研究生: |
何智遠 Chih-yuan Ho |
---|---|
論文名稱: |
應用灰色理論與田口實驗方法於記憶體模組除料製程之品質改善與化學機械拋光參數分析 Quality Improvement of Memory Modules in Depanel Process and CMP Parameters Analysis Using Grey Theory and Taguchi Method |
指導教授: |
林榮慶
Zone - ching Lin |
口試委員: |
傅光華
Kuang-hua Fuh 成維華 Wei-hua Chieng 王國雄 Kuo-shong Wang 葉維磬 Wei-ching Yeh 許覺良 Chaug-liang Hsu 黃佑民 You-min Huang |
學位類別: |
博士 Doctor |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 灰色理論 、田口方法 、記憶體模組 、除料製程 、化學機械拋光 |
外文關鍵詞: | Grey Theory, Taguchi method, memory modules, Depanel process, CMP |
相關次數: | 點閱:677 下載:48 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文旨在應用灰色理論、田口實驗方法與製程統計分析等之理論於記憶體模組除料製程之品質改善與化學機械拋光參數分析。
本文首先使用變異數分析與灰關聯理論分析,探討田口實驗計劃法之CMP實驗數據:如拋光正向壓力、拋光襯墊盤轉速、工件吸附盤轉速與擺動臂速度等參數,結果顯示兩者排序相同,同時針對灰關聯理論中的數據正規化對排序的靈敏度提出分析結果。
影響記憶體除料製程中產品長度尺寸精度有床台與夾具之誤差、刀具位置、刀具磨耗、機台震動與刀具溫度等等。本文結合灰關聯分析與統計製程分析的模式找出影響除料製程準確度的最重要參數為刀具的變異,其中以刀具初期磨耗為主要因素。
本文提出灰預測刀具補償法、預磨製程法與中心偏移法解決除料製程中,記憶體模組經常產生尺寸變異的問題。結果顯示三種方法均可改善產品之品質尺寸。此外本文使用製程能力指數計算三種方法改善之前與改善後的結果,並分析三種方式之優缺點。
為了研究鍍膜碳化鎢刀具之使用壽命與記憶體品質,本文使用TiAlCN與Zr鍍膜兩種市售之鍍膜碳化鎢刀具與自行製作之ZrN鍍膜碳化鎢刀具進行銑切記憶體模組除料製程實驗比較。實驗結果顯示,鍍膜刀具確實在使用壽命與記憶體產品品質上均有更佳的效果。
本文使用直流脈衝磁控濺鍍氮化鋯於碳化鎢刀具上,並由田口實驗方法結合灰關聯分析模式探討濺鍍製程最佳參數。由實驗得知,磁控濺鍍法具有方向性,所以本文設計一濺鍍刀具旋轉裝置,並找出最佳的濺鍍轉速。
本文的研究成果可作為記憶體模組之除料製程中,尺寸變異問題的解決方案的重要參考。
The major objective of this thesis is to apply theories such as Grey Theory, Taguchi Method and Statistical Process Control (SPC) etc. to the quality improvement of the depanel process of the memory modules, as well as the analysis of the CMP (Chemical Mechanical Polishing) parameters.
This thesis firstly uses ANOVA (Analysis of Variance) and grey relation analysis to investigate into CMP experiment data of Taguchi Method such as: polishing down pressure, polishing platen speed, carrier speed and arm oscillation etc. The result shows that the order of importance is the same. At the same time, an analytical result is proposed regarding the sensitivity of the data regularization and data of the grey relation theory towards the order of importance.
Factors affecting the precision of the products during the memory modules depanel process include: error between the tables and the fixtures, location of the tool, tool wear, machine vibration and cutting temperature etc. By combining the model of grey relation analysis and SPC, this thesis finds that the most important parameter affecting the accuracy of depanel process is the variation of tool, in which the preliminary tool wear can be regarded as the most important factor.
