簡易檢索 / 詳目顯示

研究生: 胡宗良
Tsung-Liang Hu
論文名稱: 氫化鋯對護套裂縫之影響分析方法探討
Investigation of the Effects of Zirconium Hydride on Cladding Crack
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 曾哲聰
Che-Chung Tseng
林宗鴻
Tsung-Hung Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 71
中文關鍵詞: 氫化鋯燃料丸護套應力強度因子J積分應變能密度
外文關鍵詞: hydrides, pellet, cladding, stress intensity factor, J integral, strain energy density
相關次數: 點閱:230下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於燃料丸端面製造缺陷問題,導致燃料丸於運轉期間對護套造成較高之應力集中且產生局部低溫現象,使氫原子隨溫度梯度往低溫區擴散並於護套外側析出脆性之氫化鋯,致使初始裂縫於護套外側形成。在持續受到溫度與壓力的作用下,氫化鋯將產生方位重排的現象,在氫化鋯持續析出的成長階段,氫化鋯會逐漸排向不利於母材之機械性質方向,而裂縫尖端前之氫化鋯會排向有利於裂縫成長的徑向方位,使裂縫持續由外往內成長,成為不預期的破損機制。
    本研究利用ANSYS有限元素分析軟體將燃料丸與護套間機械交互作用之問題導入模擬分析中,在燃料丸有缺角的情況下,建立含有初始裂縫之護套模型與具脆性之氫化鋯模型於裂縫尖端前,並設定適當之邊界條件,分析氫化鋯對護套裂縫之影響。其分析內容包含:氫化鋯與裂縫之間的水平距離、垂直距離、氫化鋯面積大小、有無環向氫化鋯分布及燃料丸的缺角變化。觀察各項分析之應力強度因子(KI)及J積分之分析結果,並探討氫化鋯對護套裂縫之影響。本研究中還有探討氫化鋯之不同裂開型態對護套裂縫造成之影響,並觀察應變能密度分布之結果,探討其對護套裂縫成長之影響,使護套之裂化機制更具完整性。


    The pellet fabrication defect “Missing Pellet Surface (MPS) ” became an important failure mechanism in the past decade, and the unexpected high stress induced on cladding inner surface was identified as “non-classical PCI”. The failure root cause analysis of some leaking rods indicated that hydrides may play an important role of the outside-in cracking. The MPS will cause the temperature gradient on the cladding and it will induce the hydrogen re-distribution, and the precipitated hydride could initiate cladding crack and rod failure.
    Our study proposed a methodology to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation. In this study we applied stress intensity factor KI and J integral to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, degree of MPS, and the presence of circumferential hydride. In this study we also discussed the hydride split in different kind of ways and applied the strain energy density theory to evaluate the crack stability.
    This study is helpful to understand the hydride effect of Pellet-Cladding Mechanical Interaction (PCMI) and contains a reliable cladding integrity evaluation for the effects of zirconium hydride on cladding crack.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 研究背景、動機與目的 1 1.2 文獻回顧 3 1.3 本文架構 5 第二章 理論基礎 8 2.1 J積分 8 2.2 應力強度因子 9 2.3 應變能密度理論 11 第三章 有限元素分析 17 3.1 有限元素法介紹 17 3.2 有限元素模擬 19 3.2.1 元素選定及網格化 20 3.2.2 材料性質 21 3.2.3 邊界條件 21 3.2.4 求解運算及後處理 22 3.2.5 收斂性分析 23 3.3 氫化鋯位置與型態對裂縫之影響 24 3.3.1 建立含初始裂縫的核燃料護套2D模型 25 3.3.2 氫化鋯與裂縫間之水平及垂直距離對裂縫之影響 25 3.4 氫化鋯面積大小對裂縫之影響 26 3.5 燃料丸缺角大小對裂縫之影響 27 3.6 有無環向氫化鋯分布對護套裂縫之影響 27 3.7 氫化鋯之不同裂開型態對護套裂縫之影響 28 第四章 分析結果與討論 40 4.1 收斂性分析結果 40 4.2 氫化鋯於裂縫尖端前不同位置之分析結果 43 4.3 氫化鋯面積大小變化之分析結果 44 4.4 燃料丸缺角變化之分析結果 45 4.5 有無環向氫化鋯分布之分析結果 45 4.6 氫化鋯不同裂開型態之應變能密度分析結果 46 第五章 結論與建議 67 5.1 結論 67 5.2 未來展望 68 參考文獻 70

