簡易檢索 / 詳目顯示

研究生: 鐘震洲
Chen-Chou Chung
論文名稱: Inconel 738葉片高溫雷射粉末披覆之材料特性研究
Material Characteristic of High Temperature Laser Powder Cladding on Inconel 738 Blades
指導教授: 雷添壽
Tien-Shou Lei
口試委員: 李驊登
Hwa-Teng Lee
吳憲政
Hsien-Cheng Wu
吳翼貽
Ye-Ee Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 鎳基超合金Inconel 738雷射披覆X-ray殘留應力儀高溫拉伸潛變破斷
外文關鍵詞: Nickel-based superalloy, Inconel 738, laser cladding, X-ray residual stress analyzer, high temperature tension test, creep rupture
相關次數: 點閱:193下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎳基超合金Inconel 738由於具有良好的高溫機械性質及抗腐蝕能力,經常使用於氣渦輪機高溫段動葉片材料。葉片在長時間運轉下,易因高溫疲勞、腐蝕、潛變及異物撞擊(FOD)等因素造成葉面或頂部氣封環傷損。為降低運轉維護成本,輕微受損之葉片通常可使用強度稍低的Inconel 625粉末搭配同軸雷射來披覆銲補,但若欲銲修頂部氣封環等需要高強度材料的部位,則須使用與母材相同強度之Inconel 738粉末。
    Inconel 738因銲接性差,母材在無高溫預熱的情況下實施雷射披覆銲補易發生凝固熱裂及HAZ液態龜裂。本研究旨在探討高溫預熱雷射披覆銲補製程之參數,過程中並輔以X-ray殘留應力量測,觀察披覆銲補與銲後固溶時效處理對於殘留應力的影響,最後再進行高溫拉伸及潛變破斷試驗以比較銲補試片與母材試片之高溫機械性質。
    研究結果顯示Inconel 738葉片試片於預熱溫度780~900℃,雷射功率1800W與走速900 mm/min之參數下,施以Inconel 738雷射粉末披覆銲補可得到無凝固熱裂及接近母材強度之銲道,未來可將成果實際應用於Inconel 738氣渦輪機葉片之雷射披覆銲補。


    Nickel-based superalloy Inconel 738 has been applied as a material for gas turbine blade due to its excellent mechanical strength and anti-corrosion ability in high temperature operation environment. After long time service, blade surface or top of seal ring area could be damaged cause of high temperature fatigue, corrosion, creep and foreign object damage (FOD). In order to reduce operation and maintenance costs, typically use lower strength powder such as Inconel 625 with coaxial laser to repair the slight damage blade. However, it shall use Inconel 738 powder to repair the top of seal ring which needs strength as high as base metal .
    Due to poor weldability, it could occur solidification crack and HAZ liquation crack when Inconel 738 powder clad on the Inconel 738 BM without high pre-heat temperature. This study is to find out parameter of laser cladding with high pre-heat temperature, and use X-ray residual stress analyzer to watch for changes in residual stress of weldment after cladding and heat treatment, and finally verify the strength of cladding layer with high temperature tension test and creep rupture test.
    The results reveal that the specimen of Inconel 738 blade cladded with pre-heat temperature of 780~900℃, laser power 1800W and travel speed 900 mm/min, will get approximate strength to base metal without solidification crack, so that high temperature laser cladding can be applied in practical repair of Inconel 738 gas turbine blades.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 前言 1 第二章 原理及文獻探討 4 2.1 燃氣渦輪機葉片 4 2.1.1燃氣渦輪機葉片之材質 4 2.1.2燃氣渦輪機葉片之損傷 5 2.2 鎳基超合金 8 2.2.1 鎳基超合金之分類 8 2.2.2 鎳基超合金之相組成 12 2.2.3 Inconel 738鎳基超合金之銲接性 21 2.3 雷射加工製程 24 第三章 實驗方法 30 3.1 實驗流程與材料備製 30 3.2 輝光放電成份分析 34 3.3 試片殘留應力量測 34 3.4 雷射粉末披覆銲補製程 37 3.5 固溶時效熱處理 37 3.6 披覆缺陷檢驗 38 3.7 試片機械性質測試 40 3.8 顯微組織觀察 45 第四章 結果與討論 46 4.1 試片固溶處理 46 4.2 常溫雷射粉末披覆銲補之參數篩選 52 4.2.1 常溫披覆銲補試片之即時RT檢測 52 4.2.2 常溫披覆銲補試片之金相觀察與硬度量測 54 4.3 高溫雷射粉末披覆銲補 62 4.3.1 高溫披覆銲補試片之即時RT檢測 64 4.3.2 高溫披覆銲補試片之殘留應力與硬度量測 64 4.3.3 高溫拉伸試驗 74 4.3.4 潛變破斷試驗 79 第五章 結論 84 參考文獻 86 作者簡介 90