This research proposes to use grey prediction compensation method, pre-treated method and shift center deviation method to solve the problems of dimensional variation that often occurs in the memory modules. The result shows that these three methods can all improve the quality of the products. Besides, this thesis uses process capability indices to calculate the result of these three methods before and after improvement, as well as the advantages and the disadvantages of them.
In order to research into the tool life and the quality of the memory modules of the tungsten carbide router, this thesis uses two types of commercial available tungsten carbide router, which are TiAICN and Zr respectively, to undergo the experimental comparison towards the milling depanel process. Experimental result shows that the coated tools indeed carry a better effectiveness in their tool life and the quality of the memory module products.
This thesis uses Pulsed-DC Reactive Magnetron Sputtering (ZrN) on the tungsten carbide router, and by combining Taguchi Method and grey relation analysis, it analyzes into the optimal parameters for sputtering process. Experiment result shows that, magnetron sputtering is indicative in direction. Therefore, this thesis designs a rotational device for the sputtering tool and finds the optimal sputtering speed.
These research results can be provided as valuable references in solving the dimensional variation problems in the depanel process of memory modules.
TPCA, PCB Mechanical Manufacturing, Taiwan Printed Circuit Association, Taipei, pp. 35-75 (2004).
2. Deng, J. L., “Modeling of The GM Model of Grey System,” Essential Topics on Grey System Theory and Application, China Ocean Press, pp.40-53(1988).
3. 鄧聚龍,灰色系統理論與應用,第37∼95頁,台北,高立,民國八十九年。
4. Lin, Z. C. and W. S. Lin,, “Measurement point prediction of flatness geometric tolerance by using grey theory,” J. Int. Soc. for Precision Eng. and Nanotech., Vol. 25, pp. 171-184(2001).
5. Hsu, C. C. and C. Y. Chen, “Application of improved grey prediction model for power demand forecasting,” Energy Conversion and Management, Vol. 44, pp. 2241-2249(2003).
6. Chen, C.K. and T. L. Tien, Study on Prediction and Decision Making by Grey Theory, PH.D. Thesis, National Cheng Kung University, pp.38-55(1995).
7. Taguchi, G, S. Konishi and Y. Wu, Quality Engineering Series, Vol. 1, Taguchi Methods, Research and Development, ASI, (1992).
8. Phadke, M. S., Quality Engineering Using Robust Design, Prentice Hall, Ch. 3, (1989).
9. 田口玄一、橫山巽子,品質設計的實驗計畫法,台北,中國生產力中心,第二章,民國八十四年。
10. 李輝煌,田口方法-品質設計的原理實務,第87∼115頁,台北,高立,民國八十九年。
11. Grant, E.L. and R. S. Leavenworth, Statistical Quality Control, McGrraw-HILL, Singapore, pp.68-99(1980).
12. Oakland, J. S., Statistical Process Control, William Heinemann, London, pp. 72-112(1986).
13. Mitra, A. T., Fundamentals of Quality Control and Improvement, 2nd ed., Prentice-Hall, New Jersey, pp.45-84(1998).
14. Montgomery, D. C., Introduction to Statistical Quality Control, John Wiley & Sons, Inc. pp.114-134(2000).
15. Box, G. E. and P. Kramer, “Statistical process monitoring and feedback adjustment-a discussion,” Technometrics, Vol.34, No.1, pp.251-267 (1992).
16. Tlusty, J., Manufacturing Processes and Equipment, Prentice Hall, New Jersey, pp.458-463(1999).
17. Shaw, Milton C., Metal Cutting Principle, Clarendon press, New York, Chapter 14(1984).
18. Mishnaevsky, L. L., “Mathematical Modelling of Wear of Cemented Carbide Tools in Cutting Brittle Materials,” International Journal of Machine Tools & Manufacture, Vol. 35, No. 5, pp. 717-724(1995).
19. Hung, N. P. and C. H. Zhong, “Cumulative tool wear in machining metal matrix composites Part 1: Modelling,” Journal of Materials Processing Technology, Vol. 58, pp.109-113(1996).
