簡易檢索 / 詳目顯示

研究生: 林岡正
Gang-jeng Lin
論文名稱: SUS 316L被覆鎳基合金Inconel 52M及Inconel 82之拉伸與腐蝕性研究
The Studys of Tenslie and Corrosion Propreties of Incone 52M and Inconel 82 Cladded on Stainless Steel 316L
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 王朝正
Chaur-Jeng Wang
許正勳
Cheng-Hsun Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 106
中文關鍵詞: 鎳基合金腐蝕
外文關鍵詞: Inconel, 316L, Corrosion
相關次數: 點閱:204下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以惰性氣體鎢極電弧銲接,分別將鎳基合金Inconel 52M及Inconel 82 被覆於SUS 316L上,並觀察母材與被覆層之間的銲接形貌、機械性質、微觀組織、化學分析及抗蝕性,並探討Inconel 82 取代Inconel 52M作為SUS 316L被覆層的可行性。
    實驗結果顯示,銲接材料成份影響銲後的各項性質,由於Inconel 82的樹枝狀組織較Inconel 52M細,造成硬度及拉伸強度上的提升;在抗蝕性方面,由於Inconel 52M與Inconel 82鉻及鎳的含量高,抗蝕性較SUS 316L佳,其中Inconel 52M的鉻含量又較Inconel 82高,因此被覆Inconel 52M的抗蝕效果比被覆Inconel 82的抗蝕效果來的好。


    This study clads Inconel 52M and Inconel 82 on SUS316L by Gas Tungsten Arc Welding. After processing clads, we observe the region between base metal and filler metal for its macrostructure, mechanical properties, microstructure, chemical analysis, and corrosion resistance test for the possibility of Inconel 82 substitutes for Inconel 52M.
    The results show that the chemical components of filler metal affect many propreties after welding. Because the dendrite microstructure in Inconel 82 is denser than in Inconel 52M, the tensile strength of Inconel 82 is better than Inconel 52M. In corrosion resistance, the higher the cladded layer, the higher the corrosion resistance. The Inconel 52M weldments have better corrosion resistance than Inconel 82 weldments, because Inconel 52 have higher Cr content than Inconel 82.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 前言 1 第二章 文獻回顧 2 2.1不銹鋼介紹 2 2.1.1不銹鋼的分類 3 2.1.2各種元素對不銹鋼及鎳基合金性質的影響 6 2.2鎳基合金的分類 10 2.3銲接理論 11 2.3.1 沃斯田鐵不銹鋼銲接特性 11 2.3.2組成過冷與凝固 13 2.3.3沃斯田鐵不銹鋼之凝固過程 18 2.3.4 肥粒鐵組織對沃斯田鐵不銹鋼的影響 21 2.3.5 氬銲 24 2.4異質金屬銲接 25 2.4.1 銲道與熱影響區 26 2.4.2 母材的選擇 29 2.4.3 銲材的選擇 29 2.4.4 鎳基合金銲料 31 2.5銲接裂紋的形成與種類 33 2.6 金屬電化學腐蝕 35 2.6.1 混合電位理論 36 2.6.2 極化曲線 36 2.6.3 活性極化與濃度極化 38 第三章 實驗方法與步驟 41 3.1 實驗流程 41 3.2材料 43 3.2.1母材 43 3.2.2 銲材 43 3.3銲接試驗 44 3.3.1 GTAW 銲接 44 3.3.2 銲接參數 44 3.4 覆銲層製作與稀釋率測定 45 3.5 微硬度量測 46 3.6 金相觀察 47 3.7彎曲試驗 47 3.8 拉伸試驗 49 3.9 電子顯微鏡觀察 50 3.9 電子顯微鏡觀察 50 3.10 電化學腐蝕性分析 51 4.1 Inconel 52M與Inconel 82被覆外觀分析 53 4.2微結構分析 56 4.3 SEM觀察與EDS 分析 62 4.4 微硬度試驗分析 71 4.5 拉伸試驗 73 4.6 彎曲試驗分析 79 4.7 極化曲線分析 81 4.7.1 Inconel 52M 腐蝕分析 84 4.7.2 Inconel 82 腐蝕分析 84 第五章 結論 89 參考文獻 90 作者簡介 96

    [1]梁仲賢,壓水式核反應器材料的腐蝕與防治對策,核研季刊,26 期,pp.8-12,1999。
    [2]R.E. Gold, D.L. Harrod R.G Aspden and A.J. Baum, Alloy 690 for Steam GeneratorTubing Applications, EPRI-Report, NP-6997-M, 1990.
    [3]John C. Lippold, Damian J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, Wiley, pp.2-5, 2005.
