簡易檢索 / 詳目顯示

研究生: 維佳達
Alief - Wikarta
論文名稱: 含直線或圓形界面多層異質與裂紋交互作用之彈性問題解析
Interaction between a Crack and Multi-Layered Media with Straight or Circular Boundary for Plane Elasticity
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 馬劍清
Chien-Ching Ma
吳光鐘
Kuang-Chong Wu
陳東陽
Tungyang Chen
胡潛濱
Chyanbin Hwu
黃榮芳
Rong-Fung Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 141
中文關鍵詞: 多層異質其應力集中因子藉由複變函對數對奇異積分方程式
外文關鍵詞: multi-layered media, stress intensity factors, complex potential functions, logarithmic singular integral equations
相關次數: 點閱:247下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以線彈性破壞之觀點,針對直線或圓形多層異質與裂紋在受一遠端均勻負載下之反平面與平面彈性的問題,求其應力集中因子。
    本文求解的過程可分為兩大部分,第一部分,藉由複變函數理論結合解析連續法與交替技巧,求得在多層異質系統受差排作用下之全場應力函數之級數解。第二部分,利用此差排沿著裂紋邊界積分配合疊加法求得奇異積分方程式。接著,再利用差排密度函數之數值,求得其應力集中因子。
    本論文亦考慮多層直線或圓形異質界面與裂紋之交互作用問題。在不同材料性質與幾何形狀下,其應力集中因子與無因次裂紋長度之關係,並以圖解表示。由數值結果顯示本研究所使用之方法可提供一可靠的結果並呈現一快速收斂之級數閉合解。本文所採用方法亦可求解多層橢圓異質或偏心塗層異質之相關問題。


    In this study, the solution of a crack interacting with multi-layered composite under a remote uniform load for anti-plane or in-plane elasticity is provided. The study can be achieved by determination of the stress intensity factors that allow the characterization of interaction from the point of view of linear elastic fracture mechanics.
    The solution procedures for solving this problem consist of two parts. In the first part, based on the method of analytical continuation in conjunction with the alternating technique, the complex potential functions of dislocation interacting with multi-layered composites are obtained. The second part consists of the derivation of logarithmic singular integral equations by introducing the complex potential functions of dislocation along the crack border together with superposition technique. The stress intensity factors are then obtained numerically in terms of the values of the dislocation density functions of the logarithmic singular integral equations.
    Several different problems of multi-layered composite with straight or circular boundaries interacting with a crack are considered. The stress intensity factors as a function of the dimensionless crack length for various material properties and geometric parameters are shown in graphic form. In all problems, this approach obviously provides a reliable result and demonstrates that the series form solution is rapidly convergent. Another merit is that the solutions obtained remain valid regardless of the shape and number of medium such as elliptically layered media and eccentrically coated circular inclusion.

    摘要 i Abstract ii Acknowledgments iii Table of Contents iv Nomenclature vii List of Figures ix List of Tables xiv Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature Study 2 1.3 Objective 4 1.4 Organization of Dissertation 5 Chapter 2 Principles of Complex Potential and Singular Integral Equations 6 2.1 Displacement and Resultant Force Equations 6 2.2 Homogeneous Solution 7 2.3 Analytical Continuation 9 2.4 Superposition Techniques 9 2.5 Numerical Treatment 10 2.6 Stress Intensity Factors 12 Chapter 3 Interaction between a Crack and an Isotropic Tri-Material Media in Anti-plane Elasticity 14 3.1 Problem Statement 14 3.2 Complex Potential Formulation 14 3.3 Singular Integral Equation 17 3.4 Numerical Examples 19 Chapter 4 Interaction between a Crack and a Three-Phase Composite with an Eccentric Circular Inclusion in Anti-plane Elasticity 25 4.1 Problem Statement 25 4.2 Complex Potential Formulation 25 4.2.1 Screw dislocation in infinite matrix 26 4.2.2 Screw dislocation in core inclusion 29 4.3 Singular Integral Equation 30 4.4 Numerical Examples 32 4.4.1 Crack in infinite matrix 32 4.4.2 Crack in core inclusion 34 Chapter 5 Interaction between a Crack and an Elliptically Cylindrical Layered Media in Anti-plane Elasticity 50 5.1 Problem Statement 50 5.2 Complex Potential Formulation 51 5.3 Singular Integral Equation 56 5.4 Numerical Examples 57 Chapter 6 Solutions of a Crack Interacting with a Tri-material Media in Plane Elasticity 64 6.1 Problem Statement 64 6.2 Complex Potential Formulation 64 6.2.1 Edge dislocation in region S1 64 6.2.2 Edge dislocation in region S2 66 6.3 Singular Integral Equation 67 6.3.1 Crack in region S1 67 6.3.2 Crack in region S2 69 6.4 Numerical Examples 70 Chapter 7 Solutions of a Crack Interacting with a Circularly Cylindrical Layered Media in Plane Elasticity 85 7.1 Problem Statement 85 7.2 Complex Potential Formulation 85 7.2.1 Edge dislocation in infinite matrix 86 7.2.2 Edge dislocation in core inclusion 88 7.3 Singular Integral Equation 90 7.3.1 Crack in infinite matrix 90 7.3.2 Crack in core inclusion 93 7.4 Numerical Examples 96 Chapter 8 Conclusion & Future Study 113 References 115 About the Author 120