20. 傅光華,切削刀具學,第55~85頁,台北,高立圖書,民國74年。
21. Stahlberg, U. and H. Jonas, “A comparison between two wear models,” Journal of Materials Processing Technology, Vol. 87, p.223-229(1999).
22. Huang Y. and T. G. Dawson, “Tool crater wear depth modeling in CBN hard turning,” Wear, Vol. 258, pp.1455-1461(2005).
23. Wardany T. I. and M. A. Elbestawi, “Prediction of Tool Failure Rate in Turning Hardened Steels,” International Advanced Manufacturing Technology, Vol. 13, pp.1-16(1997).
24. Dou S. S., Y. T. Du and W. X. Shi, “The Detection and Compensation of Tool Wear in Process,” Journal of Materials Processing Technology, Vol.48, pp.283-290(1995).
25. Lim, G. H., “Tool-wear monitoring in machine turning, ” Journal of Materials Processing Technology, Vol. 51, pp. 25-36(1995).
26. Schulz H. and T. Moriwaki, “High-Speed Machining”,Annals of the CIRP,Vol.41, p.637-641(1992).
27. Smith S. and J. Tlusty, “Update on High-Speed Milling Dynamics,” J. of Eng. For Ind.,Vol.112, pp.142-149(1990).
28. Paro, J., I. Nieminen and V. Kauppinen, “High-speed milling in tooling production,” Journal of Materials processing Technology, Vol.52, pp.27-32(1995).
29. Dolinsek, S., S. Ekinovic and J. Kopac, “A contribution to the understanding of chip formation in high-speed cutting of hardened steel,” Journal of Materials Processing Technology, Vol.157-158, pp. 485-490 (2004).
30. Nieminen, I., J. Paro and V. Kauppinen, “High Speed Milling of Advanced Materials,” Journal of Materials Processing Technology, Vol.56, pp.24-26(1996).
31. Malyer, E. and A. Oztarhan, “Wear behavior of nitrogen implanted PVD-coated hard metal cutting inserts,” Surface and Coating Technology, Vol.196, pp.369-372(2005).
32. Rech, J., J. L. Battaglia and A. Moisan, “Thermal influedce of cutting tool coatings,” Journal of Materials Processing Technology, Vol. 159, pp.119-124(2005).
33. Toman M. G. and M. John, “Modelling the orthogonal machining process using coated cemented carbide cutting tools,” Journal of Materials Processing Technology, Vol. 118, pp.293-300(2001).
34. Su, Y. L., S. H. Yao, C. S. Wei and C. T. Wu, “Analysis and design of a WC milling cutter with TiCN coating,” Wear, Vol. 215, pp.59-66(1998).
35. Dai, M., K. Zhou, Z. Yuan, Q. Ding and Z. Fu, “The cutting performance of diamond and DLC-coated cutting tools,” Diamond and Related Materials, Vol. 9, pp.1753-1757(2000).
36. Lahres, M., and G. Jorgensen, “Properties and dry cutting performance of diamond-coated tools,” Surface and Coating Technology, pp.505-513(1994).
37. Kopac, J., “Influence of cutting material and coating on tool quality and tool life,” Journal of materials Processing Technology, Vol.78, pp95-103(1998).
38. Vossen J. L. and W. Kerm, Thin Film Process, Academic Proc., pp. 134-156(1991).
39. Westwood, W. D., Handbook of Plasma Processing Technology, Noyes Publication, Park Ridge, New Jersey, USA, pp.186-220(1990).
40. Smith, D. L., Thin-Film Deposition Principles and Practice, McGraw-Hill Companies, pp.483-499(1999).
41. Wang, Y. C., ”A Study of PVD coatings and die materials forextended die-casting die life,” Surface and Coating Technology, Vol.94-95, pp.60~63(1997).
42. Meier, G., Z. Kocker and K.H. Habig, ”Influence of different Production parameters on the functional behavior of tools and parts after coating,” Surface and coating Technology, Vol.88, pp.294~304(1996).
