簡易檢索 / 詳目顯示

研究生: 吳中盛
Chung-Sheng Wu
論文名稱: 擴增實境教育遊戲編輯工具之發展與評估:運用於高中化學科之學習成效與行為分析
Development and Evaluation of Augmented Reality Educational Game Maker: Analysis of Learning Performance and Behaviors for Chemistry Instruction
指導教授: 侯惠澤
Huei-Tse Hou
口試委員: 陳聖智
Sheng-Chih Chen
湯梓辰
Tzu-chen Tang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 114
中文關鍵詞: 遊戲式學習擴增實境行為模式編輯工具
外文關鍵詞: game-based learning, augmented reality, behavioral pattern, tool
相關次數: 點閱:424下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學是科學發展基礎的一項重要學科,知識範疇涵蓋許多抽象概念與無法直觀的反應過程,使學習者在傳統教學的環境下產生焦慮感受,此外若教學活動引導鷹架設計不足,則可能讓學習者在學習過程中產生誤解。為了有效降低學習者的學習焦慮以及搭建適當的認知鷹架,運用遊戲式學習的策略可以提供一個輕鬆快樂的環境幫助學習,藉此來降低焦慮感受並提高學習者的參與動機,透過結合桌上遊戲及數位遊戲的擴增實境技術,有效改善學習體驗。
    為了降低教育遊戲製作成本,使遊戲式學習得以順利在教育現場推廣,本研究開發了一套擴增實境教育遊戲編輯工具「迷你宇宙」,以遊戲式學習與鷹架理論為核心架構,提供設計者迅速設計出具有認知鷹架與即時回饋機制的教育遊戲,並且能廣泛適用於各項科目來輔助學習者探索與學習。為了解此工具是否能有效推廣於教育現場,因此本研究以此設計出一款專為高中化學科學習的擴增實境教育遊戲「返途」,運用分組競爭學習策略來提供同儕鷹架,再藉由遊戲中的認知鷹架與即時回饋機制,幫助學習者在探索遊戲的過程中學會氣體與壓力計的相關概念,並運用所學知識來解開遊戲關卡。
    本研究中以台灣北部某高中31位學習者作為施測對象,藉由實徵研究分析來探討學習者的學習成效、心流狀態、科技接受度、遊戲元素、焦慮程度以及學習者行為序列分析。研究結果顯示學習者運用此遊戲學習後,學習成效顯著進步,焦慮程度顯著降低,心流狀態與科技接受度平均分數皆高於中位數,學習行為模式分析發現學習者能夠充分運用遊戲中提供的提示鷹架與即時回饋功能,並試圖多方組合出隱藏的線索來解題,且當答題錯誤時也會回去尋找尚未取得的提示資訊,進而反思並修正解題策略。


    Chemistry is an important subject for scientific development. The knowledge contains abstract concepts and unintuitive reaction processes, which could make learners feel anxious when learning in the traditional learning environment. In addition, during the learning process, teaching activities which are lacking of suitable scaffolding design may cause learners misunderstanding. In order to effectively reduce the learner's anxiety and to build an appropriate cognitive scaffolding, employing game-based learning (GBL) strategies can provide a relaxed and pleasant environment to improve learning effectiveness, thereby reducing anxiety enhancing learners' motivation to participate. With the flexibility and adaptability of the board game and embedding augmented reality (AR) technique into digital games, the proposed approach can effectively improve the learning experience.
    In order to reduce the production cost of educational games and facilitate the promotion of GBL at the educational field, this research has developed an AR-based educational game maker, “Mini-universe." With the GBL and scaffolding theory as the core framework, the self-developed game maker allows users to design educational games with cognitive scaffolding and instant feedback mechanisms, and can be widely applied to various subjects to assist learners in exploring and learning. To estimate whether proposed game maker can be effectively promoted in the education field, in this study, an AR-based educational game, “Return,” was developed for high school chemistry learning by the game engine. With the group competition learning strategy as peer scaffolding, as well as the cognitive scaffolding and the instant feedback mechanism in the game, learners can learn the concepts of gas and pressure gauge in the game by exploring and utilizing the knowledge they have acquired to complete the game tasks.