    Bassani, J. L., and Erdogan, F. (1979). "Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading." International Journal of Fracture, 15(2), 145-158.
    Bilby, B. A., and Eshelby, J. D. (1968). "Dislocation and the theory of fracture." Fracture an Advanced Treatise, vol. 1, H. Liebowitz, ed., Academic Press New York, 99-182.
    Bueckner, H. F. (1958). "The propagation of cracks and the energy of elastic deformation." Journal of Applied Mechanics, 80, 1225-1230.
    Chao, C. K., and Chen, F. M. (2004). "Thermal stresses in an isotropic trimaterial interacted with a pair of point heat source and heat sink." International Journal of Solids and Structures, 41(22-23), 6233-6247.
    Chao, C. K., Chen, F. M., and Shen, M. H. (2006a). "Circularly cylindrical layered media in plane elasticity." International Journal of Solids and Structures, 43(16), 4739-4756.
    Chao, C. K., Chen, F. M., and Shen, M. H. (2006b). "Green's functions for a point heat source in circularly cylindrical layered media." Journal of Thermal Stresses, 29(9), 809-847.
    Chao, C. K., and Kao, B. (1997). "A thin cracked layer bonded to an elastic half-space under an antiplane concentrated load." International Journal of Fracture, 83(3), 223-241.
    Chao, C. K., and Lee, J. Y. (1996). "Interaction between a crack and a circular elastic inclusion under remote uniform heat flow." International Journal of Solids and Structures, 33(26), 3865-3880.
    Chao, C. K., and Shen, M. H. (1995). "Solutions of thermoelastic crack problems in bonded dissimilar media or half-plane medium." International Journal of Solids and Structures, 32(24), 3537-3554.
    Chen, F. M., Chao, C. K., and Chen, C. K. (2011). "Interaction of an edge dislocation with a coated elliptic inclusion." International Journal of Solids and Structures, 48(10), 1451-1465.
    Chen, Y. Z. (1990). "New integral equation for curve crack problem in plane elasticity with arbitrary loading condition." International Journal of Fracture, 46(3), R43-R46.
    Chen, Y. Z. (1994). "Various integral equations for a single crack problem of elastic half-plane." Engineering Fracture Mechanics, 49(6), 849-858.
    Chen, Y. Z. (2007). "Integral equation methods for multiple crack problems and related topics." Applied Mechanics Reviews, 60(4), 172-194.
    Chen, Y. Z., and Chen, R. S. (1997). "Interaction between curved crack and elastic inclusion in an infinite plate." Archive of Applied Mechanics, 67(8), 566-575.
    Chen, Y. Z., and Cheung, Y. K. (1990). "New integral equation approach for the crack problem in elastic half-plane." International Journal of Fracture, 46(1), 57-69.
    Chen, Y. Z., and Hasebe, N. (1992). "Stress-intensity factors for curved circular crack in bonded dissimilar materials." Theoretical and Applied Fracture Mechanics, 17(3), 189-196.
    Chen, Y. Z., Hasebe, N., and Lee, K. Y. (2003). Multiple Crack Problems in Elasticity, WIT Press, Southampton.
    Cheung, Y. K., and Chen, Y. Z. (1987a). "New integral equation for plane elasticity crack problems." Theoretical and Applied Fracture Mechanics, 7(3), 177-184.
    Cheung, Y. K., and Chen, Y. Z. (1987b). "Solutions of branch crack problems in plane elasticity by using a new integral equation approach." Engineering Fracture Mechanics, 28(1), 31-41.
    Choi, S. T., and Earmme, Y. Y. (2002). "Elastic study on singularities interacting with interfaces using alternating technique: Part II. Isotropic trimaterial." International Journal of Solids and Structures, 39(5), 1199-1211.
    Cook, T. S., and Erdogan, F. (1972). "Stresses in bonded materials with a crack perpendicular to the interface." International Journal of Engineering Science, 10(8), 677-697.