    [4]H. Nagano, K. Yamanaka, K. Kobayashi and M. Inoue, evelopment and Manufacturing System od Alloy 690 Tubing for PWR Steam Generators, The Sumitomo Search, No.40, pp.57-70, 1989.
    [5]郭聰源,鎳基690 合金銲接特性研究,國立成功大學博士論文, 1999 。
    [6]ASM, Metal Handbook, 10th Edition, Vol.2, pp.22-30, 1990
    [7]R.T. Holt and W.Wallace, Impurities and Trace Elements in Nickel-basedSuperalloys, International Metals Reviews, March, pp.I-24, 1976.
    [8]J.N. DuPont, C.Y. Robino, J.R. Michael, M.R. Nois and A.R. Marder, solidification of Nb-Bearing Superalloys: Part I. Reaction Sequences, Metallurgical and Materials Transactions A, Nov., Vo1.29A, pp.2785-2796, 1998.
    [9]IN. DuPont, C.Y. Robino, A.R. Marder and M.R. Nois, olidification of Nb-Bearing Superalloys: Part II. Pseudoternary Solidification Surfaces, Metallurgical and Materials Transactions A, Nov., Vo1.29A, pp.2797-2806, 1998.
    [10]Y. D. He, Z. W. Li, H. B. Qi and W. Gao, Standard Free Energy Change of Formationper Unit Volume: A New Parameter for Evaluating Nucleation and Growth of Oxides, Sulphides, Carbides and Nitrides, Mat Res Innovat, pp.157-160, 1997.
    [11]T. Takalo, N. Suutala, T. Moisio, Influence of Ferrite Content on its Morphology in Some Austenitic Weld Metals, Metall. Trans. A, Vol.7A, No. 10, pp.1591-1592, 1976.
    [12]E. Folkhard, G. Rabensteiner, E. Pertender, H. Schabereiter, J. Tösch, Welding Metallurgy of Stainless Steels, Springer-Verlag, NewYork, 1984.
    [13]J. W. Oldfield, “Crevice Corrosion Resistance of Commercial and High-Purity Experimental Stainless Steels in Marine Environment-TheInfluence of N, Mn, and S”, Corrosion, Vol.46, pp.574, 1990.
    [14]A. J. Sedrik, “Effects of Alloy Composition and Microstructure on the Passivity of Stainless Steels”, Corrosion, Vol.42, p376, 1986.
    [15]R. M. Davison and J.D. Redmond, “Practice Guide to Using Duplex Stainless Steel”, Materials Performance, p57, Jan. 1990.
    [16]R. E. Avery, “Resist Chlorides, Retain Strength and Ductility with Duplex Stainless Steel Alloys”, Chemical Engineering Process, p.78, Mar. 1991.
    [17]“電銲作業手冊”,中船公司,1994年6月
    [18] P.E. Manning, D.J. Duquettu, and W.F. Savage, “Technical Note: The Effect of Retained Ferrite on Localized Corrosion in Duplex 304L Stainless Steel”, Welding Journal, Vol. 59, NO. 9, pp. 260-262, 1980.
    [19]曾光宏,“沃斯田鐵不銹鋼銲接性之探討”,機械技術雜誌,第160期,第96-103頁,1998。
    [20]J. J. Simth, C. Perry and R. A. Farrar, “Development of a New 304L Austenitic Welding Consumable Containing Tungsten”, Journal of Materials Science, Vol. 25, pp. 1275-1284, 1990.
    [21]S. Jana, “Effect of Heat Input on the HAZ Properties of Two Duplex Stainless Steels”, Journal of Material Processing Technology, Vol. 33, p.247, 1992.
    [22]A. Ikeda, S. Mukai, M. Ueda, “Corrosion Behavior of 9 to 25% Cr Steelsin Wet CO2 Environments”, Corrosion, Vol. 41, p.185, 1985.
    [23]J. A. Brooks and A. W. Thompson, “Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stanless Steel Welds”, International Materials Reviews, Vol.36, No.1, pp. 16-37, 1991.
    [24]J. Oredsson and S. Berndardsson, “Performance of High Alloy Austeniticand Duplex Stainless Steels in Sour Gas and Oil Environments”,Materials Performance, p.35, Jan. 1983.
    [25]B. Larsson, H. Gripenberg and R. Mellström, “Special Stainless Steels forTopside Equipment on offshore Platforms”, in ‘Stainless Steels 84’, Göteborg, p.452, 1984.
    [26]曾光宏,周長彬,”銲接參數對304不銹鋼應變之影響”,機械技術雜誌,第 144-150頁,1999。
    [27]黃錦鐘,”不銹鋼的銲接(一)-不銹鋼的銲接凝固現象”,機械月刊,23卷,2期,第 227-233頁,1997。
    [28]J. A. Brooks and A. W. Thompson, “Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stanless Steel Welds”, Internatonal Materials Reviews, Vol. 36, No. 1, pp. 16-37, 1991.
