure MED6345 in moist environment, the adhesion will decrease. Therefore, Tris-co-Vp copolymer was added to improve the adhesion of MED6345 in moist environment. In the silicone sheet with the copolymer and the silicone sheet without addition, a tensile test is performed on the simulated skin of pig skin to detect the adhesive force of the silicone sheet in the dry and moist conditions. The test results showed that the silicone sheet with or without copolymer had a performance of 3.5-4N in the dry state. As 1 to 2% of the copolymer is added in the moist conditions, the adhesion still have about 3N; the unadded only has about 0.8N. Therefore, the addition of copolymer can effectively improve the adhesion of the silicone sheet in the wet state.
    Finally, animal experiments were used to analyze the effectiveness of silicone gel and silicone sheet for reducing hyperplastic scars. Two similar wounds were created on the backs of mice using the BALB/ C breed. Each mice have two wounds on the back, one was treated as the experimental group and the other nontreated as the control group. Self-comparison was used to reduce the difference between individuals and affect wound healing. According to the scar index calculation, the control group was around 1.11 and the experimental group was around 1.05 (for hyperplastic scars, when the scar index was 1, it meant no difference from the original skin) both silicone gel and silicone sheet could inhibit and reduce scars.

    目錄 摘要 II ABSTRACT III 表目錄: VI 圖目錄 VII 一、 研究動機與目標 1 二、 文獻回顧 3 2.1疤痕形成原理、原因及分類 3 2.2矽之特點與用於傷口上之功效 5 2.3動物實驗設計與規劃 9 三、 實驗方法 14 3.1材料 14 3.1.1 矽凝膠 14 3.1.2矽膠貼片 15 3.2方法 19 3.2.1矽凝膠製程: 19 3.2.2矽膠貼片MED6345製程 19 3.2.3.共聚物製備 20 3.2.4矽膠貼片MED6345與copolymer混和製程 20 3.2.5矽凝膠保水測試 20 3.2.6矽膠貼片黏著力測試 21 3.2.7動物實驗模組建立 22 四、 結果與討論 25 4.1結果 25 4.1.1 矽凝膠黏度與阻水性 25 4.1.2 矽凝膠黏度儀器分析 40 4.1.3 矽膠貼片copolymer鑑定 47 4.1.4 矽膠貼片copolymer提升MED6345濕潤態下黏性 52 4.1.5 動物實驗模組建立 57 4.1.6 動物實驗矽凝膠與矽膠貼片功效 58 4.2討論 64 4.2.1矽凝膠 64 4.2.2矽膠貼片 64 4.2.3動物實驗 65 六、結論 67 五、 參考文獻 69