    [1]H. S. Rosenbaun, J. H. Davies and J. Q. Don, “ Interaction of Iodine with
    Zircaloy-2 ,” Geap-51005,1966.
    [2]H. S. Rosenbaun, “The Interaction of Iodine with Zircaloy-2,”
    Electrochem. Tech., Vol.4,pp.153-156,1966.
    [3]B. Cox, ’’Pellet-Clad Interaction (PCI) Failures of Zirconium Alloy
    Fuel Cladding a Review,’’ J.Nucl.Mater., Vol.172,pp.249-292,1990.
    [4]C. K. Chao and C. C. Tseng, “Pellet Crack Mechanism at Power Ramps,”
    J.Nucl.Mater. Vol.199, pp.159-166,1993.
    [5]C. Powers, P.D. Erlangen, M. Billaux, ’’Hot Cell Examinations Results of
    Non-Classical PCI Failures,’’ Proceedings of the Water Reactor Fuel
    Performance Meeting, October 2~6, Kyoto, Japan. 2005.
    [6]J.S. Lee, J.S. Yoo, H.K. Kim, D. Mitchell, and Y. Aleshin ,“The
    Mechanical Behavior of Pellet-Cladding with the Missing Chip under
    PCMI Loadings during Power Ramp,” Proceedings of the 2007
    International LWR Fuel Performance Meeting San Francisco, California,
    September 30 – October 3, Paper 1022, 2007.
    [7]H. Hayashi, K. Ogata, T. Baba and K. Kamimura, “Research Program to
    Elucidate Outside-in Failure of High Burnup Fuel Cladding,” Journal of
    Nuclear Science and Technology, Vol.43, No. 9, pp.1128–1135, 2006.
    [8]H. Maki, and M. Sato. “Thermal Diffusion of Hydrogen in Zircaloy-2
    Containing Hydrogen beyond Terminal Solid Solubility,” Journal of
    Nuclear Science and Technology 12(10), pp.637-649, 1975.
    [9]Y. Aleshin, C. Beard, G. Mangham, D. Mitchell, E. Malek, and
    M. Young, “The Effect of Pellet and Local Power Variations on PCI
    Margin,” Proceedings of Top Fuel 2010, Orlando, Florida, USA,
    September 26-29,Paper 041, 2010.
    [10]C. C. Tseng, M. H. Sun, and C. K. Chao, “Hydride effect on crack
    instability of Zircaloy cladding,” Journal of Nuclear Engineering and
    Design, Vol. 270, April 15, pp.427–435, 2014.
    [11]J. D. Eshelby, “Calculation of Energy Release Rate,” Prospects of
    FractureMechanics, Sih, Van Elst, Broek, Ed., Noordhoof, pp.69-84,1974.
    [12]G. P. Cherepanov, “Crack Propagation in Continuous Media,” USSR, J.
    Appl. Math. And Mech. Translation 31, pp. 504, 1967. 
    [13]J. R. Rice, “ A Path Independent Integral and the Approximate Analysis
    of StrainConcentration by Notchrs and Cracks,” J. Appl. Mech.,
    pp. 379-386, 1968.
    [14]J. W. Hutchinson, “ Singular Behavior at th End of a Tensile Crack Tip in a
    Hardening Material,” Journal of the Mechanics and Physics of Solids,
    Vol. 16, pp.13-31,1968.
    [15]J. R. Rice and G. F. Rosengren, “Plane Strain Deformation near a Crack
    Tip in a Power-Law Hardening Material,” Journal of the Mechanics and
    Physics of Solids, Vol. 16, pp. 1-12, 1968.
    [16]E. Beltrami, “Aslle Condizioni di Resistenza dei corpi Elastic, ”
    Rendiconto del Reale Istituto Lombardo, Ser.II, Tomo XVIII 1985.
    [17]G. C. Sih, “Some Basic Problem in Fatigue Mechanics and New
    Concepts,” J. Engrg. Fracture. Mech, Vol.5,pp.365-377,1973.
    [18]M. Kuroda, K. Yoshioka, S. Yamanaka, H. Anada, F. Nagase and
    H. Uetsuka, “Influence of Precipitated Hydride on the Fracture Behavior
    of Zircaloy Fuel Cladding Tube,” Journal of Nuclear Science and
    Technology, Vol. 37, No. 8, pp.670–675, 2000.
    [19]孫銘宏, “燃料丸與護套機械作用-氫化鋯效應,” 國立臺灣科技大學
    機械工程系碩士論文,2012。

    QR CODE