    [29]Schaeffler, A. L., Metal Prog., 56: p.680, 1949.
    [30]Delong, W. T., Welding Journal, 53: p.273, 1974.
    [31]Savage, W. F., and Lundin, C. D. The varestraint test, Welding Journal, vol 44(10): pp.433-442, 1965.
    [32]鄭勝隆,鎳基690合金與SUS304L不銹鋼異種金屬銲接特性與微結構研究,國立成功大學博士論文,2003 。
    [33]C. T. Sims, N. S. Stoloff, and W. C. Hagel, superalloys II, John Wiley & Sons, NY, USA, p.142, 1987.
    [34]K. Easterling, “Introduction to The Physical Metallrugy of Welding”, 2nd ed, Butter Worth Heinemann, p.126, 1992.
    [35]“Nickel Based Welding Products”, Inco Alloys International, Inc., 1993.
    [36]“Arc Welding of Nickel”, 9th ed., Vol.6,ASM International, 1983.
    [37]K. Yamanaka, Effect of Cr on Electrode Strain Behavior for High Ni Alloys in Hot Caustic Solutions, Corrosion Engineering, Vol. 37, No. 11, pp.605-612, 1988.
    [38]H. Nagano, K. Yamanaka, K. Kobayashi, and M. Inoue, “Development and Manufacturing System of Alloy 690 for PWR Steam Generator Tubing”, Sumitomo Search., No. 40, pp. 57-70, 1989.
    [39]E. Folkhard etc., ”Welding Metallurgy of Stainless Steels”, Springer-Verlag, Wien, 1988
    [40]J. N. Dupont, C. V. Robino, and A. R. Marder, “Solidificiation and Weldability of Nb-Bearing Superalloys”, Welding Journal, pp. 417-431, 1998.
    [41]鄭慶民,熱處理型鋁合金銲接性之研究,國立交通大學博士論文,2004。
    [42]晁成虎,多重熱循環對超合金718 銲接性之影響,國立交通大學博士論文,1986 。
    [43]William F. Smith, Principles of Material Science and Engineering, 1996.
    [44]Denny A. Jones, “Principles And Prevention Of Corrosion”, 2nd ed. , Prentice Hill, Inc., 1996.
    [45]鮮祺振,「腐蝕控制」,徐氏基金會出版。
    [46]田福助,「電化學理論與應用」,新科技書局出版。
    [47]Li and et al., “Corrosion-resistance PEM fuel cell”, US Patent 5624769, 22 December 1995.
    [48]G. Hoogers, “Fuel Cell Technology Handbook”, CPC Press, September 27, 2002.
    [49]Shuo-Jen Lee, Ching-Han Huang, J. Power Sources 131,pp.162-168, 2004.
    [50]Aws Standard B2.1, Specification for Welding Procedure and Performance Qualification, in: Annual Book of AWS Standards 2005.
    [51]Sindo Kuo, “Welding Metallurgy”, Wiley, New York, 1987.
    [52]M. J. Cieslak, “The Welding and Solidification Metallurgy of Alloy 625”, Welding Journal, pp.49-56, 1991.
    [53]I. Gowrisankar, A. K. Bhanduri, V. Seethaamam, D. D. N. Verma, and D. R. G. Achar, “Effect of the Number of Passes on the Structure and Properties of Submerged Arc Welds of AISI Type 316L Stainless Steel,” Weld. J., Vol. 66, 147s-154s, 1987.
    [54]ASM, ” Metal Handbook”, 10th Edition, Vol.2, 1990.
    [55]柯賢文,「腐蝕及其防制」,全華科技圖書股份有限公司。
    [56]K. Hulka, ”Characteristic Feature of Titanium, Vanadium and Niobium as Microalloy Additions to Steel”, Niobium Technical Information, NPC Gmbh, 49(211) 138 010. <http://www.us.cbmm.com.br>
    [57]R.T. Holt and W. Wallace, ”Impurities and Trace Elements in Nickel-based Superalloys”, International Metals Reviews, March, pp.1-24, 1976.
    [58]ASTM, “Steel-Plate, Sheet, Strip, Wire; Stainless Steel Bar”, Volume 01.03, 2003.
    [59]黃朝鈿,SUS 316L被覆Inconel 52M機械性質研究,國立台灣科技大學碩士論文,2009。
    [60]ASTM, E407, Standard Practice for Microetching Metals and Alloys, Volume 03.01, 1996.

    QR CODE