    [1] G. Timothy and B. Thomas, "Update Options for the MS7001 Heavy Duty Gas Turbine", GE Energy
    [2] 吳憲政,「鎳基超合金IN738銲接性研究」,台灣電力公司研究報告 (1996)。
    [3] "Super Alloy Compositions - Gas Turbine Materials", SULZER
    [4] D. Y. Kim, J. H. Hwang and K.S. Kim, "A study on fusion repair process for a precipitation hardened IN738 Ni-based superalloy", Journal of Engineering for Gas Turbines and Power, Vol. 122, pp.457-461 (2000)
    [5] 吳憲政,「氣渦輪機葉片銲修研究完成報告」,台灣電力公司研究報告 (2000)。
    [6] J. Thompson and N. Beasley, "For the Years to Come", G.P Putnam and Sons, New York and Longman, Green and Co., pp.143 (1960)
    [7] C. Sponaugle, "History of Haynes International", Inc. Pittsburgh ENGINEER, pp.7-9 (2005)
    [8] J. N. Dupond, J. C. Lippold and S. D. Kiser, "Welding metallurgy and weldability of nickel-base alloys", John Wiley & Sons, Inc. (2009)
    [9] C. T. Liu and J. O. Stiegler, ASM Handbook, Vol. 2, pp.913-942 (1990)
    [10] I. M. Lifshitz and V.V. Sloyozov, "The kinetics of precipitation from supersaturated solid solutions", Journal of Physical Chemistry of Solids, pp.35-50 (1961)
    [11] P. H. Thornton, P. H. Davies and T. L. Johnston, "Temperature dependence of the flow stress of the gamma prime phase based upon Ni3Al", Metallurgical Transcations A, pp.207-218 (1961)
    [12] M. Sundararaman and P. Mukhopadhyay, "Overlapping of γ" precipitate variants in Inconel 718", Materials Characterization, pp.191-196 (1993)
    [13] R. F. Decker and J. R. Mihalisin, "Coherency strains in gamma prime hardened nickel alloys", Transactions of ASM Quarterly, pp.481-489 (1969)
    [14] H. E. Baker, "Alloy phase diagrams", ASM International(1992)
    [15] P. Beardmore, R. G. Davies and T. L. Johnston, "Temperature dependence of the flow stress of nickel-base alloys", Transactions of AIME, pp.1537-1545 (1969)
    [16] N. Saunders, Z. Guo, A. P. Miodownik and J. P. Schille, "Modeling the material properties and behavior of Ni- and Ni-based superalloys", ASM International, pp. 571-580 (2006)
    [17] B. J. Piearcey and R.W. Smashey, Trans. AIME, pp.451-457 (1967)
    [18] C. T. Sims and W. C. Hagel, "The Superalloy", Schenectady, New York, Cincinnati, Ohio, April (1972)
    [19] W. L. Clarke and G. W. Titus, "Long-Time Stability of Hastalloy X", ASM Metal Congress, Cleveland, Ohio, Oct. (1967)
    [20] C. Hays and J. Mater, Eng. Perform., 16 (6) , pp.730-735 (2007)
    [21] M. T. Kim, D.S. Kim and O. Y. Oh, "Effect of γ' precipitation during hot isostatic pressing on the mechanical property of a nickel-based superalloy", Material Science and Engineering A, pp.218-225 (2008)
    [22] T. Anurag, "Microstructural responses of a nickel base cast IN-738 superalloy to a variety of pre-weld heat-treatments", A thesis, University of Manitoba (1997)
    [23] G. Cam and M. Kocak, "Process in Joining of Advanced Materials ", International Materials Reviews, 43, No. 1, pp.1-44 (1998)
    [24] K. Banerjee, N. L. Richards and M. C. Chaturvedi, Metall. Mater. Trans. A, 36 (7), pp.1881-1890 (2005)
    [25] M. F. Chiang and C. Chen, "Induction-assited laser welding of IN-738 nickel-base superalloy", Materials Chemistry and Physics, 114, pp.415-419 (2009)
    [26] J. Chen and L. Xue, "Process-induced microstructural characteristics of laser consolidated IN-738 superalloy", Materials Science and Engineering A, 527, pp.7318-7328 (2010)
    [27] Metal Handbook 9th ed., ASM, vol.6, pp. 771-803 (1981)
    [28] L. Sexton, S. Lavin and G. Byrne, "Laser cladding of aerospace materials", Journal of Materials Processing Technology, 122, pp. 63-68 (2002)
    [29] J. I. Nurminen and J. E. Smith, "Parametric Evaluations of Laser/Clad Interactions for Hardfacing Applications", Lasers in Materials Processing, ASM Metals Park, OH, pp. 94-105 (1983)
    [30] P. S. Prevéy, "X-ray Diffraction Residual Stress Techniques" , Metals Handbook, 10, Metals Park, American Society for Metals, pp.380-392 (1986)
    [31] R. Danzer, B. Buchmary and G. B. Thomas, High Temperature Alloys for Gas Turbines, edited by R. Brunetaud et al., Dodrecht, Holland, D. Reidel Publishing Company, pp.547-560 (1982)
    [32] W. Eber, M. Mclean and K. Schneider, High Temperature Alloys for Gas Turbines and Other Applications, edited by R. Brunetaud et al., Dodrecht, Holland, D. Reidel Publishing Company, pp.593-622 (1986)

    QR CODE