    A total of 31 high school students in northern Taiwan participated in this study, and the empirical research was used to explore the learner's learning effectiveness, flow status, technological acceptance, game elements, anxiety, and learners’ behavior sequential patterns. The results revealed that the proposed approach improved the students’ learning effectiveness and reduced the level of anxiety. Moreover, the average scores of flow status and technological acceptance are higher than the median. From the analysis of the students’ behavior sequences, it was found that the students adopted the scaffolding and the instant feedback function tentatively to find out hidden clues to solve the problem. When answering incorrectly, the students would also look for further information, afterwards making reflection and changing problem-solving strategies.

    摘要 Abstract 目錄 圖次 表次 第壹章 緒論 第一節 研究背景與動機 第二節 研究目的與研究問題 第貳章 文獻探討 第一節 遊戲式學習與遊戲化教學 第二節 鷹架理論 第三節 擴增實境運用於教學 第四節 心流與科技接受度 第五節 學習焦慮 第六節 遊戲輔助化學教學 第七節 小結 第参章 研究方法 第一節 研究設計 第二節 研究對象 第三節 研究工具 一、擴增實境編輯工具介紹 二、擴增實境教育遊戲介紹 三、參與遊戲同意書與基本資料問卷 四、學習成效評量 五、心流問卷 六、科技接受度問卷 七、焦慮問卷 八、行為模式分析編碼表 第四節 研究程序 第五節 資料蒐集與分析方法 第肆章 研究結果 第一節 學習者對「返途」之學習成效、心流狀態、科技接受度、遊戲元素與焦慮程度 一、學習成效 二、心流狀態 三、科技接受度與遊戲元素 四、焦慮程度 第二節 不同性別的學習者在學習成效、心流狀態、科技接受度、遊戲元素與焦慮程度的差異 第三節 高、低學習成效的學習者在心流狀態、科技接受度、遊戲元素與焦慮程度的差異 第四節 高、低心流狀態的學習者在學習成效、科技接受度、遊戲元素與焦慮程度的差異 第五節 高、低焦慮程度的學習者在學習成效、心流狀態、科技接受度與遊戲元素的差異 第六節 相關與路徑分析 一、相關分析 二、路徑分析 第七節 行為模式分析 一、整體學習者行為模式分析 二、高、低學習成效分組行為模式差異比較 三、高、低心流狀態分組行為模式差異比較 四、高、低焦慮程度分組行為模式差異比較 第伍章 討論 第一節 學習者對於「返途」遊戲之學習成效、心流狀態、科技接受度、遊戲元素與焦慮程度 第二節 不同性別的學習者在學習成效、心流狀態、科技接受度、遊戲元素與焦慮程度的差異 第三節 高、低學習成效的學習者在心流狀態、科技接受度、遊戲元素與焦慮程度的差異 第四節 高、低心流狀態的學習者在學習成效、科技接受度、遊戲元素與焦慮程度的差異 第五節 高、低焦慮程度的學習者在學習成效、心流狀態、科技接受度與遊戲元素的差異 第六節 相關與路徑分析 第七節 行為模式分析 第陸章 結論與建議 第一節 結論 第二節 建議 一、系統發展 二、遊戲設計 三、教學實務 四、未來研究 參考文獻 附錄一:參與遊戲同意書 附錄二:基本資料問卷 附錄三:心流問卷 附錄四:科技接受度問卷 附錄五:學習成效評量 附錄六:焦慮量表

    許皓雲 (2018)。運用多重表徵與認知鷹架的國中數學科擴增實境桌上遊戲的學習成效與歷程分析。國立臺灣科技大學應用科技研究所,未出版,台北市。
    Ayyıldız, Y., & Tarhan, L. (2013). Case study applications in chemistry lesson: gases, liquids, and solids. Chemistry Education Research and Practice, 14(4), 408-420.
    Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
    Barak, M., & Dori, Y. J. (2005). Enhancing undergraduate students' chemistry understanding through project‐based learning in an IT environment. Science Education, 89(1), 117-139.
    Bawa, P., Watson, S. L., & Watson, W. (2018). Motivation is a game: Massively multiplayer online games as agents of motivation in higher education. Computers & Education, 123, 174-194.