43. Donald M. M., Handbook of Physical Vapor Deposition (PVD) Processing, Westwood,N.J., Noyes Publication , pp.55-79 (1998).
44. Jonsson, B. and S. Hogmark, Hardness Measurements of Thin Films, Thin Solid Films, VOL. 114, pp.257-269(1994).
45. Gautier, C. and J. Machet, ”Study of the growth mechanisms of chromium nitride films deposited by vacuum ARC evaporation,” Thin Solid Films, Vol.295, pp.43~52(1997).
46. 陳寶清,真空表面處理工學,第28∼47頁,表面工業雜誌社,民國八十一年。
47. 金屬工業研究發展中心,金屬加工用刀具材料及處理技術手冊,第49∼68頁,高雄市,民國八十一年。
48. Ohring, M., The Materials Science of Thin Films, Academic Press, UK, pp. 88~121(1992).
49. Zhitomirsky, V. N., I. Grimberg, R. L. Boxman, N. A. Travitzky, S. Goldsmith and B. Z. Weiss, “Vacuum Arc Deposition and Microstructure of ZrN-Bases Coatings,” Surface and Coatings Technology, Vol.207, pp. 94-95(1997).
50. Tavares, C. J., L. Rebouta, M. Andritschky and S. Ramos, “Mechanical characterisation of TiN/ZrN multi-layered coatings,” Journal of Materials Processing Technology, Vol. 92-93, , pp. 177-183(1999).
51. Yotsuya, T., M. Yoshitake and T. Kodama, “Low-Temperature Thermometer Using Sputtered ZrNx Thin Film,” Cryogenics, Vol. 37, pp.817-822 (1998).
52. Ramana, J.V.; Kumar, Sanjiv; David, Christopher; A.K. Ray and V.S. Raju, “Characterisation of zirconium nitride coatings prepared by DC magnetron sputtering,” Materials Letters, Volume: 43, Issue: 1-2, March, pp. 73-76 (2000).
53. Tanabe, K., H. Asano, Y. Katoh and O. Michikami, “Properties of Superconducting ZrN Thin Films Deposited by DC Reactive Magnetron Sputtering ,” J. Appl. Phys., Vol. 26, No. 5, pp.570-576(1987).
54. Milosev, I., H. H. Strehblow and B. Navinsel, “Comparison of TiN, ZrN and CrN Hard Nitride Coatings: Electrochemical and Thermal Oxidation,” Thin Solid Films, Vol.303, pp.246-254(1997).
55. Nose, M., M. Zhou, E. Honbo, M. Yokota, and S. Saji, “Colorimetric Properties of ZrN and TiN Coatingd Prepared by DC Reactive Sputtering,” Surface and Coatings Technology, Vol. 142-144, pp.211-217(2001).
56. Azevedo, S., “Charged particle with magnetic moment in the background of line topological defect,” Physics Letters A,Vol. 307, Issue: 1, pp. 65-68 (2003).
57. 林啟發、馮明憲、戴寶通,電漿輔助化學氣相沉積之介電質在化學機械研磨中特性與製程整合之研究,碩士論文,國立交通大學材料科學與工程研究所,第45~51頁,民國八十五年。
58. Elmustafa, A. A. and D. S. Stone, “Indentation size effect in polycrystalline F.C.C.metals,” Acta Materialia, Vol.50, pp.3641~3650(2002).
59. Cheng, Y. T. and C.M. Cheng, “What is indentation hardness?,” Surface and Coatings Technology , Vol.133~134, pp.417~424(2000).
60. Baker, S. P., “Between nanoindentation and scanning force microscopy: Measuring mechanical properties in the nanometer regime,” Thin Solid Films, Vol. 308-309, pp.289~296(1997).
61. Bhushan, B., Handbook of micro/nanotribology, 2nd ed., CRC Press, BocaRaton, pp.34~78 (1999).
62. 楊恆傑,直流磁控濺鍍鋯及氮化鋯薄膜性質結構與擴散組障層應用之研究,國立成功大學材料科學及工程系,碩士論文,第74~77頁,民國九十一年。