    England, A. H. (1971). Complex Variable Methods in Elasticity, Wiley, London.
    Erdogan, F. (1966). "Elastic-plastic anti-plane problems for bonded dissimilar media containing cracks and cavities." International Journal of Solids and Structures, 2(3), 447-465.
    Erdogan, F. (1971). "Bonded dissimilar materials containing cracks parallel to the interface." Engineering Fracture Mechanics, 3(3), 231-240.
    Erdogan, F. (2000). "Fracture mechanics." International Journal of Solids and Structures, 37(2), 171-183.
    Erdogan, F., and Aksogan, O. (1974). "Bonded half planes containing an arbitrarily oriented crack." International Journal of Solids and Structures, 10(6), 569-585.
    Erdogan, F., and Biricikoglu, V. (1973). "Two bonded half planes with a crack going through the interface." International Journal of Engineering Science, 11(7), 745-766.
    Erdogan, F., and Cook, T. S. (1974). "Antiplane shear crack terminating at and going through a bimaterial interface." International Journal of Fracture, 10(2), 227-240.
    Erdogan, F., and Gupta, G. (1971). "The stress analysis of multi-layered composites with a flaw." International Journal of Solids and Structures, 7(1), 39-61.
    Erdogan, F., and Gupta, G. D. (1975). "The inclusion problem with a crack crossing the boundary." International Journal of Fracture, 11(1), 13-27.
    Erdogan, F., Gupta, G. D., and Ratwani, M. (1974). "Interaction between a circular inclusion and an arbitrarily oriented crack." Journal of Applied Mechanics, Transactions ASME, 41 Ser E(4), 1007-1013.
    Griffith, A. A. (1921). "The phenomena of rupture and flow in solids." Philos. Trans. R. Soc. London, A221, 163-197.
    Hills, D. A., Kelly, P. A., Dai, D. N., and Korsunsky, A. M. (1996). Solution of Crack Problems the Distributed Dislocation Technique, Kluwer Academic, Netherlands.
    Irwin, G. R. (1957). "Analysis of stresses and strains near the end of a crack traversing a plate." Journal of Applied Mechanics, 24, 361-364.
    Lam, K. Y., Ong, P. P., and Wude, N. (1998). "Interaction between a circular inclusion and a symmetrically branched crack." Theoretical and Applied Fracture Mechanics, 28, 197-211.
    Liebowitz, H., ed. (1968). Fracture an Advanced Treatise, vol. 2, Mathematical Fundamentals. Academic Press, New York.
    Murakami, Y. (1987). Stress Intensity Factors Handbook (in 2 volumes). Pergamon, Oxford.
    Muskhelishvili, N. I. (1953). Some Basic Problems of the Mathematical Theory of Elasticity, Noordoff, Groningen.
    Rice, J. (1968). "Mathematical analysis in the mechanics of fracture." Fracture an Advanced Treatise, vol. 2, H. Liebowitz, ed., Academic Press New York.
    Sih, G. C., ed., (1973). Mechanics of Fracture, Vol. 1, Method of Analysis and Solutions of Crack Problem., Noordhoff, Leyden.
    Sih, G. C., ed., (1981). Mechanics of Fracture, Vol. 6, Cracks in Composite Materials., Martinus, Netherlands.
    Sneddon, I. N. (1973). "Integral transform methods." Mechanics of Fracture Vol. 1, G. C. Sih, ed., Noordhoff, Netherlands, 315-367.
    Sneddon, I. N., (1975). Application of Integral Transforms in the Theory of Elasticity, Springer, New York.
    Suo, Z. (1989). "Singularities interacting with interfaces and cracks." International Journal of Solids and Structures, 25(10), 1133-1142.
    Tada, H., Paris, P.C. and Irwin, G.R., (2000). The Stress Analysis of Cracks Handbook, 3rd edition, ASME Press.
    Xiao, Z. M., and Chen, B. J. (2001). "Stress intensity factor for a Griffith crack interacting with a coated inclusion." International Journal of Fracture, 108(3), 193-205.
    Yu, J.-D., and Wu, K.-C. (1993). "Anti-plane shear crack in a sandwich composite." Engineering Fracture Mechanics, 44(6), 875-885.

    QR CODE