    Bouwma‐Gearhart, J., Stewart, J., & Brown, K. (2009). Student misapplication of a gas‐like model to explain particle movement in heated solids: implications for curriculum and instruction towards students’ creation and revision of accurate explanatory models. International Journal of Science Education, 31(9), 1157-1174.
    Bransford, J. D., Brown, A., & Cocking, R. (1999). How people learn: Mind, brain, experience, and school. Washington, DC: National Research Council.
    Brom, C., Šisler, V., Slussareff, M., Selmbacherová, T., & Hlávka, Z. (2016). You like it, you learn it: affectivity and learning in competitive social role play gaming. International Journal of Computer-Supported Collaborative Learning, 11(3), 313-348.
    Brush, T. A., & Saye, J. W. (2002). A summary of research exploring hard and soft scaffolding for teachers and students using a multimedia supported learning environment. The Journal of Interactive Online Learning, 1(2), 1-12.
    Bunch, J. C., Robinson, J. S., Edwards, M. C., & Antonenko, P. D. (2014). How a Serious Digital Game Affected Students' Animal Science and Mathematical Competence in Agricultural Education. Journal of Agricultural Education, 55(3), 57-71.
    Burguillo, J. C. (2010). Using game theory and competition-based learning to stimulate student motivation and performance. Computers & education, 55(2), 566-575.
    Byun, J., & Joung, E. (2018). Digital game‐based learning for K–12 mathematics education: A meta‐analysis. School Science and Mathematics, 118(3-4), 113-126.
    Carey, E., Hill, F., Devine, A., & Szűcs, D. (2017). The modified abbreviated math anxiety scale: A valid and reliable instrument for use with children. Frontiers in psychology, 8, 11.
    Cattell, R. B., & Scheier, I. H. (1961). The meaning and measurement of neuroticism and anxiety.
    Chang, C. C., Warden, C. A., Liang, C., & Lin, G. Y. (2018). Effects of digital game-based learning on achievement, flow and overall cognitive load. Australasian Journal of Educational Technology, 34(4).
    Chen, C. H., Shih, C. C., & Law, V. (2020). The effects of competition in digital game-based learning (DGBL): a meta-analysis. Educational Technology Research and Development, 1-19.
    Chen, C. H., Shih, C. C., & Law, V. (2020). The effects of competition in digital game-based learning (DGBL): a meta-analysis. Educational Technology Research and Development, 1-19.
    Chen, L. X., & Sun, C. T. (2016). Self-regulation influence on game play flow state. Computers in Human Behavior, 54, 341-350.
    Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of science education and technology, 22(4), 449-462.
    Cheng, K. H., & Tsai, C. C. (2014). Children and parents' reading of an augmented reality picture book: Analyses of behavioral patterns and cognitive attainment. Computers & Education, 72, 302-312.
    Clarke, S. G., & Haworth, J. T. (1994). ‘Flow’experience in the daily lives of sixth‐form college students. British Journal of Psychology, 85(4), 511-523.
    Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (p. 453–494). Lawrence Erlbaum Associates, Inc.
    Cross, R. W., & Huberty, T. J. (1993). Factor analysis of the State-Trait Anxiety Inventory for Children with a sample of seventh-and eighth-grade students. Journal of Psychoeducational Assessment, 11(3), 232-241.
    Csikszentmihalyi, M. (1975). Beyond boredom and anxiety: Experiencing flow in work and play. San Francisco/Washington/London.
    Csikszentmihalyi, M. (1996). Flow and the psychology of discovery and invention (Vol. 56, p. 107). New York: Harper Collins.
    Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
    Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of science Education and Technology, 18(1), 7-22.
    Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
    Fokides, E. (2018). Digital educational games and mathematics. Results of a case study in primary school settings. Education and Information Technologies, 23(2), 851-867.
    Freud, S. (1894). The justification for detaching from neurasthenia a particular syndrome: the anxiety-neurosis. Reprinted in: Freud S.(1940) CoNected Papers. Vol. I.
    Gil-Doménech, D., & Berbegal-Mirabent, J. (2019). Stimulating students’ engagement in mathematics courses in non-STEM academic programmes: A game-based learning. Innovations in Education and Teaching International, 56(1), 57-65.
    Griffiths, A. K., & Preston, K. R. (1992). Grade‐12 students' misconceptions relating to fundamental characteristics of atoms and molecules. Journal of research in Science Teaching, 29(6), 611-628.
    Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challenging games help students learn: An empirical study on engagement, flow and immersion in game-based learning. Computers in human behavior, 54, 170-179.
    Hoog, T. G., Aufdembrink, L. M., Gaut, N. J., Sung, R. J., Adamala, K. P., & Engelhart, A. E. Rapid deployment of smartphone‐based augmented reality tools for field and online education in structural biology. Biochemistry and Molecular Biology Education.
    Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The abbreviated math anxiety scale (AMAS) construction, validity, and reliability. Assessment, 10(2), 178-182.
    Hou, H. T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. Computers in human behavior, 48, 424-435.
    Hou, H. T., & Chou, Y. S. (2012). Exploring the technology acceptance and flow state of a chamber escape game-Escape The Lab© for learning electromagnet concept. ICCE 2012, 38.
    Hou, H. T., & Li, M. C. (2014). Evaluating multiple aspects of a digital educational problem-solving-based adventure game. Computers in Human Behavior, 30, 29-38.
    Hou, H. T., Lin, W. S., Li. M. C., Wang. C. P., & Shen, S. C. (2016), Educational board game “Chemistry Story” for chemistry instruction: Cognitive mechanism design and game evaluation of learners' flow, learning achievement and gender difference, Paper presented at Global Chinese Conference on Innovation & Applications in Inquiry Learning (GCCIL 2016), Shenzhen, China, 2016, October.
    Hou, H. T., Wu, Y. S., & Chou, Y. S. (2014, May). How technology acceptance affects flow antecedent and flow experience in a simulation-based science education game: A preliminary path analysis. In Paper presented at the global Chinese conference on computers in education (GCCCE 2014), Shanghai,China.
    Hsieh, Y. H., Lin, Y. C., & Hou, H. T. (2016). Exploring the role of flow experience, learning performance and potential behavior clusters in elementary students' game-based learning. Interactive Learning Environments, 24(1), 178-193.
    Hsieh, Y. H., Yi-Chun, L., & Hou, H. T. (2015). Exploring elementary-school students' engagement patterns in a game-based learning environment. Journal of Educational Technology & Society, 18(2), 336.
    Hwang, G. J., Wu, P. H., & Chen, C. C. (2012). An online game approach for improving students’ learning performance in web-based problem-solving activities. Computers & Education, 59(4), 1246-1256.
    Jackson, S. A., & Marsh, H. W. (1996). Development and validation of a scale to measure optimal experience: The Flow State Scale. Journal of sport and exercise psychology, 18(1), 17-35.
    Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of computer assisted learning, 7(2), 75-83.
    Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model. The Internet and higher education, 8(1), 13-24.
    Kiili, K. (2006). Evaluations of an experiential gaming model. Human Technology: An Interdisciplinary Journal on Humans in ICT Environments.
    Kiili, K. (2007). Foundation for problem‐based gaming. British journal of educational technology, 38(3), 394-404.
    Kiili, K., & Ketamo, H. (2017). Evaluating cognitive and affective outcomes of a digital game-based math test. IEEE Transactions on Learning Technologies, 11(2), 255-263.
    Kim, S., & Chang, M. (2010). Computer games for the math achievement of diverse students. Journal of Educational Technology & Society, 13(3), 224.
    King, J. R., Hunter, W. J., & Szczepura, L. F. (2002). Design, implementation, and evaluation of novel discussion exercises for first-year chemistry students. The Chemical Educator, 7(6), 329-333.
    Klawe, M. (2000). The effective design and use of educational computer games. Retrieved June 3, 2008.
    Lee, O., & Brophy, J. (1996). Motivational patterns observed in sixth‐grade science classrooms. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 33(3), 303-318.
    Magnussen, R., & Misfeldt, M. (2004). Player transformation of educational multiplayer games. Proceedings of other players.
    Martín-Lara, M. A., & Calero, M. (2020). Playing a Board Game to Learn Bioenergy and Biofuels Topics in an Interactive, Engaging Context. Journal of Chemical Education, 97(5), 1375-1380.
    Mathrani, A., Christian, S., & Ponder-Sutton, A. (2016). PlayIT: Game based learning approach for teaching programming concepts. Journal of Educational Technology & Society, 19(2), 5-17.
    Mavridis, A., & Tsiatsos, T. (2017). Game‐based assessment: investigating the impact on test anxiety and exam performance. Journal of Computer Assisted Learning, 33(2), 137-150.
    McKeachie, W. J. (1984). Does anxiety disrupt information processing or does poor information processing lead to anxiety?. International Review of Applied Psychology.
    McLaren, B. M., Adams, D. M., Mayer, R. E., & Forlizzi, J. (2017). A computer-based game that promotes mathematics learning more than a conventional approach. International Journal of Game-Based Learning (IJGBL), 7(1), 36-56.
    Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    Nakhleh, M. B., & Samarapungavan, A. (1999). Elementary school children's beliefs about matter. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 36(7), 777-805.
    National Science Foundation (1996). Shaping the Future: New Expectations for Undergraduate Education in Science, Mathematics, Engineering, and Technology In: Washington, DC: Directorate for Education and Human Resources.
    Nelson, L. M. (1999). Collaborative problem solving. Instructional design theories and models: A new paradigm of instructional theory, 2, 241-267.
    NELSON, P. G. (2002). Teaching chemistry progressively: From substances, to atoms and molecules, to electrons and nuclei. Chemistry Education Research and Practice, 3(2), 215-228.
    Noh, T., & Scharmann, L. C. (1997). Instructional influence of a molecular‐level pictorial presentation of matter on students' conceptions and problem‐solving ability. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(2), 199-217.
    Novak, T. P., & Hoffman, D. L. (1997). Measuring the flow experience among web users. Interval Research Corporation, 31(1), 1-35.
    O’Dwyer, A., & Childs, P. (2014). Organic chemistry in action! Developing an intervention program for introductory organic chemistry to improve learners’ understanding, interest, and attitudes. Journal of Chemical Education, 91(7), 987-993.
    Onwu, G. O., & Randall, E. (2006). Some aspects of students’ understanding of a representational model of the particulate nature of matter in chemistry in three different countries. Chemistry Education Research and Practice, 7(4), 226-239.
    Organisation for Economic Co-operation and Development (OECD). (2016). PISA 2015 results in focus.
    Ozmen, H. (2011). Turkish Primary Students' Conceptions about the Particulate Nature of Matter. International Journal of Environmental and Science Education, 6(1), 99-121.
    Park, E., Baek, S., Ohm, J., & Chang, H. J. (2014). Determinants of player acceptance of mobile social network games: An application of extended technology acceptance model. Telematics and Informatics, 31(1), 3-15.
    Partnership for 21st Century Skills (2009). 21st Century skills, education and competitiveness: A resource and policy guide. Tuscon, AZ: Author.
    Pellegrino, J.W., Wilson, M., Koenig, J. & Beatty, A. (Eds.) (2014). Developing assessments for the next generation science standards. Washington, DC: National Academies Press.
    Prensky, M. (2001). Fun, play and games: What makes games engaging. Digital game-based learning, 5(1), 5-31.
    Prensky, M. (2003). Digital game-based learning. Computers in Entertainment (CIE), 1(1), 21-21.
    Puntambekar, S., & Hubscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational psychologist, 40(1), 1-12.
    Reinders, H., & Wattana, S. (2014). Affect and willingness to communicate in digital game-based learning.
    Rowe, E., Asbell-Clarke, J., Baker, R. S., Eagle, M., Hicks, A. G., Barnes, T. M., ... & Edwards, T. (2017). Assessing implicit science learning in digital games. Computers in Human Behavior, 76, 617-630.
    Santos, M. E. C., Chen, A., Taketomi, T., Yamamoto, G., Miyazaki, J., & Kato, H. (2013). Augmented reality learning experiences: Survey of prototype design and evaluation. IEEE Transactions on learning technologies, 7(1), 38-56.
    Sarid, O., Anson, O., Yaari, A., & Margalith, M. (2004). Academic stress, immunological reaction, and academic performance among students of nursing and physiotherapy. Research in nursing & health, 27(5), 370-377.
    Shin, S., Brush, T. A., & Glazewski, K. D. (2020). Examining the hard, peer, and teacher scaffolding framework in inquiry-based technology-enhanced learning environments: impact on academic achievement and group performance. Educational Technology Research and Development, 1-25.
    Shute, V. J. (2008). Focus on formative feedback. Review of educational research, 78(1), 153-189.
    Skamp, K. (1999). Are Atoms and Molecules Too Difficult for Primary Children?. School Science Review, 81(295), 87-96.
    Sousa Lima, M. A., Monteiro, Á. C., Melo Leite Junior, A. J., de Andrade Matos, I. S., Alexandre, F. S. O., Nobre, D. J., ... & da Silva Júnior, J. N. (2019). Game-based application for helping students review chemical nomenclature in a fun way.
    Spielberger, C. D. (1966). Theory and research on anxiety. Anxiety and behavior, 1(3).
    Srisawasdi, N., & Panjaburee, P. (2019). Implementation of game-transformed inquiry-based learning to promote the understanding of and motivation to learn chemistry. Journal of Science Education and Technology, 28(2), 152-164.
    Sung, R. J., Wilson, A. T., Lo, S. M., Crowl, L. M., Nardi, J., St. Clair, K., & Liu, J. M. (2019). BiochemAR: An Augmented Reality Educational Tool for Teaching Macromolecular Structure and Function. Journal of Chemical Education, 97(1), 147-153.
    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
    Troussas, C., Krouska, A., & Sgouropoulou, C. (2020). Collaboration and fuzzy-modeled personalization for mobile game-based learning in higher education. Computers & Education, 144, 103698.
    Vitasari, P., Wahab, M. N. A., Othman, A., Herawan, T., & Sinnadurai, S. K. (2010). The relationship between study anxiety and academic performance among engineering students. Procedia-Social and Behavioral Sciences, 8, 490-497.
    Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.
    Wang, P. Y., Lin, H. T., Wang, S. M., & Hou, H. T. (2019, May). The Development and Evaluation of an Educational Board Game with Augmented Reality Integrating Contextual Clues as Multi-Level Scaffolding for Learning Ecosystem Concepts. In 2019 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW) (pp. 1-2). IEEE.
    Webb, A. W., Bunch, J. C., & Wallace, M. F. (2015). Agriscience teachers’ implementation of digital game-based learning in an introductory animal science course. Journal of Science Education and Technology, 24(6), 888-897.
    Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of child psychology and psychiatry, 17(2), 89-100.
    Wu, C. H., Chen, C. C., Wang, S. M., & Hou, H. T. (2018, July). The Design and Evaluation of a Gamification Teaching Activity using Board Game and QR Code for Organic Chemical Structure and Functional Groups Learning. In 2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 938-939). IEEE.
    Xu, Z., Chen, Z., Eutsler, L., Geng, Z., & Kogut, A. (2019). A scoping review of digital game-based technology on English language learning. Educational Technology Research and Development, 1-28.
    Yang, J. C., Lin, M. Y. D., & Chen, S. Y. (2018). Effects of anxiety levels on learning performance and gaming performance in digital game‐based learning. Journal of Computer Assisted Learning, 34(3), 324-334.
    Yang, Q. F., Chang, S. C., Hwang, G. J., & Zou, D. (2020). Balancing cognitive complexity and gaming level: Effects of a cognitive complexity-based competition game on EFL students' English vocabulary learning performance, anxiety and behaviors. Computers & Education, 148, 103808.
    Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Punishment: Issues and experiments, 27-41.
    Young, S. S. C., & Wang, Y. H. (2014). The game embedded CALL system to facilitate English vocabulary acquisition and pronunciation. Journal of Educational Technology & Society, 17(3), 239-251.
    Zumbach, J., Rammerstorfer, L., & Deibl, I. (2020). Cognitive and metacognitive support in learning with a serious game about demographic change. Computers in Human Behavior, 103, 120-129.

    QR CODE