    1. Kejian Wu, Peifu Tang, and Y. Lin, Basis for Soft Tissue Repair and Healing. Tutorials in Suturing Techniques for Orthopedics, 2021.
    2. Pan, L.F., et al., Safety and efficacy of botulinum toxin type A in preventing and treating scars in animal models: A systematic review and meta-analysis. International Wound Journal, 2021.
    3. Mecham, S., A. Sentman, and M. Sambasivam, Amphiphilic silicone copolymers for pressure sensitive adhesive applications. Journal of Applied Polymer Science, 2010. 116(6): p. 3265-3270.
    4. Wang, Z., et al., Silver Ion Hydrocolloid Gauze and Self-Adhesive Polyurethane Foam Dressing Combination Therapy Can Better Promote Healing of Skin Graft Donor Area Than Traditional Therapy: A Case Control Study. Wounds: a Compendium of Clinical Research and Practice, 2021.
    5. Odrobińska, J., M. Skonieczna, and D. Neugebauer, Micellar carriers of active substances based on amphiphilic PEG/PDMS heterograft copolymers: Synthesis and biological evaluation of safe use on skin. International journal of molecular sciences, 2021. 22(3): p. 1202.
    6. Hadi Mohammed, A., M. Bin Ahmad, and K. Shameli, Copolymerization of Tris (methoxyethoxy) vinyl silane with N-vinyl pyrrolidone: synthesis, characterization, and reactivity relationships. International Journal of Polymer Science, 2015. 2015.
    7. Mohammed, A.H., et al., Effect of crosslinking concentration on properties of 3-(trimethoxysilyl) propyl methacrylate/N-vinyl pyrrolidone gels. Chemistry Central Journal, 2018. 12(1): p. 1-9.
    8. Guo, S.a. and L.A. DiPietro, Factors affecting wound healing. Journal of dental research, 2010. 89(3): p. 219-229.
    9. CW., K., The microvessels in hypertrophic scars, keloids and related lesions: a review. Journal of Submicroscopic Cytology and Pathology, 1992. Apr;24(2):281-296. PMID: 1600518.
    10. Gabriel, V., Hypertrophic scar. Physical Medicine and Rehabilitation Clinics, 2011. 22(2): p. 301-310.
    11. Ankush Gosain, M.D.L.A.D., D.D.S., Ph.D, Aging and Wound Healing. World J. Surg, 2004.
    12. Alster, T.S. and E.L. Tanzi, Hypertrophic scars and keloids. American journal of clinical dermatology, 2003. 4(4): p. 235-243.
    13. Limandjaja, G.C., et al., The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Frontiers in Cell and Developmental Biology, 2020. 8(360).
    14. Akaishi, S., R. Ogawa, and H. Hyakusoku, Keloid and hypertrophic scar: neurogenic inflammation hypotheses. Medical hypotheses, 2008. 71(1): p. 32-38.
    15. C.T. Hallmark, L.P.W., N.E. Smeck, Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties. 1983.
    16. Araújo, L.A.D., F. Addor, and P.M.B.G.M. Campos, Use of silicon for skin and hair care: an approach of chemical forms available and efficacy. Anais Brasileiros de Dermatologia, 2016. 91(3): p. 331-335.
    17. Mori, M., et al., In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014. 88(3): p. 635-642.
    18. Bloemen, M.C., et al., Prevention and curative management of hypertrophic scar formation. Burns, 2009. 35(4): p. 463-475.
    19. Berman, B., et al., A review of the biologic effects, clinical efficacy, and safety of silicone elastomer sheeting for hypertrophic and keloid scar treatment and management. Dermatologic surgery, 2007. 33(11): p. 1291-1303.
    20. Zurada, J.M., D. Kriegel, and I.C. Davis, Topical treatments for hypertrophic scars. Journal of the American Academy of Dermatology, 2006. 55(6): p. 1024-1031.
    21. Barthel, H., et al., Particle sizes of fumed silica. Particle & Particle Systems Characterization, 1999. 16(4): p. 169-176.
    22. Barthel, H., Surface interactions of dimethylsiloxy group-modified fumed silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995. 101(2-3): p. 217-226.
    23. Romano, M.R., X. Xu, and K.K. Li, Vitreous substitutes: from tamponade effect to intraocular inflammation. 2014, Hindawi.
    24. Reddy, M.B., et al., Modeling of human dermal absorption of octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5). Toxicological Sciences, 2007. 99(2): p. 422-431.
    25. Wang, D.-G., et al., Review of recent advances in research on the toxicity, detection, occurrence and fate of cyclic volatile methyl siloxanes in the environment. Chemosphere, 2013. 93(5): p. 711-725.
    26. Marchi, S., et al., A Comparison of the Reactivity of Two Platinum Catalysts for Silicone Polymer Cross‐Linking by UV‐Activated Hydrosilation Reaction. Macromolecular Reaction Engineering, 2015. 9(4): p. 360-365.
    27. Wang, D., J. Klein, and E. Mejía, Catalytic systems for the cross‐linking of organosilicon polymers. Chemistry–An Asian Journal, 2017. 12(11): p. 1180-1197.
    28. Abdullahi, A., S. Amini-Nik, and M.G. Jeschke, Animal models in burn research. Cell Mol Life Sci, 2014. 71(17): p. 3241-55.
    29. Wong, V.W., et al., Surgical approaches to create murine models of human wound healing. Journal of Biomedicine and Biotechnology, 2010. 2011.
    30. Järvinen, T.A. and E. Ruoslahti, Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in mice. Proceedings of the National Academy of Sciences, 2010. 107(50): p. 21671-21676.
    31. Kapoor, M., et al., Effects of epicatechin gallate on wound healing and scar formation in a full thickness incisional wound healing model in rats. The American journal of pathology, 2004. 165(1): p. 299-307.
    32. Kim, M., H. Kim, and H.W. Kang, Comparative evaluations of hypertrophic scar formation in in vivo models. Lasers in surgery and medicine, 2018. 50(6): p. 661-668.
    33. Kanevsky, J., et al., Development and assessment of a cutaneous tissue stretch device as a novel scar therapy. Plastic and Aesthetic Research, 2016. 3: p. 351-358.
    34. Li, P., et al., Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear. The Journal of pathology, 2011. 223(5): p. 659-671.
    35. Yang, D.Y., et al., Establishment of a hypertrophic scar model by transplanting full-thickness human skin grafts onto the backs of nude mice. Plast Reconstr Surg, 2007. 119(1): p. 104-109.
    36. Momtazi, M., et al., A nude mouse model of hypertrophic scar shows morphologic and histologic characteristics of human hypertrophic scar. Wound repair and regeneration, 2013. 21(1): p. 77-87.
    37. Kloeters, O., A. Tandara, and T.A. Mustoe, Hypertrophic scar model in the rabbit ear: a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction. Wound repair and regeneration, 2007. 15: p. S40-S45.
    38. Saulis, A.S., et al., Silicone occlusive treatment of hypertrophic scar in the rabbit model. Aesthetic surgery journal, 2002. 22(2): p. 147-153.
    39. Reid, R.R., et al., Reduction of hypertrophic scar via retroviral delivery of a dominant negative TGF-β receptor II. Journal of plastic, reconstructive & aesthetic surgery, 2007. 60(1): p. 64-72.
    40. Huang, L.-p., et al., Paclitaxel reduces formation of hypertrophic scars in the rabbit ear model. Therapeutics and clinical risk management, 2015. 11: p. 1089.
    41. Deng, X., et al., Development of a porcine full-thickness burn hypertrophic scar model and investigation of the effects of Shikonin on hypertrophic scar remediation. Frontiers in pharmacology, 2018. 9: p. 590.
    42. Li, J., et al., Experimental models for cutaneous hypertrophic scar research. Wound Repair and Regeneration, 2020. 28(1): p. 126-144.
    43. Ahn, S.T., W.W. Monafo, and T.A. Mustoe, Topical silicone gel: a new treatment for hypertrophic scars. Surgery, 1989. 106(4): p. 781-787.
    44. Katz, B., Silicone gel sheeting in scar therapy. Cutis, 1995. 56(1): p. 65-67.
    45. MYEONGJIN KIM, SUNG WON KIM, and H.W. KANG*, Development of a reproducible in vivo laserinduced scar model for wound healing study
    and management Biomedical Optics Express, 2019. Vol. 10, Issue 4.
    46. Verhaegen, P.D., et al., Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair Regen, 2009. 17(5): p. 649-56.
    47. Huang, C. and R. Ogawa, Keloidal pathophysiology: Current notions. Scars Burn Heal, 2021. 7: p. 2059513120980320.

    無法下載圖示 全文公開日期 2032/01/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE